Development of diagnostic and therapeutic antibodies against tropical infectious diseases

Kazuyoshi Ikuta

Department of Virology Research Institute for Microbial Diseases Osaka University

http://virology.biken.osaka-u.ac.jp/index_english.html

Possible immunotherapy with convalescent human serum

Year of study	Disease	Prophylaxis or treatment	Number of study subjects	Trend in benefit
1907	Measles (Rubeola)	Prophylaxis	Unknown	Prevention.
1918	Measles ^a	Prophylaxis	1	One child in a family of four children was given serum from the first infected child and was protected; the other two contracted measles.
1918	Measles	Prophylaxis	4	Prophylaxis was effective.
1918	1918 Pandemic flu	Treatment	56	Early administration generally resulted in distinct improvement in clinical symptoms.
1923	Varicella-Zoster virus	Prophylaxis	42	Seven contracted a mild form of the disease, 35 escaped without symptoms.
1963 ^b	Bolivian hemorrhagic fever	Treatment	4	Individuals recovered after 6–8 weeks.
1959–1983	Argentine hemorrhagic fever	Treatment	4,433	Mortality rate of 3.29% (versus 42.85% in individuals treated before convalescent plasma was used).
1974-1978	Argentine hemorrhagic fever	Treatment	217	1.1% mortality rate of those treated with immune plasma.
1969	Lassa fever	Treatment	1	The individual recovered.
1984	Lassa fever	Prophylaxis and treatment	27	All study subjects given plasma on or before the 10th day survived with a rapid response to therapy.
1995	Ebola hemorrhagic fever	Treatment	8	12.5% fatality rate (versus overall case fatality rate of 80%); inconclusive regarding neutralizing antibodies in convalescent blood.
1993	HIV-1	Treatment of stage IV AIDS individuals	63	Randomized double-blind controlled trial. Study subjects were given 250 ml of HIV-immune plasma every 4 weeks. No significant toxicity and effect were found.
1995	HIV-1	Treatment of symptomatic HIV infection	86	Randomized double-blind controlled trial. Study subjects were given 300 ml of plasma rich in anti-HIV-1 antibody every 14 days for 1 year. Clinical benefit was observed.
2002 ^c	HIV-1	Prevention of vertical transmission in Uganda	60	Phase 1/2 trial showed it is safe, well tolerated and similar pharmacokinetic property as other immunoglobulin products.
2003	SARS	Treatment	1	Fever decreased after administration of convalescent plasma.
2007	Influenza A (H5N1)	Treatment	1	Viral load was reduced after infusion of plasma; the individual recovered.

^aOther studies refer to ref. 1. ^bImmune BHF gamma globulin was used. ^cHIV hyperimmune globulin was used.

Commercial development of antiviral MAbs

	Virus	Stage of development	mAb	Isoform	Target	Development technology	Company (location)	Indication	Reference
Acute cytopathic	RSV	Approved	Synagis (Palivizumab; MEDI-493)	lgG1	Glycoprotein F	Humanized	MedImmune	Prophylaxis in high risk infants ^b	111
	RSV	Phase 3	Numax (Motavizumab; MEDI-524)	lgG1	Glycoprotein F	Humanized and affinity matured from palivizumab	MedImmune	Prophylaxis in high risk infants	53,54,112
	Rabies	Phase 1	CR4098 CR 57	IgG1	Glycoprotein antigenic site III Glycoprotein antigenic site I	Immune Ab phage display library EBV immortalization	Crucell (Leiden, The Netherlands)	Post-exposure prophylaxis; use in combination	57°
	Rabies	Preclinical (clinical trials to start in India in 2008)	1707	lgG1	Glycoprotein, either antigenic site III or minor site A	Transgenic HuMab-Mouse (Medarex)	Massachusetts Biologic Laboratories	Post-exposure prophylaxis	10
	WNV ^d	Phase I	hE16 (MGAWN1)	lgG1	Envelope (E) protein, domain III	Humanized	Macrogenics (Rockville, MD, USA)	A potential therapy for dis- eases associated with severe West Nile Virus infection	113
	WNV	Pre-clinical	CR4374	lgG1	E protein, domain III	Immune human Ab phage display library	Crucell	Protected mice from infection	114
	SARS	Pre-clinical	CR3014 CR3022	lgG1	S1-RBD	Immune phage display Ab library	Crucell	CR3014 protected ferrets CR3022 neutralized CR3014 escape viruses; mixture of CR3014/3022 showed synergistic effect	116 116
ivation	CMV	Phase 2	TI-23	lgG1	Envelope glycoprotein gb	Human hybridoma	Teijin Pharma (Tokyo, Japan)	Treatment of CMV Retinitis in HIV individuals / CMV pneumonia in bone marrow transplantation—individuals	117
Acute cytopathic/latent reactivation	CMV	Information not available	HCMV37	lgG1	Envelope glycoprotein gb	Humanized	Scotgen Biopharmaceuticals (Aberdeen, UK; closed doors in 1997)	HCMV infections in immunocompromised individuals	118
	EBV	Phase 2	Rituxan (Rituximab)	lgG1	CD20	Chimeric	Genentech (S. San Francisco, CA, USA)	Treatment, EBV-associated post-transplant lymphoprolif- erative disorders (interstitial pneumonia)	119
	VZV	Preclinical	TI-57	lgG1	Envelope glycoprotein III	Human hybridoma	Teijin Pharma	Treatment of Varicella Zoster	120

