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Total Water Withdrawals in the United States
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Categories of Organisms of Public
Health Significance in Wastewater

Bacteria
Campylobacter
Salmonella
Shigella

E. coli

Vibrio

VIruses
Noroviruses
Hepatitis A virus
Rotavirus
Coronaviruses

Protozoa _
Cryptosporidium Helminths
e "8 | ' (- Ascaris
Microsporidia, i L% 0l Trichuris
Cyclospora, & il

Toxoplasma




Mortality Rate for Typhoid Fever in the United States
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Adapted from U.S. Center for Disease Control and Prevention
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Comparison of Microbial Inactivation or Removal
Efficacy by Selected Disinfectants and Filtration

Processes
Disinfectants Bacteria Viruses Protozoa Overall Rating
Free chlorine Excellent Excellent Fair/Poor Good
Chloramines Fair Poor Very Poor Poor
Chlorine dioxide Good/Excellent Good/ExcellenEair Good
Ozone Excellent Excellent Good/ExcellentGood/Excellent
Ultraviolet irradiation Good/Excellent Good Good/Excellent Good/Excellent

Filtration Processes

Granular Media Filtration Good Fair Good Good
Low-Pressure MembraneEkXxcellent Excellent Excellent Excellent
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@ Grit chamber
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@ Settling tank

Lo Primary treatment

Secondary treatment
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Tertiary treatment

Anaerobic sludge
digestar

? drainfield

1o control

@@ Sand or mixed media

@ Disinfection tank

Sub-surface flow vs. free-surface flow

FIGURE 21.3 Schematic of the treatment processes typical of modern “removaln VS. “Sou rce—traCklng”

from Pepper ef al., 1996.)
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" GonstructedWetlands.org

Ahout Us Resources Photo Gallery FAQ Links Contact Us Donate Mows! Home

Cnnstructed wietlands are marshes built to treat

f}}{,!{,rﬂf i(;} J_T\{i;!!!idé{f cantaminated water. They have four key

camponents:
Constructed Wetlands for Low-Cost Wastewater  Soil and drainage materials (such as pipes
Treatment and Nature Conservation and gravel)
s Yiater

s Plants (both above and below the water)
e Micro-arganisms

1 2
Clonstructed wetlands purify the water that flows

through them. Compared to conventional
treatment methods, they tend to be simple,
inexpensive, and environmentally friendly.
Constructed wetlands may be used to treat water
fram many different sources:

o Sewage (from small communities,
individual homes, and businesses)

s Stormwater

o Agricultural wastewater (including livestack
waste, runoff, and drainage water)

¢ Landfill leachate

o Fartially treated industrial wastewater

s [rainage water from mines

¢ Funoff from highways
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ter: The information in this website is entirely drawn from a 1993 publication, and has not been updated since the original publication date. Users are cautio.
rmation reported at that time may have become outdated.

United States EPAS32-R-93-005
Enviranmental Pratection september 1993
Agency

Constructed Wetlands
for Wastewater Treatment
and Wildlife Habitat

17 Case Studies




The Graczyk’s Lab: Fluorescence In Situ Hybridization (FISH)

™

Giardia duodenalis
A

. ' Cryptosporidium parvum




The Graczyk’s Lab: Multiplexed Fluorescent In Situ
Hybridization (FISH)

E. hellem Hester et al. (2000) J Eukaryot Microbiol 47:299-308.
Graczyk et al. (2007) J Clin Microbiol 45:1255-60

E. hellem E. bieneusi
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E. Intestinalis E. cuniculi
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Engineered wetlands may pose risks to

wildlife

Havens for wildlife in the parched southwestern US| wetlands constructed to

receive sewage treatment plant discharges also boast a sterling record for
clachinn nutrient levels spznended solids and biological oeeyoen dernand o

effluents. But after two decades of research on treatment wetlands, scientists

have scarcely investigated whether pesticides and metals in sewage effluent pose
a risk to wildlife. Research published in this issue of E5&T (pp B03-611) indicates

for the first time a potential exposure pathway for a complex mix of the nearky &0
inarganic and arganic contaminants found in a treatment wetland.

Larry Barber and his colleagues at the

.5 Geological Survey (USGS) analyzed

water and fish tissue samples from the
Tres Rios Demonstration Constructed
Wetlands located near Phoenix, Anz.
The 10-acre site receives secandary
sewage effluent from industrial,
residential, and medical sources.
{Contaminants flowing through the site
are eliminated through photodegradation,
volatilization, biodegradation, sorption to
sediments, and uptake by plants, says
Barber.

Indeed, the researchers found that the
wetlands reduced contaminant
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Treatment wetlands outperfarm
sewage treatment plants when it
comes to removing contaminants,
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|dentification of Cryptosporidium; PCR, RFLP

C. hominis
C. parvum

C. andersoni

C. muris

Vspl




1R
¥ A A
T T

.

1 wetland
v ~“plants




drainfield : . - 1 wetland : | 'dm'”cz:ald control
l'ﬂ'EIﬂ'I 1 . ¢l L'I.,/pllan’[s rock . |/ Il" ' m et

\ | ' / i A | R, \ ;
o i 4/ WO liner \ W/ W W\ outlet/inlet (%)

b

| | | { i 4
. . _.,'u_:. N — T'..'_.. —ttp Pl

} : i 4 I i

Ao @

Frequency Distribution of Cryptosporidium/outlet
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Pathogen removal relative index (inlet - outlet)%
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Cryptosporidiun felis
Cryprosporidium ap. [canlne)

Crypresporidium parvud genotype 1

C. parvum genatype 2

L. folis

Crypiosporidium 5p. (canine)
C. parwum genotype 1

C. parvum genotype 2

C. folis

Cryptosporidium sp. {canlne)
. parvum gengtype 1

. parvum genotype 2

C. felis

Cryptosporidiue sp. |canine
C. parvum genotype 1

. parvum genatype 2

C. fplis

Cryptesporidive sp. (caning)
. parvum genotype 1

0. parvum gonetype 2
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Conclusions

v Wastewater discharges are worldwide risk factors for the introduction of human protozoan
enteropathogens into surface waters

v'Demand for high quality drinking and recreational waters rises exponentially due to global
demographic growth, reinforcing an urgent need for microbiologically safe reclaimed waters

v" Pathogen source-tracking research in engineered wetlands is deficient, due to the lack of
available molecular technology in the past

v" Current technology allows for multiplexed species-specific identification, enumeration,
viability assessment, and source-tracking of human protozoan pathogens

v" Public health in developing and developed regions of the world will benefit from changing the
conceptual research framework for constructed wetlands from “pathogen removal” to
“pathogen source-tracking” efforts. “Removal” assumes that “survived pathogens”
originate from pathogens delivered to that wetland from the sewage treatment process, while
“source tracking” evaluates the complexity of pathogen ecological interactions

v" Improvements in reclaimed water quality by lowering fecal coliform counts is not a sound solution for
human protozoan enteropathogens
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