

Update on Marine Medicine

David Boulware MD, MPH, DTM&H Assistant Professor Infectious Disease & International Medicine Department of Medicine University of Minnesota

Salt Water exposure

20% of the U.S. population reports saltwater recreation annually.
48 million swim in salt water
14 million snorkel
4 million scuba dive

500,000 jellyfish stings occur annually in U.S.

1999-2002 National Survey on Recreation and the Environment, USDA Forest Service and the University of Tennessee, Knoxville, Tennessee.

Influence of Seasonal Climate

Ocean Surface Temperatures 30 November 2009

Water in Thailand remains 27-30°C year round

14 February 2009

SEA SURFACE TEMPERATURE - 14 FEB 2009 - NCEP UW-SSEC

Water in Thailand remains 27-30°C year round

14 August 2009

Water in Thailand remains 27-30°C year round

Time of Water borne Illness in U.S.

FIGURE 4. Number of recreational water-associated outbreaks (n = 78), by predominant illness* and month — United States, 2005–2006

Surface Temperatures 2007

Vibrio Infections in U.S.

FIGURE 7. Number of illnesses associated with *Vibrio* isolation and recreational water (n = 189), by species and month — United States, 2005–2006

Vibrio parahaemolyticus Infections vs. Water Temperature

Vancouver, British Columbia 2001-2006 Data

Hazardous Marine Life

Contact Toxins

Injected Toxins

Predators

Sponge

Sea Urchin

Jellyfish

Sponge

Symptoms: Redness and edema, arthralgia Can be rather severe = sponge dermatitis Treatment : • Rinse and dry • Lift skeletal spikes with adhesive tape • Apply topical steroid and benadryl • Systemic doses of prednisone for more severe reactions (similar to contact

dermatitis, e.g. poison ivy)

Tetanus prophylaxis

e ore

Sea Urchins (Echinoderms)

multiple small slender spikes that may be:
venom filled, can puncture skin, and
break off

Symptoms: immediate pain May leave dark pigment area in dermis Pigment remaining longer than 48 hours likely represent retained foreign body

<u>Treatment</u>: remove spines and cleanse wound soak in hot water consider topical antibiotics and tetanus Crown of Thorns

Anemone

Severity of Nematocyst Envenomation

Coral

Jellyfish

Nematocysts

Stages of nematocyst discharge (Biology of the Invertebrates, Jan A.Pechenik p79)

Anemone

sting with nematocysts
 <u>Symptoms</u>: Red rash , localized swelling

Treatment:

-Remove tentacles
-Rinse thoroughly with sea water
-Apply ice for pain
-Topical hydrocortisone PRN
- Benadryl PRN

- Possess nematocysts

Coral

- Injury via skin lacerations and abrasions which easily become infected

Symptoms: -Pain, erythema, weeping -burning, itching **Treatment** -Routine wound care -Remove embedded coral by: - rinsing or scrub brush -Tetanus prophylaxis and topical antibiotics

Coral Dermatitis

- Chronic eruption
 - Combination of:
 - Coral fragment foreign bodies
 - Chemical irritant from nematocysts
 - Inflammatory response of wound itself
 - Thickened, red, weepy and painful,
- May develop bullous lesions initially
- Can take weeks to heal
- May leave hyperpigmentation

Coral Dermatitis

- Prevention:
 - Don't touch coral
- Treatment
 - Rinsing, scrub brush debridement
 - Topical steroids (after foreign-bodies removed)
 - Watch for secondary infection
- Duration
 - May last weeks to months
 - especially if retained foreign body

Fire Coral

- not a true coral

 has nematocysts and sharp calcified exterior skeleton

Symptoms: Immediate burning sensation

Treatment:

-Rinse with seawater (NOT freshwater)

-Apply vinegar or isopropyl alcohol to wound to deactivate non-discharged nematocysts

-Apply topical hydrocortisone 2-3x daily

Jellyfish •Phylum: Cnidaria Powerful nematocysts in floating tentacles •Oceans world-wide \rightarrow venom of Indo-Pacific species more severe than Atlantic. There is a great deal of inter-species variation

In Thailand

Box jellyfish present in Thai watersMultiple species

Occasional Deaths
April 2008 -- 10 year old girl at Ko Lanta
8-9 August 2002 -- 23yo F, 34yo M in at Koh Pha Ngan

NEMATOCYST VENOM COMPONENTS

Bradykinin > Hemolysin > Serotonin > Histamine > Prostaglandins > ATP > Hyaluronidase > Nucleosidases > Alkaline protease Acid protease
Phosphodiesterase
Acid phosphatase
Acid phosphatase
Fibrinolysin
Leucine aminopeptidase
RNAase
DNAase
Membrane Attack Complex

Jellyfish Sting Symptoms: rapid onset of pain Red, swollen, hot rash \rightarrow usually linear and blotchy Can have pustule and vesicle formation Severe stings → may develop skin necrosis and systemic symptoms : muscle cramps, fever, chills, vomiting, resp distress and CV collapse Venom of Indo-Pacific jellies produce systemic toxicity. Type-I Anaphylaxis is rare. There is direct toxicity of venom Type-IV hypersensitivity ?more common in Atlantic species of Jellyfish.

