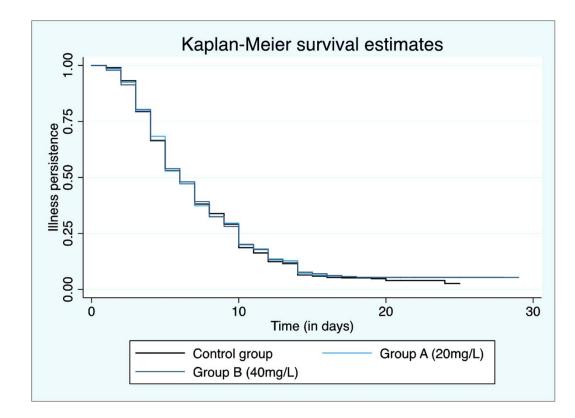
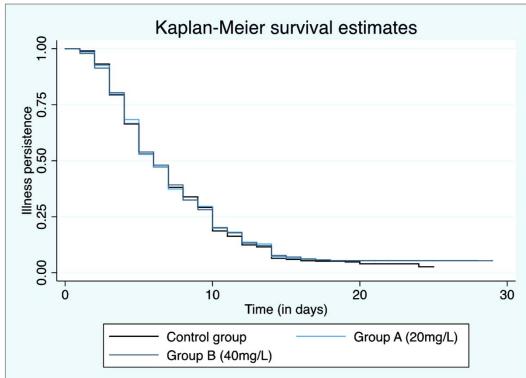


C-Reactive Protein point of care test for the management of febrile patients in primary care in Southeast Asia

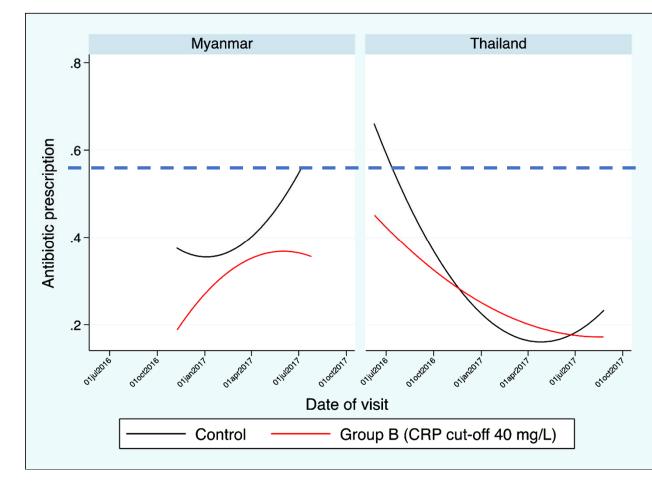
Dr Rachel Greer & Dr Thomas Althaus

JITMM, Bangkok, Thailand 6th December 2017



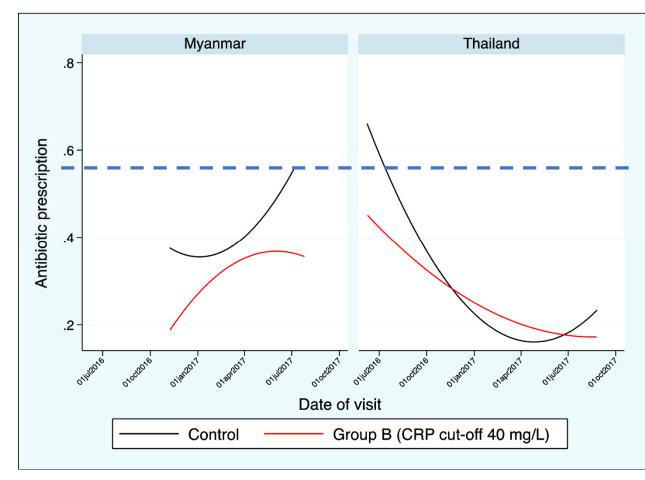


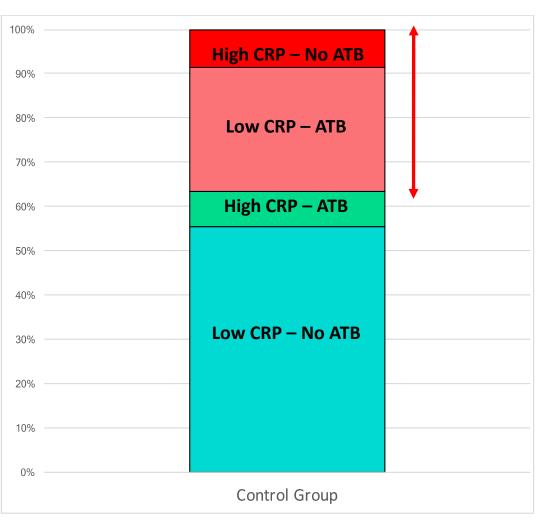
Impact of CRP testing on clinical recovery



