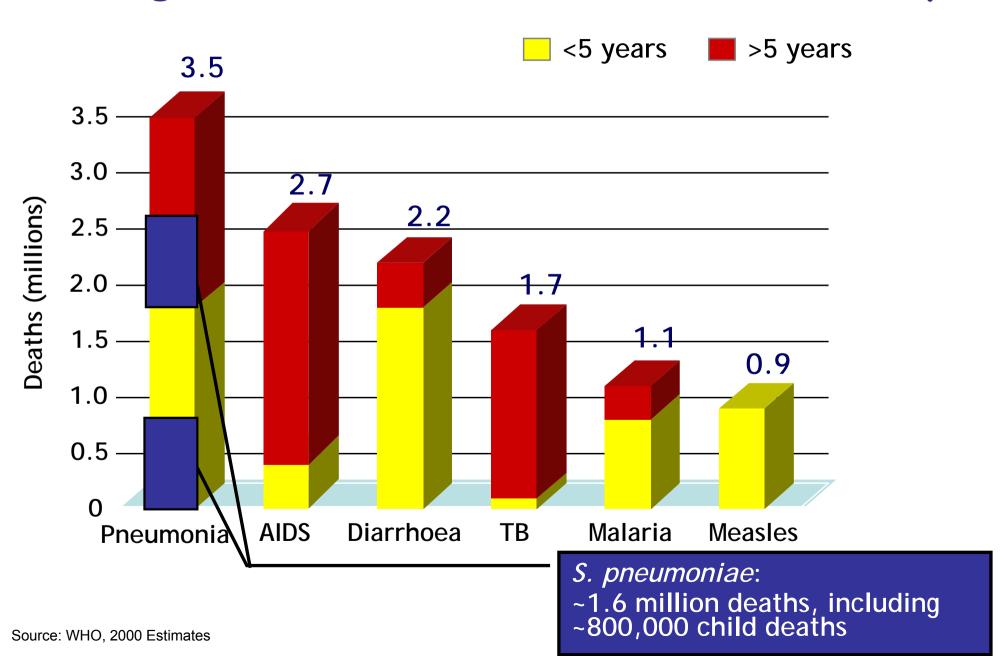


Prevention of Pneumococcal Pneumonia in Thailand

Prof. Krisana Pengsaa
Department of Tropical Pediatrics
Faculty of Tropical Medicine
Mahidol University

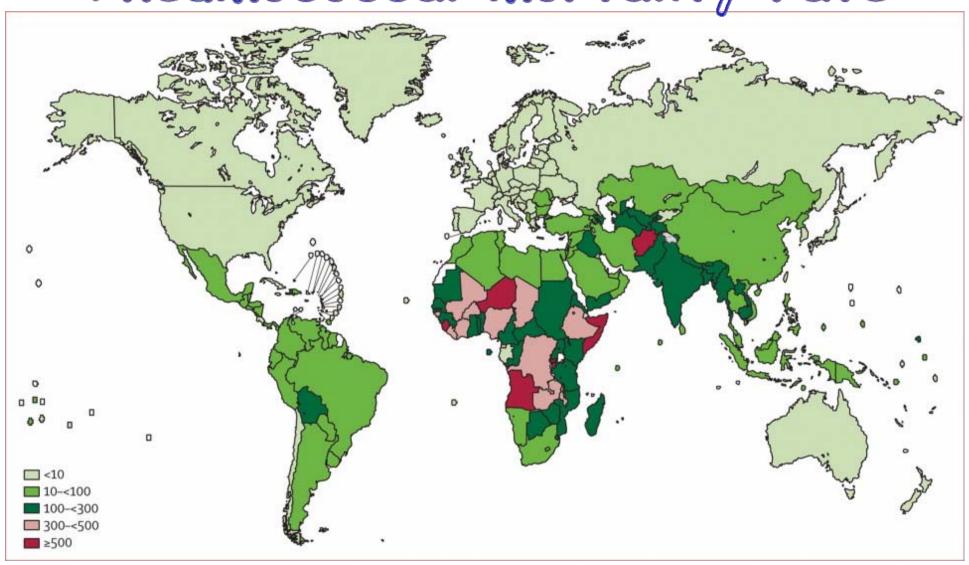
E-mail: tmkps@mahidol.ac.th

JITMM: December 4, 2009



Outline

- Situation of Pneumococcal diseases in Thailand: Pneumonia, Bacteremia
- Serotypes of *S. pneumoniae*
- PCV in Thai children
- Prevention of pneumonia



Leading Infectious Causes of Global Mortality

Pneumococcal mortality rate

Age U₅

O'Brien KL, et al. Lancet 2009;374:893-902.