Treatment: Jellyfish (Nematocyst) sting

- 1. Remove any visible tentacles
- 2. Use shaving cream and razor to remove any remaining particles (credit card)
- 3. Rinse repeatedly with vinegar, rubbing ETOH or Windex TM (may cause Man O' War nematocysts to fire)
- 4. Apply topical hydrocortisone and benadryl for mild disease. More severe events may require systemic prednisone course.
- 5. In field management of shock or CPR
- 6. Antivenin for box jellyfish available in some locations.
- 7. Ongoing Thai Randomized Treatment Trial

Nematocyst Envenomation

Results from the sting of phylum *Cnidaria* organisms - Anemone

- Coral
- Jellyfish

Nematocysts are activated by both chemical and contact mechanisms

Do NOT rub affected area Do NOT rinse with freshwater Do NOT urinate on wound

DO "fan" affected limb immediately underwater DO rinse copiously with SEAwater DO urinate in a porcelain receptacle (toilet)

Jellyfish stings

 The nematocysts require stimulation by both chemical and tactile stimuli to fire
 – Evolutionary makes sense
 – Don't want to sting self or inanimate objects

Can you prevent the sting?

Pantin CF. Excitation of nematocyst Nature 1942; 149: 109.

Clown Fish

Clown Fish within the Sea Anemone

- Clown Fish live within sea anemones.
 Don't get stung by anemone's nematocysts
 Why?
 Clown Fish have a mucous coating which protects them.
 Species dependent protection
 - The mucous coating protects them in several ways:

Jellyfish Sting Inhibitor: Mechanism of Action

Highly hydrophobic

3.

•

- Decreases tentacle contact with the skin
- Increases difficulty of envenomation.

Glycosaminoglycans mimic the composition of the jellyfish's bell.

- Confuses self-recognition system
- Interferes with nematocysts firing.

Competitive antagonist to nonselective chemoreceptors

- Receptors bind amino acids and sugar secretions from prey
- Sensitize the nematocysts to enable firing upon contact.
- Ca²⁺ and Mg²⁺ block transmembrane signaling
 - Reduce the osmotic force within the nematocyst capsule
 - This is necessary to create the firing force.

SAFE SE

Sunblock

Sunb

JELLYFISH

Initial Lab Study

24 subjects, 2 sites

Arms treated with tentacles for 30-60 sec

Kimball AB, Arambula KZ, Stauffer AR, et al. Efficacy of a jellyfish sting inhibitor in preventing jellyfish stings in normal volunteers. *Wilderness Environ Med.* 2004; 15:102-8.

Lab Trial Results

Prevention

 100% of Chrysaora fuscescens stings

- 70% of Chiropsalmus quadrumanus stings

	Total contact Time (s)	Inhibitor				Placebo			
Subject No.		Max pata		Max reaction		Max patn		Max reaction	
		Amount of pain	Time (min)	Amount	Time (min)	Amount of pain	Time (min)	Amount	Time (min)
1	10	0	0	0	0	1	0	1	30
2	10	0	0	0	0	1	15	1	90
3	20	0	0	0	0	1	15	2	120
4	10	0	0	0	0	1	15	1	120
5	10	0	0	0	0	1	60	1	60
6	20	1	15	0	0	1	30	2	30
7	10	0	0	0	0	1	0	0	0
8	10	1	0	0	0	0	0	0	0
9	20	0	0	0	0	1	30	1	30
10	20	1	15	1	90	0	0	0	0
11	30	0	0	0	0	1	60	2	60
12	10	0	0	0	0	1	15	1	30
Median	10	0	0	0	0	1	15	1	30
Mean	15	0.3	2.5	0.1	7.5	0.83	20	1	47.5
P value						<.05		<.01	

* Max, maximum; min, minimum.

Kimball AB, Arambula KZ, Stauffer AR, et al. Efficacy of a jellyfish sting inhibitor in preventing jellyfish stings in normal volunteers. *Wilderness Environ Med.* 2004; 15:102-8.

But does it work? in the real world?

Field Trial

 Participants: Healthy volunteers planning to snorkel for 30 to 45 minutes.