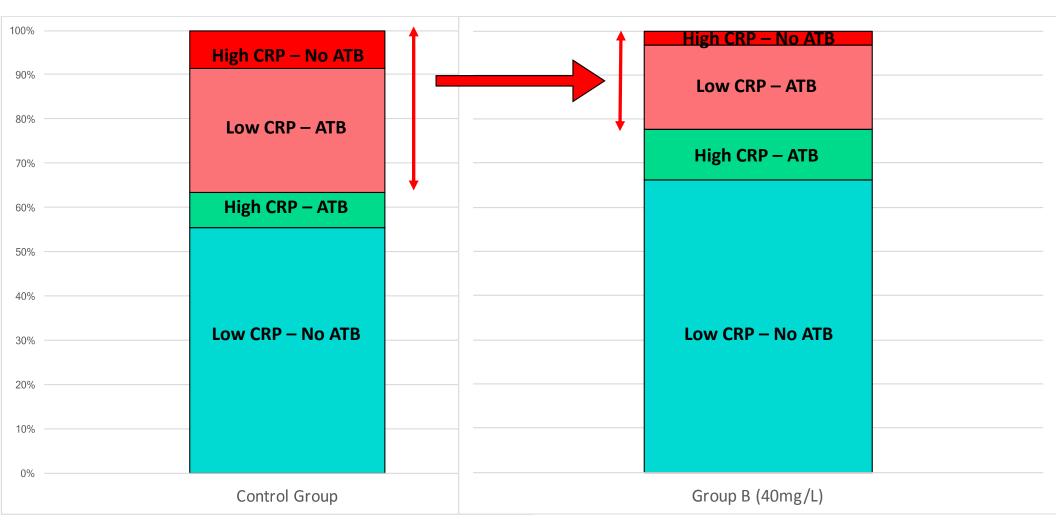
Impact of CRP testing on clinical recovery

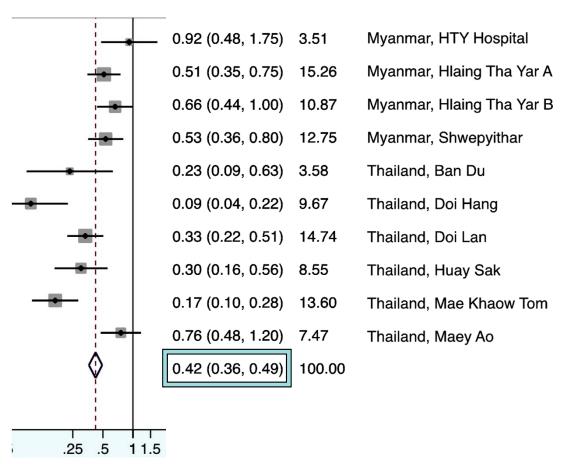
Illness resolution at Day 5	Control	CRP	P-value
	group	group	
All CRP groups combined		983 (61.3)	0.960
CRP Group A (20mg/L)	491 (60.8)	495 (61.6)	0.752
CRP Group B (40mg/L)		488 (61.0)	0.821
Illness resolution at Day	Control	CRP group	P-value
Illness resolution at Day 14	Control group	CRP group	P-value
	group	CRP group 1,451 (90.5)	P-value 0.183
14			