International Journal of Infectious Diseases (2009) 13, 355-361

http://intl.elsevierhealth.com/journals/ijid

A comparison of population-based pneumonia surveillance and health-seeking behavior in two provinces in rural Thailand

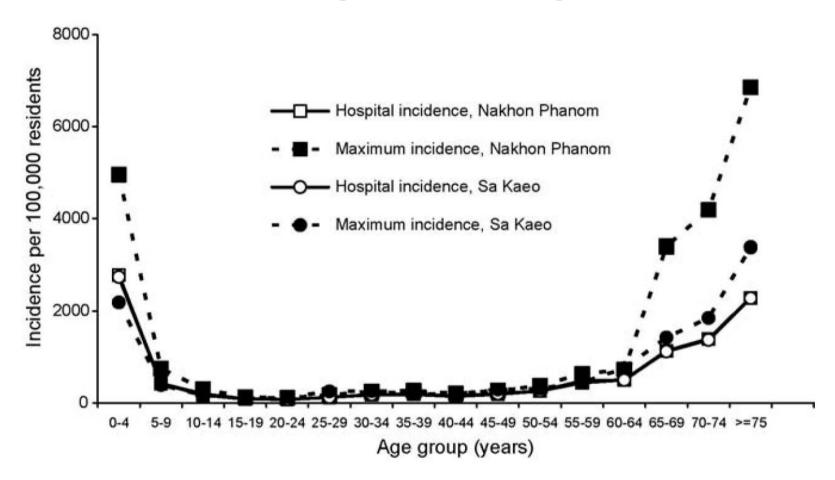
Hannah T. Jordan a,b, Prabda Prapasiri c, Peera Areerat d, Shuchi Anand e, Birgit Clague f, Saithip Sutthirattana f, Shadi Chamany g, Brendan Flannery b, Sonja J. Olsen h,*

International Emerging Infections Program, US Centers for Disease Control and Prevention-Thailand Ministry of Public Health Collaboration

Received 9 March 2008; accepted 12 July 2008 Corresponding Editor: William Cameron, Ottawa, Canada

^d Nakhon Phanom Provincial Health Office, Ministry of Public Health, Nakhon Phanom, Thailand

e Brigham and Women's Hospital, Boston, MA, USA


^f International Emerging Infections Program, US Centers for Disease Control and Prevention—Thailand Ministry of Public Health Collaboration, Nonthaburi, Thailand

⁸ New York City Department of Health and Mental Hygiene, NY, USA

^h Global Activities Team, Division of Emerging Infections and Surveillance Services, National Center for Preparedness, Detection, and Control of Infectious Diseases, Coordinating Center for Infectious Diseases, Atlanta, GA, USA

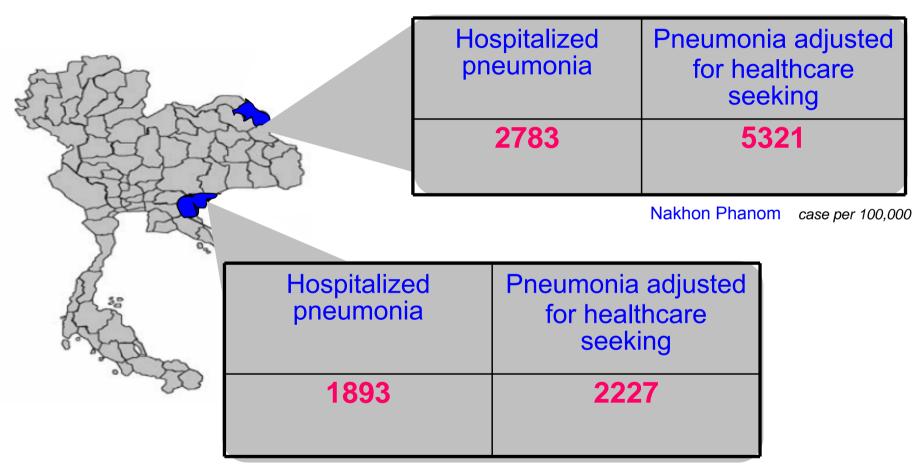

Incidence of community-acquired pneumonia in children under 5 years of age in Thailand

Figure 2 Comparison of pneumonia incidences in Nakhon Phanom (September 1, 2003—August 31, 2004) and Sa Kaeo (September 1, 2002—August 31, 2003), Thailand.

