Changing epidemiology and antimicrobial resistance in *Vibrio cholerae*: findings of a decade from national AMR surveillance

> Ms. Nisha Rijal Microbiologist National Public Health Laboratory NEPAL

Objectives

- To monitor the changing serotype of *V.c* prevalent in Nepal
- To assess the change in antimicrobial susceptibility trend of *V.cholerae* over a period of 11 years (2006-2016)

Epidemiology of Cholera in Nepal

- Cholera is endemic in Nepal.
- nearly 20% of the population at risk
- Every year, there are reports of cholera outbreaks from rural and urban areas, including areas that are remote and difficult to access.
- The hill districts are particularly at high risk due to poor sanitation and hygiene.

http://www.gettyimages.com

Status of cholera in Nepal

- The first recorded cholera epidemic took place in 1823, followed by a series of epidemics occurring in the Kathmandu Valley in 1831, 1843, 1856, 1862, and 1887.
- Major cause of Diarrheal outbreaks in 2003, 2005, 2007, 2009, 2012, 2014 and recently in 2016

Courtesy: borgenproject.org

Courtesy: borgenmagazine.com

Status contd..

- Nepal has a weekly reporting of six priority diseases including Acute Gastroenteritis(AGE) through a network of Early Warning and Reporting System(EWARS) in 63 hospitals
- It focuses on immediate reporting (to be reported within 24 hours of diagnosis) of one confirmed case of Cholera

Status contd..

AGE cases suspected to be cholerae claim the lives of many,before being laboratory confirmed and treated.

Year	Total suspected AGE cases	Districts affected	Deaths reported
2009	71341	27	378
2010	101	3	9
2011	10	1	0
2012	2678	5	15
2014	600	2	0

Source: Epidemiology and Disease control division, annual reports (www.edcd.gov.np)

Research

BRIEF REPORTS

Journal of Tropical Pediatrics Vol. 42 October 1996 Outbreaks of Cholera in Kathmandu Valley in Nepal

by Tohru Ise,* MD, PhD, Bharat Mani Pokharel,** Saraswat Rawal,** Ram Sunder Shrestha,** and J. R. Dhakhwa,*** MBBS, DCH *Medical Education Project and **Department of Bacteriology, Tribhuvan University Teaching Hospital (TUTH), Maharajgung, Kathmandu, Nepal ***National Kanti Children's Hospital

Kathmandu University Medical Journal (2005) Vol. 3, No. 2, Issue 10, 138-142

Original Article

An outbreak of El Tor cholera in Kavre district, Nepal

Tamang MD¹, Sharma N², Makaju RK³, Sarma AN⁴, Koju R⁵, Nepali N⁶, Misl ^{1,4}Kathmandu University Medical School, ^{2,3,5,6,7}Kathmandu University Teaching

World Journal of Microbiology and

Biotechnology

August 2012, Volume 28, <u>Issue 8</u>, pp 2671– 2678

Phenotypic and genetic characterization of Vibrio cholerae O1 clinical isolates collected through national antimicrobial resistance surveillance network in Nepal Resistotypes of *Vibrio cholerae* 01 Ogawa Biotype El Tor in Kathmandu, Nepal

R Karki,¹ DR Bhatta,¹ S Malla,² SP Dumre,²³ BP Upadhyay,² S Dahal¹ and D Acharya¹

Original Article

Nepal Med Coll J 2011; 13(2): 84-87

Open I

Nepalese Journal of Biosciences 2: 31-39 (2012)

Short Commentary

An Outbreak of Vibrio cholerae in 2012, Kathmandu, Nepal

Sher Bahadur Pun^{1*}, Rosina Maharjan², Dina Shrestha², Deepak Pokharel³, Yogesh Shah⁴, Anup Bastola¹ and Rajesh Shah¹

¹Sukraraj Tropical and Infectious Disease Hospital, Kathmandu, Nepal ³Kantipur College of Medical Sciences, Tribhuwan University, Kathmandu, Nepal ³Kathmandu College of Science and Technology, Kathmandu, Nepal ⁴National Zoonoses and Food Hygiene Research Center, Kathmandu, Nepal