Trend antibiotic prescription over time – Group B (CRP 40 mg/L) *versus* Control

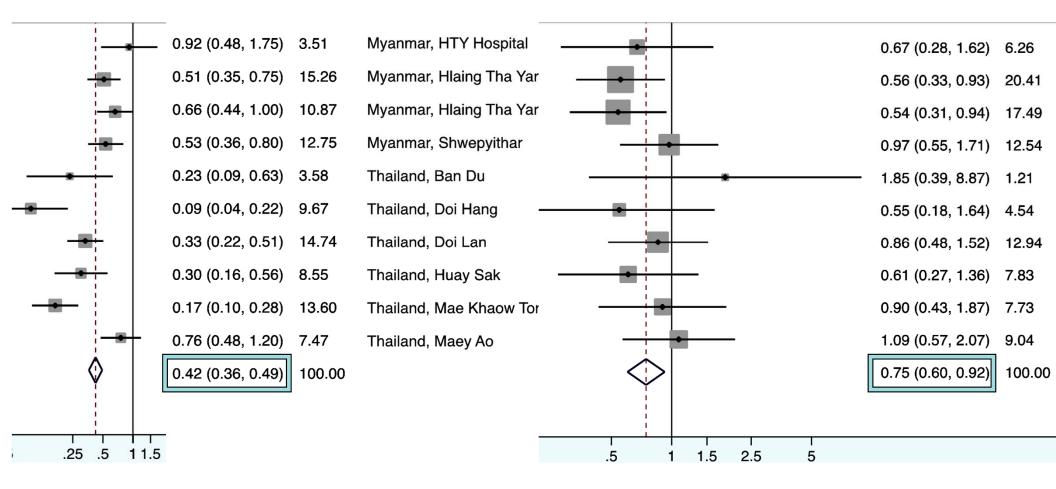

Trend antibiotic prescription over time – Group B (CRP 40 mg/L) *versus* Control

Possible effects of the study


- Better awareness of overall need to improve prescribing
- Contamination health workers learn that most patients have low CRP and therefore more willing to prescribe less in controls
- Hawthorne effect


Reducing & Targeting

Reducing & Targeting



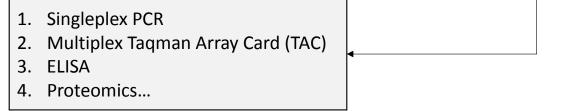
Comparison between group **B** and *Baseline*

Comparison between group **B** and *Baseline*

Comparison between group **B** and *controls*

Preliminary conclusions


• CRP testing lead to a significant reduction of antibiotic prescription compared with the Baseline with an adjusted OR 0.42 [0.36-0.49]


Preliminary conclusions

- CRP testing lead to a significant reduction of antibiotic prescription compared with the Baseline with an adjusted OR 0.42 [0.36-0.49]
- Using higher threshold was associated with higher reduction in prescribing than the Controls with an adjusted OR 0.75 [0.60-0.92]

Preliminary conclusions

- CRP testing lead to a significant reduction of antibiotic prescription compared with the Baseline with an adjusted OR 0.42 [0.36-0.49]
- Using higher threshold was associated with higher reduction in prescribing than the Controls with an adjusted OR 0.75 [0.60-0.92]
- The high threshold of 40mg/L did not impact the clinical outcome

Microbiology Research - preliminary findings on Melioidosis

Hcp1-ELISA results (cut off OD >1.16)	Sera from Chiang rai	Sera from Myanmar	Total
Positive	51 (13%)	0	51
Negative	340 (87%)	265 (100%)	605
Total	391	265	656

Microbiology Research - preliminary findings on Melioidosis

Social research: Case Report Form (CRF)

Social research: Case Report Form (CRF)

Attitude towards care overall

97% of the patients were satisfied with their care overall in both the control and intervention groups

Social research: Case Report Form (CRF)

Attitude towards care overall

97% of the patients were satisfied with their care overall in both the control and intervention groups

Attitudes toward CRP testing

81.8% of patients reported that CRP POCT made them feel more confident that antibiotics were needed or not needed for their illness

Prior attending primary care

Healthcare type	Overall n=2,410	Myanmar n=1,228	Thailand n=1,182
Overall, n (%)	1,372 (56.9)	918 (74.8)	454 (38.4)
Same clinic	131 (9.6)	65 (7.1)	66 (14.5)
Another clinic	312 (22.7)	222 (24.2)	90 (19.8)
Pharmacy	755 (55)	615 (67)	140 (30.8)
Hospital	39 (2.8)	8 (0.9)	31 (6.8)
Community HW	6 (0.4)	2 (0.2)	4 (0.9)
Natural healer	129 (9.4)	7 (0.8)	122 (26.9)
Other	33 (2.4)	29 (3.2)	4 (0.9)