Incidence of community-acquired pneumonia in children under 5 years of age in Thailand

Sa Kaeo case per 100,000

Incidence of Pneumococcal Bacteremia Requiring Hospitalization in Rural Thailand

Henry C. Baggett,^{1,a} Leonard F. Peruski,^{1,a} Sonja J. Olsen,⁷ Somsak Thamthitiwat,¹ Julia Rhodes,¹ Surang Dejsirilert,² Wanna Wongjindanon,¹ Scott F. Dowell,⁷ Julie E. Fischer,¹ Peera Areerat,⁵ Denchai Sornkij,⁶ Possawat Jorakate,¹ Anek Kaewpan,¹ Prabda Prapasiri,¹ Sathapana Naorat,¹ Leelawadee Sangsuk,² Boonchuay Eampokalap,³ Matthew R. Moore,⁷ Gloria Carvalho,⁷ Bernard Beall,⁷ Kumnuan Ungchusak,⁴ and Susan A. Maloney¹

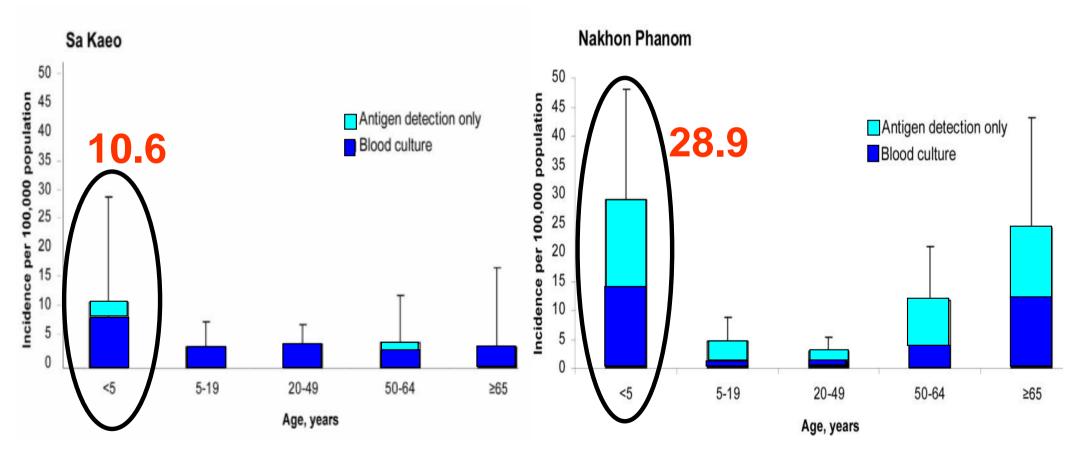
¹International Emerging Infections Program, Thailand Ministry of Public Health—US Centers for Disease Control and Prevention Collaboration, and ²National Institute of Health, ³Bamrasnaradura Infectious Diseases Institute, and ⁴Bureau of Epidemiology, Thailand Ministry of Public Health, Nonthaburi, ⁵Sa Kaeo Provincial Health Office, Thailand Ministry of Public Health, Sa Kaeo, and ⁶Nakhon Phanom Provincial Health Office, Nakhon Phanom, Thailand; and ⁷Centers for Disease Control and Prevention, Atlanta, Georgia

Population-Based Pneumonia Surveillance (IEIP US CDC and Thai MOPH collaboration) at Sakaew and Nakorn Phanom (May 2005 - June 2007)

Blood stream Infection Surveillance

- Patients considered to have an indication for blood culture (BacT/ALERT 3D automated culture system)
 - Hospitalized for pneumonia
 - Aged <5 years with possible sepsis(based on hospital logs)
 - Clinician requested a culture
- Media from alarm-positive blood cultures with no growth on subculture were tested by Binax NOW® (Pneumococcal antigen testing)

Frequency of Blood Cultures among those with Indication, May 2005-June 2007


	Sa Kaeo and Nakhon Phanom		
	Indication	Culture done (%)	
Total	36,141	23,853 (66)	
<5 years	15,572	7,319 (47)	

116 Cases of pneumococcal bacteremia requiring hospitalization

- 72 (62%) cases by S. pneumoniae isolation
- 44 (38%) confirmed only by Binax on liquid culture media
- ★27 (23%) occurred in children <5 years, including 9 by Binax only

The incidence of pneumococcal bacteremia cases requiring hospitalization among children aged <5 years had a range of 10.6 - 28.9 cases per 100,000 persons (May 2005-June 2007, N=116)

Note. *Antigen detection only.* Patients with alarm-positive blood cultures that failed to grow a pathogen on subculture but had media positive by pneumococcal antigen testing (Binax NOW®).