Outcome: incidence of jellyfish stings

2 sites
6 individuals each site
6 day sessions
82 observations

Locations

Dry Tortugas National Park, Florida – April 24-30, 2004

Intervention

Masked 26 g samples were provided.

 Safe Sea™ SPF15 (Nidaria Technology, Israel)
 Coppertone[®] SPF15 (Schering-Plough)

 10 min prior to swimming

 Participants applied Safe Sea to one side of t

- Participants applied Safe Sea to one side of their body and
- Coppertone[®] to the contralateral side as placebo control.
- The subjects and observers were blinded.
- Application was observed.

Field test to evaluate the protection of Safe Sea against Jellyfish Stings and Sea Lice.

Warning: Do not take part if you are under 18 years old, pregnant, or have suspected allergic reaction topical products, or have history of severe reaction from jellyfish sting.

Direction: With your right hand apply "Pink" lotion over the left side of the body as in the picture, and "Purple" lotion over the right side.

Stay in the shade or cool area for at least 10 Min.

Go swim or snorkel for up to 45 minutes.

15 minutes after the swim mark on the picture spots where inflammation or itch developed

Write below the sums of marked spots. Indicate if rash develops during 24 hours post exposure.

Number of Spots Rash @ 24 hours Purple

Lotion

Pink

Lotion

Activity: Snorkeling

Results

Participant	Exposures	Safe Sea	Placebo	Hair Density	
· ·		Stings Stings		-	
1	14	1	4	2	
2	7	0	0	0	
3	13	1	2	3	
4	8	0	1	2	
5	7	0	1	1	
6	6	0	0	0	
7	6	0	0	1	
8	7	0	1	2	
9	7	0	0	0	
10	7	0	2	1	
Total	82	2	11		
Mean	8.2	0.2	1.1		
<i>P</i> -value		└─ 0.0	11 —	0.053	

Boulware DR. Field study of the prevention of jellyfish stings with a topical sting inhibitor. J Travel Med 2006

Problems

Need dense application. 2 mg/cm²

 In unpublished work, it did not work against Chironex fleckeri (Box Jellyfish).

Cercarial Dermatitis / Swimmer's Itch

Schistosoma cercariae burrow into epidermis ≈15 min after exiting the water once water evaporates from skin. Papular eruption occurring within 12 hours of exposure Cercariae (larvae) can not penetrate beneath the epidermis, eventually die, and create inflammation.

Marine Envenomations

Swimmer's Itch

Caused by non-human schistosomas

Sea Bather's Eruption

Caused by the larvae of thimble jellyfish
Lunuche ungulate (Atlantic Ocean)

Sea Bather's eruption

Area under a SCUBA weight belt on the flank.

Seabather's Eruption

Caused by the larvae of thimble jellyfish (Lunuche ungulate)

Larvae get trapped under swimwear

Seabather's Eruption

 Jellyfish larvae discharge as they dry out Initiates a Type IV hypersensitivity reaction - Rash shows up 24-48 hours later - Afflicts up to 20% of ocean goers in Florida Prior sensitization increases likelihood - Showering with scrubbing, changing out of swim wear decreases risk - Alternatively, wearing abbreviated swim wear

Hazardous Marine Life

Contact Toxins Injected Toxins

Predators

Scorpionfish

Stingray

Cone snail

Stingray

- serrated bony spine at base of tail which injects venom
- commonly occurs when stepped on in shallow water
- toxin is heat labile and induces vasoconstriction
- <u>Symptoms</u>: Intense pain and local ischemia Jagged wound Salivation, sweating, vomiting Cardiovascular collapse

<u>Treatment</u>: Irrigate the wound
 Soak in hot water (115 degrees) for 30-90 min.
 May need local infiltration of anesthetic or nerve block
 Be prepared to support cardiovascular status

Scorpionfish

- Lionfish and Stonefish species which sport poisonous spines
- Stonefish and scorpion fish toxins can be deadly
- Toxin is heat labile, similar to stingray
- symptoms: Severe pain and local ischemia
 - Progresses to vomiting, hypotension, delerium and CV collapse
- treatment: Irrigate wound
 - Soak in hot water for 30 to 90 min Analgesia – local anesthetic or n. block Antibiotics and tetanus prophylaxis Scorpionfish antivenin is available

Cone snail

- phylum mollusca

- two component toxin - causes sustained muscular contraction and inhibits excitatory nerves - has detachable dart-like tooth which penetrates the foot Symptoms: Puncture wound with localized ischemia Can progress to respiratory distress and paralysis Treatment: Immobilize the limb Apply a pressure dressing Analgesics and tetanus prophylaxis Be prepared to support respiratory status