Commercial development of antiviral MAbs

		Stage of				Development	Company			
	Virus	development	mAb	Isoform		technology	(location)	Indication		Reference
Acute cytopathic	RS	SV	Synagis (Palivizumab; MEDI-493)	lgG1	Glycoprotein F	Humanized	MedImmune	Prophylaxis infants ^b	in high risk	111
			A mah	lgG1	Glycoprotein F	Huma affin from Pre	ventive ι		in high risk	53,54,112
	Rabies	Phase 1	FD appro		coprotein ige coprotein igenic site I	hag ra EBV	oabies bo	orn	re prophylaxis; ination	57 ^c
	Rabies	Preclinical (clinical trials to start in India in 2008))	1802	either antigenic site III or minor site A	Trans HuMa (Medarex)	emature Laboratories	ly .	re prophylaxis	10
	MNAq	Phase I	hE16 (MGAWN1)	lgG1	Envelope (E) protein, domain III	Humanized	Macrogenics (Rockville, MD, USA)	eases assoc	therapy for dis- iated with severe irus infection	113
	WNV	Pre-clinical	CR4374	lgG1	E protein, domain III	Immune human Ab phage display library	Crucell	Protected m	ice from infection	114
	SARS	Pre-clinical	CR3014 CR3022	lgG1	S1-RBD	Immune phage display Ab library	Crucell	mixture of C		116 116
Acute cytopathic/latent reactivation	CMV	Phase 2	TI-23	lgG1	Envelope glycoprotein gb	Human hybridoma	Teijin Pharma (Tokyo, Japan)	in HIV indiv pneumonia	f CMV Retinitis iduals / CMV in bone marrow tion—individuals	117
	CMV	Information not available	HCMV37	lgG1	Envelope glycoprotein gb	Humanized	Scotgen Biopharmaceuticals (Aberdeen, UK; closed doors in 1997)	HCMV infectimmunocom individuals		118
	EBV	Phase 2	Rituxan (Rituximab)	lgG1	CD20	Chimeric	Genentech (S. San Francisco, CA, USA)	post-transpl	EBV-associated ant lymphoprolif- ders (interstitial	119
¥	VZV	Preclinical	TI-57	lgG1	Envelope glycoprotein III	Human hybridoma	Teijin Pharma	Treatment o	f Varicella Zoster	120

Anti-viral Abs could be effective for virus neutralization as well as killing infected cells

Marasco & Sui, Nature Biotech. 25:1421-1434, 2007

Science and Technology Research Partnership for Sustainable Development (SATREPS)

- against Global Issues in Infectious Diseases -

2009~2012

Development of therapeutic human antibodies and pursuing novel therapeutic candidates against infectious diseases, especially dengue hemorrhagic fever

Japan side: JST (Japan Science and Technology Agency)

Thai side: JICA (Japan International Cooperation Agency)

Science and Technology Research Partnership for Sustainable Development (SATREPS)

- against Global Issues in Infectious Diseases -

2009~2012

Development of therapeutic human antibodies and pursuing novel therapeutic candidates against infectious diseases, especially dengue hemorrhagic fever

Dengue virus, Influenza virus, and botulinum toxin

Japan side: JST (Japan Science and Technology Agency)

Thai side: JICA (Japan International Cooperation Agency)

Science and Technology Research Partnership for Sustainable Development (SATREPS)

- against Global Issues in Infectious Diseases -

2009~2012

Development of therapeutic human antibodies and pursuing novel therapeutic candidates against infectious diseases, especially dengue hemorrhagic fever

Ministry of Education and Science

Japan side: JST (Japan Science and realinging), rigency,

Thai side: JICA (Japan International Cooperation Agency)

Ministry of Foreign Affair

Four projects on JST-JICA DMSc

HuMAb preparation with human PBMCs

Process Flow on JST-JICA projects

Dengue Fever, Hemorrhagic fever

- Typical arthropod-borne disease
- Mostly subclinical cases
- 4 serotypes of virus

Dengue virus distribution WHO

Mosquito

Influenza A virus in human

At early May 2009 in Japan

WHO

Phase

Pandemic Interfase (no human case of subtypes that are prevalent in animals) Lower risk of human infection

1

Higher risk of human infection

2

Pandemic Alert

No or only limited number of humanto-human transmission

3

(detection of human case of new subtypes)

Increased number of human-to-human transmission

4

Considerable number of human-tohuman transmission

5

Pandemic

Efficient human-to-human transmission

6

Feb 2009: Outbreak of respiratory illness in Mexico

April 2009: CDC identified Swine-origin influenza virus

June 2009: WHO declared pandemic alert to phase 6

Strategies against influenza

- > Prevention -> Vaccine
 - HA split vaccine
 - Pandemic-----time-consuming
- >Therapy ---> Drugs
 - Anti-viral-----escape mutants
 - Human Abs

High risk

- ✓ Premature infants
- **✓** Elderly people
- **✓** Patients with underlying diseases
- **✓** (Diabetes, Dialysis-treating patients)
- **✓** Pregnant women
- **✓** HIV-infected individuals