These finding substantially underestimate the true incidence of pneumococcal bacteremia (and IPD)

Especially among young children, who typically experience high rates of outpatient pneumococcal bacteremia

Additional limitations of the true incidence of hospitalized case of pneumococcal bacteremia

- Blood culture specimens were collected on the basis of clinician judgment and culturing practices varied
- Documented extensive use of antibiotics before obtainment of blood specimens and previously found that *S. pneumoniae* was isolated in culture >5 times more often form patients without prior antibiotic treatment than form patients with prior antibiotic treatment

Estimated incidence of IPD in U₅ in Thailand per 100,000 population

A. <5

B. 5-10

C. 15

D. 10.6-28.9

E. >28.9

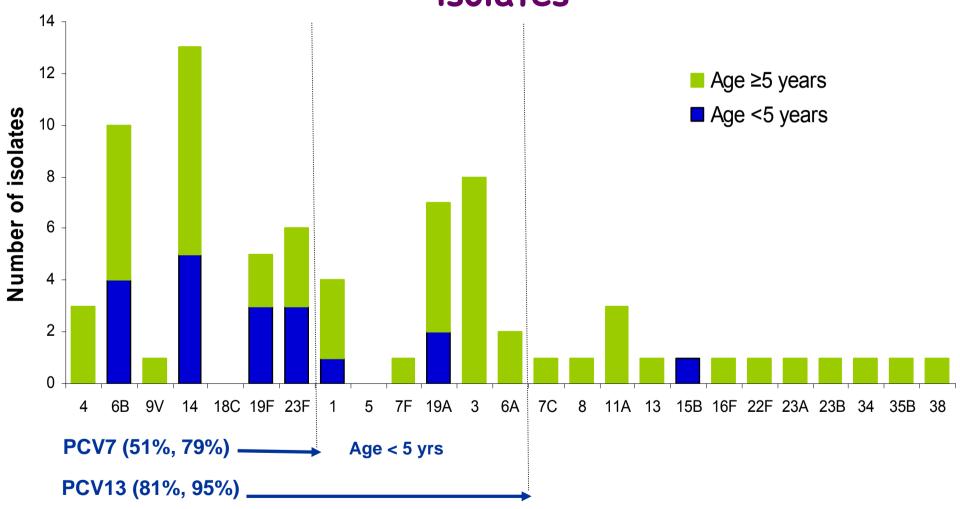
The incidence of IPD in children aged <5 years per 100,000 persons

	Pneumococcal Bacteremia	All cases of IPD
Thailand	28.9	28.9 + meningitis ?
(Sa Kaeo & Nakhon Phanom)		
May 2005-June 2007		
USA	31.4	96
(before NIP)		
Australia		47.3
(before NIP)		