Principles

Nematocysts

- When in doubt rinse first with salt water
- Then rinse with vinegar

Injected toxins or puncture wounds
Soak in hot water

Hazardous Marine Life

Contact Toxins

Injected Toxins

Predators

Barracuda

- Of 22 species, only the Great Barracuda has been reported to attack humans
- Attracted to shiny objects

- Attacks seem isolated to spearfisherman and provocation

- Biggest danger to humans via ciguatera

Moray Eel

Found in shallow water and in crevices of reefsAttacks humans only when provoked

- Large jaws and sharp teeth that can cause significant soft tissue and even bony damage

Shark

- Species known to attack humans
 - Great White, Tiger, Bull, Oceanic White Tip and Hammerhead
- Attracted to fish blood and signs of distress
- No evidence that menstruation is a risk factor
- Injuries to fisherman handling sharks caught in nets are more common

- Wounds have high propensity for infection due to presence of seawater, sand, plant debris and shark mouth flora

Shark Attack

- 50 events occur world wide each year (1/3 in Florida)
- 10% are fatal
- Chance is 1 in 5 million of attack

* ISAF – International Shark Attack File at Florida Museum of Natural History 2005

Sea snakes

32 species off N. coast of Australia / Indo-Pacific
Air breathers, inquisitive, non aggressive
HIGHLY toxic venom → causes paralysis and myolysis
Bites with multiple sharp non-fang teeth
Bite may or may not be envenomated

Predators

Sea snakes

-sx: After 30 min develop stiffness, muscle aches Soon blurred vision, ptosis, opthalmoplegia or limb weakness Followed by lethargy and resp paralysis May develop hemaglobinuria, no coagulopathy - tx: Get to an ER Hold site below rest of body Apply a pressure bandage Administer sea snake antivenom only if signs of envenomation Can use polyvalent land snake antivenin if not available or consider dialysis

Acinetobacter Actinomyces Aeromonas Alcaligenes Bacillus Bacteroides Chromobacterium Clostridium Enterobacter

Erysipelothrix Legionella **Mycobacterium Pasteurella Proteus Pseudomonas** Salmonella **Staphylococcus Streptococcus** Vibrio

*Organisms found in marine water, organisms and marine acquired wound cultures

Acinetobacter **Actinomyces** Aeromonas **Alcaligenes** Alteromonas **Bacillus Bacteroides Chromobacterium Clostridium** Deleya **Enterobacter**

Erysipelothrix Legionella **Mycobacterium Pasteurella Proteus Pseudomonas Salmonella Staphylococcus Streptococcus** Vibrio

*Organisms found in marine water, organisms and marine acquired wound cultures

Erysipelothrix rusiopathaie

- gram + rod
- found in wild and domestic animals , birds and fish
- occupational hazard for fisherman, fish handlers
- inoculation by abrasion or puncture
- pain, burning and stiffness of adjacent joints
- hard swelling with irregular violaceous color
 - \rightarrow spread peripherally with central clearing
- can disseminate to endocarditis
- tx: penicillin, clindamycin or cephalexin x 3 weeks

Mycobacterium marinum

- atypical mycobacterium
- grows well in pools, aquaria and seawater
- wound in contact with aquarial or seawater, fish, crustacean or turtles
- 2-8 week incubation period
- suppurates and develops organized granulomas with ulceration
- diagnosis by biopsy, culture and acid fast staining
- treatment: ethambutol plus rifampin, tetracylines, quinolones or sulfa minimum 4 - 6 week course

Vibrio vulnificus

- gram (-) rod
- diarrhea (enteral exposure via raw oysters)
- wound infections in immunosuppressed
 - cirrhosis, renal disease, chemotherapy patients and HIV
- inoculation by puncture from shellfish or wound contaminated by seawater
- rapid progressive cellulitis with characteristic bullous lesions
 necrotizing vasculitis, myositis, DIC or sepsis
- diagnosis made by stool, wound or blood cultures
- tx: debridement of wounds
 - antibiotics = tetracyclines, 3rd gen cephalosporins or imipenem

Vibrio parahemolyticus

- acute food poisoning scenario
- abd cramping, explosive watery diarrhea and dysentery
- also can cause wound infections
- usually self limited

Wound Infections

Acinetobacter **Actinomyces** Aeromonas **Alcaligenes** Alteromonas **Bacillus Bacteroides Chromobacterium Clostridium** Deleya **Enterobacter**

Erysipelothrix Legionella **Mycobacterium Pasteurella Proteus Pseudomonas Salmonella Staphylococcus** Streptococcus Vibrio

*Organisms found in marine water, organisms and marine acquired wound cultures