Prior attending primary care

Healthcare type	Overall n=2,410	Myanmar n=1,228	Thailand n=1,182	
Overall, n (%)	1,372 (56.9)	918 (74.8)	454 (38.4)	
Same clinic	131 (9.6)	65 (7.1)	66 (14.5)	
Another clinic	312 (22.7)	222 (24.2)	90 (19.8)	
Pharmacy	755 (55)	615 (67)	140 (30.8)	
Hospital	39 (2.8)	8 (0.9)	31 (6.8)	
Community HW	6 (0.4)	2 (0.2)	4 (0.9)	
Natural healer	129 (9.4)	7 (0.8)	122 (26.9)	
Other	33 (2.4)	29 (3.2)	4 (0.9)	

Prior attending primary care

Healthcare type	Overall n=2,410	Myanmar n=1,228	Thailand n=1,182	Drug type	Overall n=2,410	Myanmar n=1,228	Thailand n=1,182
Overall, n (%)	1,372 (56.9)	918 (74.8)	454 (38.4)	Overall, n (%)	1,372 (56.9)	918 (74.8)	454 (38.4)
Same clinic	131 (9.6)	65 (7.1)	66 (14.5)	Antibiotic	126 (9.2)	61 (6.6)	65 (14.3)
Another clinic	312 (22.7)	222 (24.2)	90 (19.8)	Paracetamol	1,015 (74)	620 (67.5)	395 (87)
Pharmacy	755 (55)	615 (67)	140 (30.8)	Anti-	42 (3.1)	28 (3.1)	14 (3.1)
Hospital	39 (2.8)	8 (0.9)	31 (6.8)	inflammatory	· · ·		
Community HW	6 (0.4)	2 (0.2)	4 (0.9)	Antitussive	134 (9.8)	30 (3.3)	104 (22.9)
Natural healer	129 (9.4)	7 (0.8)	122 (26.9)	Anti-histaminic			
Other	33 (2.4)	29 (3.2)	4 (0.9)	Other	219 (16)	152 (16.6)	67 (14.8)

Prior attending primary care

Healthcare type	Overall n=2,410	Myanmar n=1,228	Thailand n=1,182	Drug type	Overall n=2,410	Myanmar n=1,228	Thailand n=1,182
Overall, n (%)	1,372 (56.9)	918 (74.8)	454 (38.4)	Overall, n (%)	1,372 (56.9)	918 (74.8)	454 (38.4)
Same clinic	131 (9.6)	65 (7.1)	66 (14.5)	Antibiotic	126 (9.2)	61 (6.6)	65 (14.3)
Another clinic	312 (22.7)	222 (24.2)	90 (19.8)	Paracetamol	1,015 (74)	620 (67.5)	395 (87)
Pharmacy	755 (55)	615 (67)	140 (30.8)	Anti-	42 (3.1)	28 (3.1)	14 (3.1)
Hospital	39 (2.8)	8 (0.9)	31 (6.8)	inflammatory	· · ·	ζ, γ	, , , , , , , , , , , , , , , , , , ,
Community HW	6 (0.4)	2 (0.2)	4 (0.9)	Antitussive	134 (9.8)	30 (3.3)	104 (22.9)
Natural healer	129 (9.4)	7 (0.8)	122 (26.9)	Anti-histaminic			
Other	33 (2.4)	29 (3.2)	4 (0.9)	Other	219 (16)	152 (16.6)	67 (14.8)

What is the impact of the CRP study?

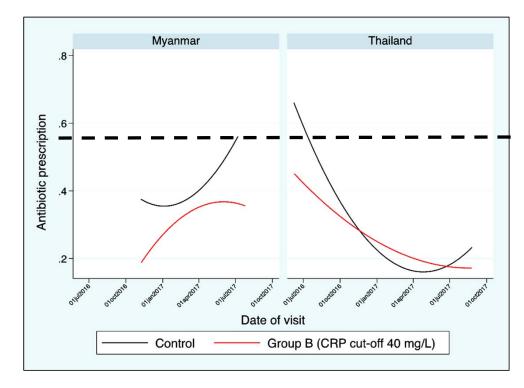
Health worker's perspective

Antibiotic prescription	Overall	Pre-intervention
1-24% (few)	32.7	19.2
25-49% (minority)	32.7	23.1
50% (half)	12.7	23.1
51-75% (majority)	16.3	26.9
76-99% (most)	5.5	7.7