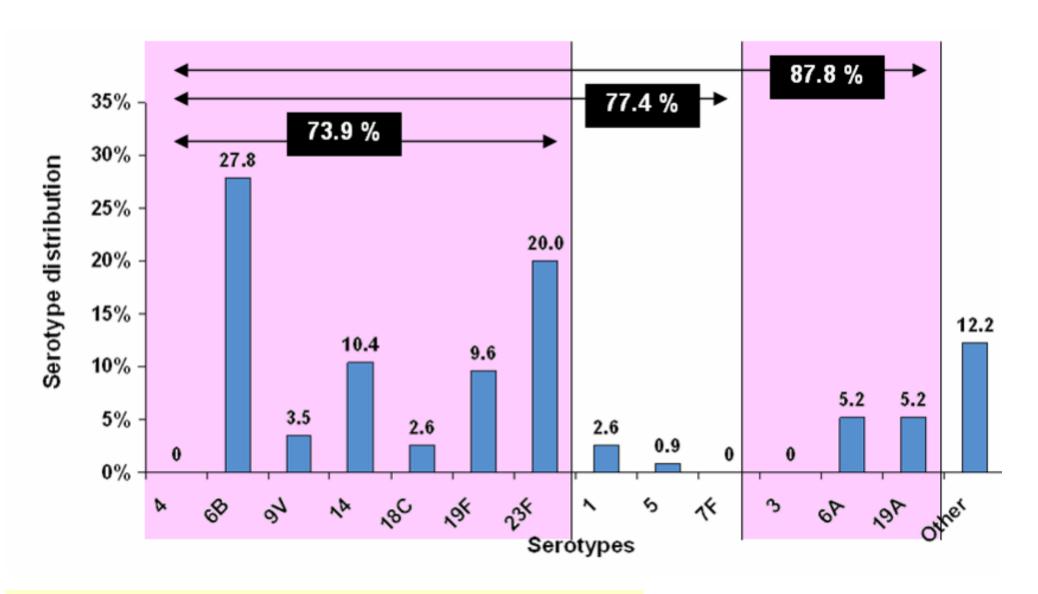
The estimates, which are close to estimates of the incidence of hospitalized case of pneumococcal bacteremia in the USA before introduction of PCV

The true IPD incidence in Thailand is likely similar USA

Pneumococcal bacteremia is as common in Thailand



Outline


- Situation of Pneumococcal diseases in Thailand: Pneumonia, Bacteremia
- Serotypes of *S. pneumoniae*
- PCV in Thai children
- Prevention of pneumonia

Serotype distribution of pneumococcal bacteremia isolates

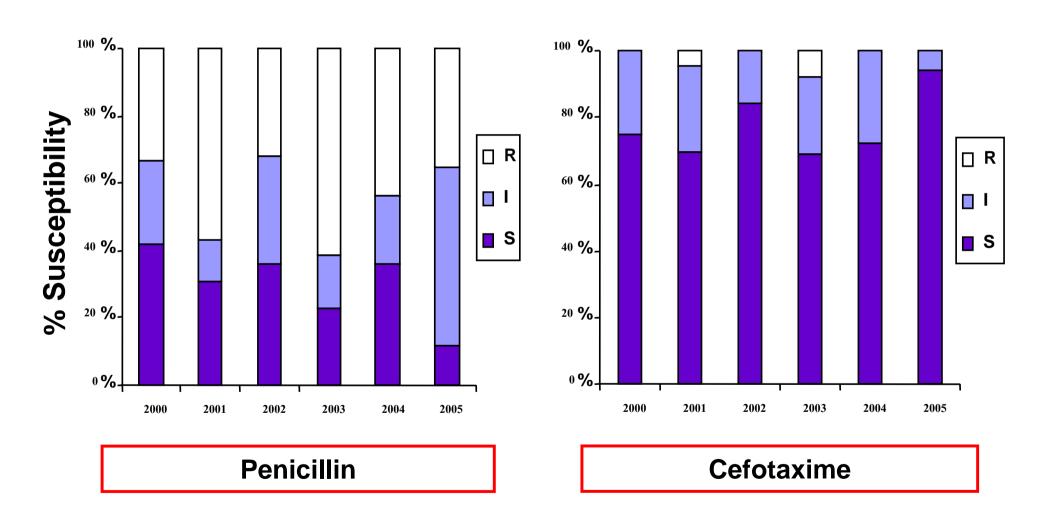
Serotype distribution of invasive pneumococcal disease in Thai children under 5 years old (2000-2005, N=115)

