DEFINING SENSITIVITY AND SPECIFICITY OF AN

IMPERFECT GOLD STANDARD

Dr Direk Limmathurotsakul, MD MSc PhD

How to evaluate accuracy of a new diagnostic test

- Se is a probability that a test is positive in <u>diseased pt</u>
- Sp is a probability that a test is negative in <u>non-diseased pt</u>
- Compare the new diagnostic test with a gold standard

Now tost	Gold standard		Se= a
New lest	Positive	Negative	a+b
Positive	а	С	Sp = _d
Negative	b	d	C+C

We assume that Se and Sp of the gold standard are 100%

- If the gold standard has true Se of 60% and true Sp of 100%
- Hypothetically tested in 1,000 infected and 1,000 non-infected pts

Gold standard	
Negative	Positive
400 + 1,000	00
	Negative 400 + 1,000

- Assume that Se and/or Sp of gold standard may not be 100%
- Because the gold standard is imperfect, we consider the true prevalence instead
- Need at least 3 tests in a single population

A probability that

Profile	Number
111	
110	•
101	•
011	
100	•
010	
001	•
000	•
TOTAL	Ν

- We observed 8 total numbers of patients having each profile
- We can estimate 7 unknown parameters

Prevalence = xx%

- Test 1 Se = xx% Sp = xx%
- Test 2 Se = xx% Sp = xx%
- Test 3 Se = xx% Sp = xx%

Profile	Number
111	8
110	1
101	1
011	1
100	4
010	4
001	4
000	77
TOTAL	100

- We observed 8 total numbers of patients having each profile
- We can estimate 7 unknown parameters

Prevalence = xx%

- Test 1 Se = xx% Sp = xx%
- Test 2 Se = xx% Sp = xx%
- Test 3 Se = xx% Sp = xx%

Profile	Number
111	8
110	1
101	1
011	1
100	4
010	4
001	4
000	77
TOTAL	100

- We observed 8 total numbers of patients having each profile
- We can estimate 7 unknown parameters

Prevalence = 10%

- Test 1 Se = 95% Sp = 95%
- Test 2 Se = 95% Sp = 95%
- Test 3 Se = 95% Sp = 95%

An example from melioidosis

- Melioidosis is a life-threatening infection caused by Gram negative bacilli, *B. pseudomallei*
- Current gold standard is culture
- Sp of culture is 100% because *B. pseudomallei* does not colonize in healthy individuals
- Se of culture seems to be low as clinicians commonly make a clinical diagnosis of melioidosis in culturenegative patients based on all clinical data

An example from melioidosis: Introduction

- A number of serological tests have low specificity after evaluation by comparing with the culture
- This could be due to

(1) high antibody level in the healthy individuals after exposure to *B. pseudomallei* in the environment

(2) misclassification of culture

- Data from published studies of six diagnostic tests in
 320 patients suspected melioidosis were re-analyzed
- Six tests were performed on admission
 - (1) culture
 - (2) clinical criteria
 - (3) IHA (indirect hemagglutination test)
 - (4) IgM ICT (immunochromogenic cassette test)
 - (5) IgG ICT
 - (6) ELISA

- Bayesian latent class model (LCM) with conditional dependence between diagnostic tests was used
- Result of the final model was compared with conventional method (culture as a perfect gold standard)
- Accuracy of the model was evaluated by post-hoc model validation; all clinical data after admission (USS, treatment and progression) was used to categorize each patient into 4 categories (definite, probable, possible and unlikely)

Response profile	Observed frequency
111111	54
111110	3
111101	0
111100	0
111011	8
111010	0
111001	0
•••	•••
000000	23

An example from melioidosis: Results

Parameters	Culture as a gold standard	Final Bayesian LCM
Prevalence	37 %	71 %
Culture		
Se	100 %	52 %
Sp	100 %	100 %

Parameters	Culture as a gold standard	Final Bayesian LCM	
ELISA			
Se	82 %	66 %	
Sp	73 %	98 %	

An example from melioidosis: Post-hoc model evaluation

Category	Definition	N (%)
Unlikely	Firm alternative diagnosis or	84
	Recover without effective antimicrobials	(26%)
Possible	Improved after effective antimicrobials or	83
	Died before improvement observed	(26%)
Probable	Specific USS finding or	34
	Representation with culture +ve in 1 mo	(11%)
Definite	Culture +ve	119
		(37%)

An example from melioidosis: Post-hoc model evaluation

Category	Definition	N (%)	
Unlikely	Firm alternative diagnosis or	84	
	Recover without effective antimicrobials	(26%)	71 %
Possible	Improved after effective antimicrobials or	83	
	Died before improvement observed	(26%)	
Probable	Specific USS finding or	34	
	Representation with culture +ve in 1 mo	(11%)	
Definite	Culture +ve	119	
		(37%)	
		Model pred	licted prevalence

- Sensitivity of culture is very low
- Previous findings by using culture as a perfect gold standard is inaccurate
- If the Se and Sp of ELISA had been properly estimated, ELISA should have been used in the real clinical setting
- *** A model for evaluating diagnostic tests with an imperfect gold standard should be used when the accuracy of gold standard is imperfect or unknown ***

Acknowledgement

- Lisa White
- Sue Lee
- Vanaporn
 Wuthiekanun
- Narisara Chantratita
- Prof Nick Day
- Prof Sharon Peacock

- Kris Jamsen
- Julie Simpson
- Allen Cheng
- Claudio Verzilli

THE END

Profile	Probability of obtaining each profile
111	Prev * Se1*Se2*Se3 + (1-Prev) * (1-Sp1)*(1-Sp2)*(1-Sp3)
110	Prev * Se1*Se2*(1-Se3) + (1-Prev) * (1-Sp1)*(1-Sp2)*Sp3
101	Prev * Se1*(1-Se2)*Se3 + (1-Prev) * (1-Sp1)*Sp2*(1-Sp3)
011	Prev * (1-Se1)*Se2*Se3 + (1-Prev) * Sp1*(1-Sp2)*(1-Sp3)
100	Prev * Se1*(1-Se2)*(1-Se3) + (1-Prev) * (1-Sp1)*Sp2*Sp3
010	Prev * (1-Se1)*Se2*(1-Se3) + (1-Prev) * Sp1*(1-Sp2)*Sp3
001	Prev * (1-Se1)*(1-Se2)*Se3 + (1-Prev) * Sp1*Sp2*(1-Sp3)
000	Prev * (1-Se1)*(1-Se2)*(1-Se3) + (1-Prev) * Sp1*Sp2*Sp3

Profile	Number
111	8
110	1
101	1
011	1
100	4
010	4
001	4
000	77
TOTAL	100

- We observed 8 total numbers of patients having each profile
- We can estimate 7 unknown parameters

Prevalence = 10%

- Test 1 Se = 95% Sp = 95%
- Test 2 Se = 95% Sp = 95%
- Test 3 Se = 95% Sp = 95%

Profile	Number
11	•
10	
01	
00	

- We observed 4 total numbers of patients having each profile
- We need to estimate 5 unknown parameters

Prevalence = xx%

Test 1 Se = xx% Sp = xx%

Test 2 Se = xx% Sp = xx%

IMPOSSIBLE TO ESTIMATE !!

An example	e from me	elioidosis: Methods
Analysis plan	Assumption that Se of culture is 100%	Assumption that tests are independent
(1) conventional method by using culture as the gold standard	Yes	Yes
(2) Bayesian LCM with conditional independence between diagnostic tests (Model 0)	No	Yes
(3) Bayesian LCM with conditional dependence between diagnostic tests (Final model)	No	No