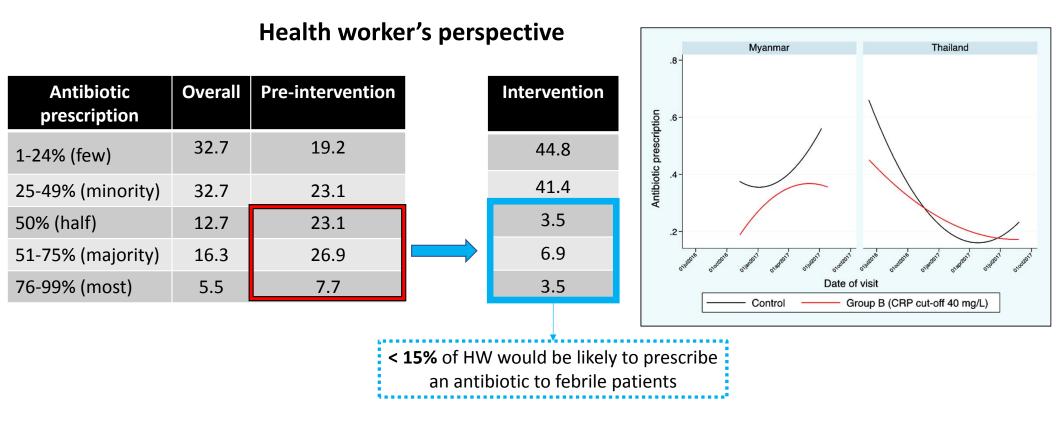
What is the impact of the CRP study?

Health worker's perspective

Antibiotic prescription	Overall	Pre-intervention
1-24% (few)	32.7	19.2
25-49% (minority)	32.7	23.1
50% (half)	12.7	23.1
51-75% (majority)	16.3	26.9
76-99% (most)	5.5	7.7


>50% patients for whom an antibiotic would be prescribed

What is the impact of the CRP study?


Health worker's perspective

Antibiotic prescription	Overall	Pre-intervention
1-24% (few)	32.7	19.2
25-49% (minority)	32.7	23.1
50% (half)	12.7	23.1
51-75% (majority)	16.3	26.9
76-99% (most)	5.5	7.7

> 50% of HW would be likely to prescribe an antibiotic to febrile patients

What is the impact of the CRP study?

Next steps: ICAT study

First large scale implementation of CRP testing in routine care in LMIC, expected start in 2018

Objectives:

- Assess the impact of CRP point of care testing on antibiotic prescriptions in a routine primary healthcare environment
- Evaluate the usability and acceptability of CRP testing for healthcare workers
- Assess the cost effectiveness of CRP testing

Design:

- Stepped wedge cluster randomised trial in ~60 facilities in Chiang Rai, ~80-100k patients
- No research staff on site, all data collected via routine records.

• Pragmatic design – minimal training, no strict algorithm

→ CRP testing still associated with halving in prescribing compared with baseline and significant difference to control group

• Pragmatic design – minimal training, no strict algorithm

• Benefit was not only reduction but better targeting of antibiotics

- Pragmatic design minimal training, no strict algorithm
- Benefit was not only reduction but better targeting of antibiotics
- Reducing antibiotic prescription only through policy antibiotic supervision might not be safe

- Pragmatic design minimal training, no strict algorithm
- Benefit was not only reduction but better targeting of antibiotics
- Reducing antibiotic prescription only through antibiotic supervision might not be safe
- Low cost & accurate CRP tests are commercially available

→ While higher reductions will be achieved with newer tests under evaluation, the incremental gains would have to justify the costs AND delays in postponing taking much needed action

Acknowledgements

MORU & MOCRU colleagues including members of administrative team, Clinical Trial Support Group, Microbiology, site study staff

- Frank Smithuis
- Myo Maung Maung Swe
- Ni Ni Tun
- James Heaton
- Josh Cohen
- Kyaw Soe
- Paul Newton
- Paul Turner
- Clare Ling
- Elizabeth Ashley
- Pieter Smit

- Arjen Dondorp
- Mavuto Mukaka & Sue Lee
- Lisa White
- Direk Limmathurotsakul
- Premjit Amornchai
- Janjira Thaipadungpanit
- Narisara Chantratita
- Stuart Blacksell
- Phaikyeong Cheah
- Nick Day
- Nick White

- Sabine Dittrich
- Do Thi Thuy Nga
- Heiman Wertheim
- Dr Supalert & Dr Daranee
- Rachel Greer
- Tri Wangrangsimakul
- Marco Haenssgen
- Nutcha Charoenboon

Thank you!!!

Thomas.a@tropmedres.ac Yoel@tropmedres.ac Rachel@tropmedres.ac