Common serotype distribution of pneumococcal isolates in Thailand include

A. 1, 5

B. 6B, 14

C. 19F, 23F

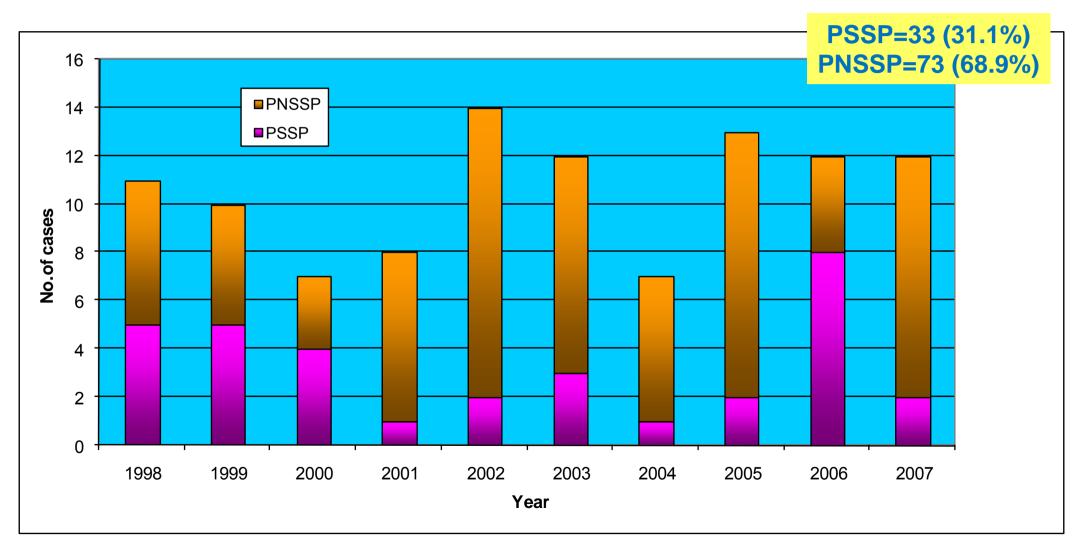

D. 6B, 14, 19F, 23F

E. All of the above

Carriage rate and the prevalence of penicillin nonsusceptible strains of pneumococci among children from 11 countries

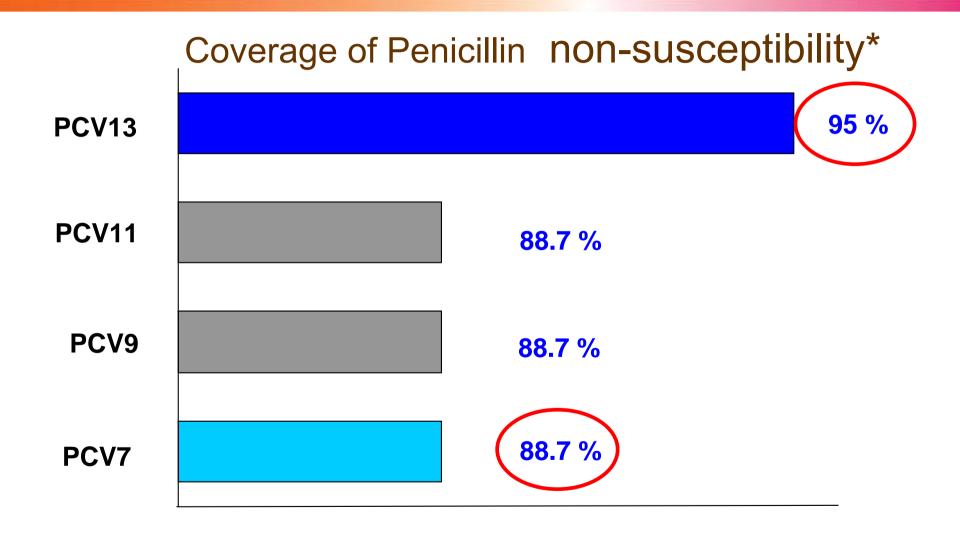
	PRSI	P %
Country	Of carriage isolates	Of clinical isolates
Taiwan	91.3	38.7
Korea	85.8	79.7
Sri Lanka	76.5	41.2
Vietnam	70.4	60.8
Saudi Arabia	50.0	NA
Singapore	46.3	23.1
Thailand	45.6	57.9
China	13.4	9.8
Malaysia	13.3	9.0
India	12.8	3.8
Philippines	2.1	NA
Total	35.8	34.5

Antimicrobial Susceptibility of IPD Isolates from Children <5 Years Old, 2000 to 2005.

