JITMM2010&IMC2010, 1-3 December 2010

Cross-regulation of host STATs for the survival of *Toxoplasma gondii*

Ho-Woo Nam¹, Dong-Soo Kim², Sung-Jong Hong³

Department of Parasitology, College of Medicine, Catholic University of Korea¹, Inha University², Chung-Ang University³, Seoul 137-701, Korea

Toxoplasma gondii

: Intracellular protozoan that infects CNS through the invaion into macrophages, zoonotic and opportunistic

Dubey et al. (1970)

Life cycle of *Toxoplasma* and infection routes

- Zoonotic infection into herbivore and carnivores all over the world
- Infections almost benign or no symptom (?), but opportunistic

Seroprevalence against *Toxoplasma* in Korea

Soh et al	1960	5.6% in 373 Korean	Skin test
Kim & Cho	i 1983	7.2% in 874 patients	ILA
Choi et al	1989	1.9% in patients	ILA
		5.8% in Cheju pts	
Choi et al	1992	7.0% in sera	ELISA
		5.6% in paired CSF	
Kim et al*	1993	Laboratory infection case	KJI:25
Kook et al	1997	7.7% in 542 children	ELISA
Choi et al	1997	Chorioretinites & lymphadenite	es JID:175
Yang et al	2000	5.5% in 4,570 schools	ELISA
		12.9% in 474 adults in Cheju is	land
Kim et al	2000	Recurrent uveitis	KJP:38
Song et al.	2005	0.79% in 5,175 sera	ELISA
		of pregnant women	
		1.33% in 750 amniotic fluids	
Nam et al	2010	13.2% in 2,348 Jeju patients	ELISA
*· cases dia	anosed and	treated as toyonlasmoses	

: cases diagnosed and treated as toxoplasmoses

Human-pork-cat

Felids-water-human

Relationship between Toxoplasma and host cell

- *Toxoplasma* makes a border membrane (<u>p</u>arasitophorous <u>v</u>acuolar <u>m</u>embrane, PVM) in the margin of host cytoplasm,
- secretes proteins from organelles (MIC, ROP, and DG) to decorate PVM .
- Under the TEM, host mitochondria and ER are recruited to the PVM.

Cytokines/STATs in/around the macrophage infected with Toxoplasma

Denkers EY (2003) FEMS Immunology and Medical Microbiology 39: 193

IFA with rabbit pSTAT6 pAb (FITC) and mouse GRA3 mAb (TRITC) pSTAT6/GRA3 GRA3 Phase

THP-1 + T. gondii

THP-1 + IL-4

Transfection assay with exogenous pDs2Red-STAT6

HeLa + T. gondii (mAb GRA3) HeLa + IL-4

Microarray analysis of *T. gondii* infected THP-1 cells

(con5) (RH3)

Among 12,850 probes used, 84 gene expressions change significantly after *T. gondii* infection.

Cluster of cytokine/chemokine mediated immunity

Target	fold (in	fected/control)						
CCL1 (I-139))	3.13						
CCL2 (MCP-	·1)	15.97						
CCL3		1.91						
CCL3L1	1.28							
CCL3L3	1.72		Among CCLs (chemokine (C-C motif) ligands).					
CCL4L1	2.31		6 CCI s were induced significantly					
CCL5		1.09	but in others and CXCLs (chemoking)					
CCL7		1.52	ligonde) no ciani	ficant	changes in every		
CCL8 (MCP-	·2)	7.46	liyanus	s) no signi	IICalli	. changes in expres	551011.	
CCL13 (MCF	P-4) 4	.92						
CCL16		-1.02						
CCL17		1.61						
CCL20		1.76		Target		fold (infected/control)		
CCL21		1.01		CXCL1		-1.03		
CCL22 (MDC	C) 3	8.79		CXCL3		1.05		
CCL23		-1.10		CXCL10		1.16		
CCL26		1.42		CXCL14		1.06		
<u>CCL28</u>		-1.18		<u>CXCL16</u>		-1.27		

→ STAT6 mediated gene expressions

;Secreting those CCLs, *T. gondii* infected macrophage attracts more monocytes and Th2 cells of CCR3 and CCR4 to make, so called, the 'Th2 environment' nearby the infected macrophage.

Cluster of proteolysis

Target	fold (infected/control)	
SPINT2	6.65	
SERPIN A1	-1.04	SERPIN B3 squamous cell carcinoma
SERPIN A10	-1.04	antigen-1 ($SCCA_1$), cross-class
SERPIN A12	1.07	inhibition of Cathoneine L and V
SERPIN B1	1.03	CEDDIND4 COCA : cross class
SERPIN B2	-2.59	SERPIN B4, SCCA-2; cross-class
SERPIN B3	3.18	inhibition of Cathepsin G and chymase,
SERPIN B4	10.10	SERPIN B13, Headpin (PI13); inhibition
SERPIN B6	1.04	of Cathepsins L and K.
SERPIN B8	-1.16	SERPINB2, Plasminogen activator
SERPIN B13	2.86	inhibitor-2 (PAI2); inhibition of PA
SERPIN E1	-1.02	
SERPIN E2	1.45	
SERPIN F1	-1.42	
SERPIN G1	1.00	
SERPIN H1	1.02	
SERPIN I1	-1.55	

→ STAT6 mediated gene expressions

;The functions were not defined clearly, SPINT2, SERPIN B3, and B4 may participate in

i) the protection of intracellular damage from activated lysosomal enzymes,

ii) the inhibition of caspase activation to block the apoptosis,

iii) the inhibition of proteases of antigen presentation to reduce the antigenic recognition, etc.

STAT cross-regulation within *Toxoplasma*-infected macrophage

Toxoplasma infection makes the host STAT6 phosphorylated and translocated into the nucleus without IL-4 stimulus, and then copes with the lethal actions by IFN-γ.

 \rightarrow "if the cells are infected first, subsequent exposure to IFN-γ is unable to control the infection and the parasite grows normally."

→Cross-regulation of STAT level occurs just in the infected cells but not in uninfected cells, which suggests that the survival strategy of the intracellular *T. gondii* may prevent the infected individual from unexpected action of cross cytokine, IL-4.

Where's the kinasing activity to STAT6 come from?

Among the rhoptry protein (ROP1-21), ROP2, 4, 5, 7, 8, 11, 16, 17 and 18 have kinase domains in their C-terminal halves.

Prospects

- ✓ Understand the STAT level cross –regulation and the underlying mechanism of STAT signal transduction, why and how?
- ✓ Find therapeutic targets with optimized IUD or small molecules.
- ✓ Provide research model of infection and defense for those intracellular protozoans such as Theileria, Neospora, or others.