Gupta et al. Antimicrobial Resistance and Infection Control (2016) 5:23 DOI 10.1186/s13756-016-0122-7

Antimicrobial Resistance and Infection Control

RESEARCH

Open Access

CrossMark

Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross-sectional study

Pappu Kumar Gupta¹, Narayan Dutt Pant^{2*}, Ramkrishna Bhandari³ and Padma Shrestha¹

Multiple drug resistant *Vibrio cholerae*, *Salmonella* and *Shigella* from Nepalgunj Cholera outbreak and different hospitals of Nepal

Binod Kumar Shah¹*, Sapana Sharma¹, Gita Shakya² and Bishnu Prasad Upadhyay²

Year : 2012 | Volume : 4 | Issue : 12 | Page : 657-658 Cholera: Small outbreak in winter season of Eastern Nepal Sanjay Gautam1, Pramod Jha1, Basudha Khanal1, Dipesh Tamrakar2, DK Yadav2

Research at molecular level

World Journal of Microbiology and

Biotechnology

August 2012, Volume 28, <u>Issue 8</u>, pp 2671– 2678

Phenotypic and genetic characterization of Vibrio cholerae O1 clinical isolates collected through national antimicrobial resistance surveillance network in Nepal

Kansakar et al

Objective: characterization for toxigenic *ctxB* gene and MLVA typing

Result: 2 different variants of cholera toxins revealed. Ogawa strains (2007,2010) harbored CTX whereas Inaba Strains and few Ogawa strains harbored CTX 3b-type . MLVA analysis showed circulation of four different groups of altered V. cholerae O1 El Tor strains

mBioVolume 2, Issue 4, 2011, Pages e00157-00111

Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak.

Hendriksen, R.S

Objective:evaluate the suggested epidemiological link with the Haitian outbreak

Result: The Nepalese isolates were divided into four closely related clusters. One cluster contained three Nepalese isolates and three Haitian isolates that were almost identical, with only 1- or 2-bp differences. Methodology for sample collection/transport and isolation of Vibrio at Laboratory

National AMR surveillance Network

Epidemiology and disease Control Division

Laboratory diagnosis

Confirmed by serotyping

Biochemical Testing

Plated on MA and TCBS

FINDINGS(2006-2016)

Total number of *V.cholerae* isolates reported(2006-2016)

Distribution of Vibrio from various sentinel sites

Laboratories/Sites

Distribution of various serotypes

Serotypes

Age and Gender wise distribution of cases

Antimicrobial susceptibility results

Antimicrobial susceptibility results

Multidrug resistance

Antibiogram typing	Total number of isolates exhibiting resistance	
Amp/Cip/Cot/NA /FR	1	Of the total
Amp/Cot/NA/Tet/FR	21	
Amp/Cip/Cot/NA/Tet	1	Vibrio
Amp/Cot/NA/FR	140	isolates 532
Cot/NA/Tet/FR	11	Isolales JJZ
Cip/Cot/NA /Tet	2	(63.6%) were
Amp/Cip/NA/FR	1	
Amp/Cot/Tet/FR	1	MDR.
Amp/Cip/Cot/Tet	1	
Cot/NA/FR	136	
Amp/Cip/Cot	6	
Amp/Cot/NA	188	
Amp/NA/FR	16	Amp - Ampicillin
NA/Tet/FR	3	Cip – Ciprofloxacin Cot – Cotrimoxazole
Amp/Cot/ Tet	2	NA – Nalidixic Acid
Amp/Cot/FR	1	FR – Furazolidone
	1	Tet- Tetracycline

Summary

- Shift in prevalent serotype is noted.
- Resistance to ampicillin decreased from 93% in 2006 to 18% by 2010 and again raised to 100% by 2016.
- Cotrimoxazole resistance remained at constant range(77-100%)
- Ciprofloxacin and tetracycline resistance emerged in 2007, reached a peak during 2010-2012 and declined to 0 by 2016.
- Susceptibility to Furazolidone has re-emerged.
- 63.6% of the isolates were Multi drug resistant.

Acknowledgements

- All sentinel sites participating in AMR surveillance
- Technical experts involved in AMR surveillance
- Patients
- National Public Health Laboratory
- WHO

THANK YOU FOR YOUR ATTENTION