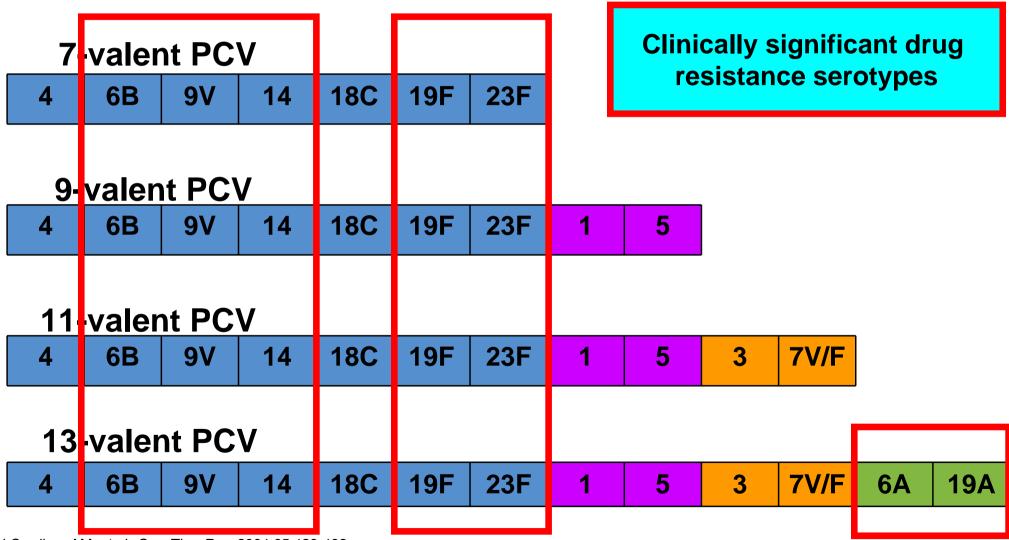

S: susceptible I: intermediate R: resistant.

Ref: Phongsamart W. Vaccine 2007;25:1275-80.

Susceptibility of *S. pneumoniae* to various antimicrobials, 29 hospitals in Thailand 2006


	Sterile sites	Non-sterile sites	All isolates
Penicillin	59	48	51
Erythromycin	71	56	62
Cotrimoxazole	43	42	41
Chloramphenicol	87	85	86
Clindamycin	79	80	81
Vancomycin	99	100	100
Ofloxacin	100	96	98

INVASIVE PNEUMOCOCCAL INFECTION IN CHILDREN: A 10-YEAR REVIEW Queen Sirikit National Institute of Child Health



Supichaya Netsawang, 1st National Pneumococcal symposium, Bangkok Thailand

Coverage of PCVs of IPD isolate in children younger than 5 years of age

Vaccine Serotypes

al-Swailem AM, et al. Curr Ther Res. 2004;65:423-432.

Greenberg D, et al. *J Clin Microbiol*. 2003;41:5541-5545.

CDC. Epidemiology and Prevention of Vaccine-preventable Diseases. 8th ed. 2004:233-245.

WHO Recommendations WHO Recommends PCV for Children

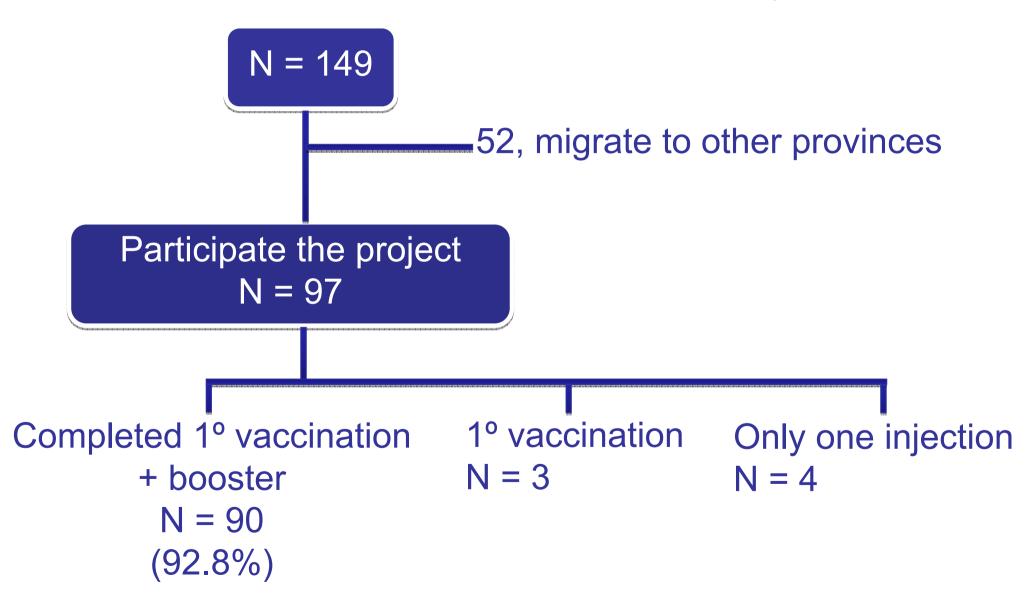
PCV7

- WHO categorizes pneumococcal disease and malaria as very high-priority vaccine-preventable diseases
- Introduction of PCV7 into NIPs is a priority
- Introduction of PCV7 into NIPs of developing countries is a high priority
- PCV7 can be integrated easily into routine vaccination schedules
- PCV7 should be initiated before 6 months of age and may start as early as 6 weeks*
- Initiate catch-up vaccination up to 5 years of age with the first year of introduction

Outline

- Situation of Pneumococcal diseases in Thailand: Pneumonia, Bacteremia
- Serotypes of *S. pneumoniae*
- PCV in Thai children
- Prevention of pneumonia

In honor of the auspicious occasion of


His Majesty King Bhumibol Adulyadej's 80th Birthday Anniversary

Prevention of Invasive Pneumococcal Disease in Children

Organized by Bangkok Metropolitan Administration

Children born on December 05, 2007

Result

- 2 children had low grade fever (within 24 hr) after 1st dose
- After follow-up \(\overline{q}\) 2 mo (1st 6 mo) and \(\overline{q}\) 3 mo thereafter

Conclusion

Primary immunization followed by a booster dose of PCV7 seemed to be acceptably safe and efficacious in prevention of IPD in Thailand

Risk Factors for IPD

Age ¹	Underlying Medical Conditions ^{2,3}	Demographic Features ^{3,4}
 Children ≤2 years of age Adults ≥65 years of age 	 Congenital or acquired immunodeficiency Sickle cell disease, asplenia, HIV Pulmonary disease Chronic heart disease Chronic renal insufficiency, nephrotic syndrome Diabetes Cerebrospinal fistula Existing or cochlear implants 	 Day care attendance Ethnicity

- Age is the most important risk factor for pneumococcal disease¹
- 1. CDC. Morb Mortal Wkly Rep. 1997;46(RR-8):1-24.
- 2. Pickering LK. Red Book. 26th ed; 2003.
- 3. CDC. Morb Mortal Wkly Rep. 2000;49(RR-9):1-35.
- 4. Levine OS, et al. *Pediatrics*. 1999;103:1-5.

Project of PCV vaccination in High Risk children supported by BMA

To monitor -efficacious & adverse events of the vaccine

Inclusion Criteria

- ♦ Age 2 mo 8 yr
- 5-8 years, n = 221

	2 mo - <5 yr	5-8 yr	Total
Maternal HIV children	350	96	446
Congenital Cardiac Anomalies	249	61	310
Thalassemia	102	28	130
VLBW (BW <1,500 g)	359	36	395
Total	1,060	221	1,281

Outline

- Situation of Pneumococcal diseases in Thailand: Pneumonia, Bacteremia
- Serotypes of *S. pneumoniae*
- PCV in Thai children
- Prevention of pneumonia

Achieving Millennium Development Goal 4: by 2/3 mortality among U5 by 2015

[~ 2 M deaths from pneumonia in children]

- Appropriate case management
- Reduction of exposure to known risk factors: indoor pollutants, tobacco smoke, premature weaning, nutritional deficiencies
- Vaccination:

Pneumococcal & Hib vaccines, Measles, pertussis

The most effective measure for prevention pneumococcal pneumonia is

- A. Exclusive breastfeeding
- B. Reduce LBW
- C. Pneumococcal vaccination
- D. Hand washing
- E. Adequate nutrition

Protecting children from pneumonia is possible

- Exclusive breastfeeding
 - ↓ rate of pneumonia among young infants by 15-23%
- Adequate nutrition
 - malnutrition weakens children's immune system
 - Zn supplementation: ↓ pneumonia in children by 14-25%
- Reduce LBW
 - LBW & preterm infants are 2.6 times than normal birth weight & term infants
- Reduce indoor air pollution
 - cigarette smoking, cooking, home heating
- Hand washing

Conclusion

- S. pneumoniae is a significant global cause of morbidity and mortality.
- The incidence of IPD is highest at the extremes of age.
- Antibiotic-resistant pneumococci are an increasing global problem.
- Effective measures for prevention and treatment are crucial to ensure a healthy life for children in Asia.
- Immunization of PCV 7 seemed to be acceptably safe and efficacious in prevention of IPD in Thai children
- Pneumococcal vaccination in high risk children is ongoing by Bangkok Metropolitan Administration.

Thank you for your Attention

