

Making Automatic Mosquito Monitoring Smarter: Counting and Identifying Mosquito Species Using the New BG-Counter

<u>Jennifer McCaw</u>, Michael Weber, Martin Geier, Andreas Rose, Ilyas Potamitis, Pancraç Villalonga, João Encarnação

What is the BG-Counter?

How does it work?
Field Data
Future Goals

BG-COUNTER

The BG-Counter is a key component of an innovative and autonomous mosquito trap station:

- It differentiates mosquitoes from other insects and counts them
- It then wirelessly transmits the results to a cloud server
- Via the web application you can manage the mosquito traps and get new insights into daily activity patterns, adult density indices, population dynamics and effectiveness of your control activities

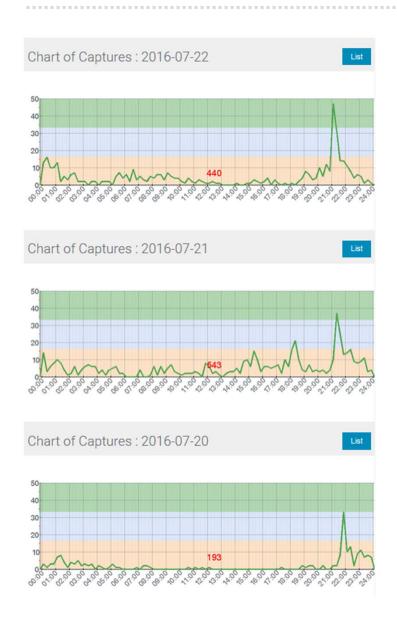
The development of the BG-Counter was partly supported by the EU's 7th Framework Programme (grant 306105, acronym MCD), the continuation of the development is being supported by the EU's Horizon 2020 programme (grant 691131, acronym REMOSIS)

BG-COUNTER

BG-Counter station with BG-Sentinel 2 trap, CO₂ tank, battery, stand and rain shield. The station runs on solar power.

KEY FEATURES

- Reports mosquito counts with 15 min time resolution remotely from anywhere in the world on a web page
- GPS location and easy management of multiple devices
- Lets you manage the trap remotely


- Saves CO₂ with programmable application schedule
- Provides local environmental data including temperature, relative humidity, and ambient light
- Runs indefinitely on solar power

ADVANTAGES

New insights into

- adult density
- daily activity patterns
- effectiveness of mosquito control activities

Reduces effort associated with manually setting and checking mosquito traps

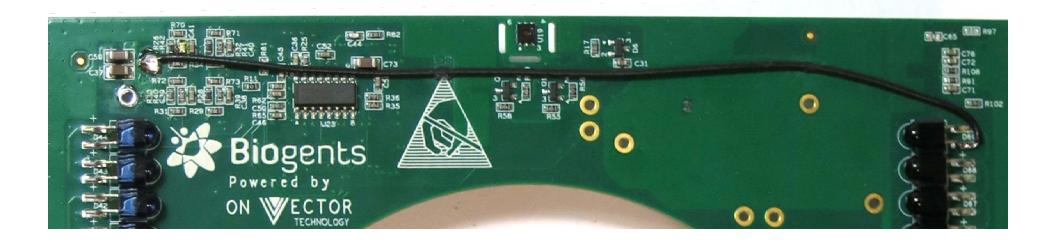
Replaces Human Landing Counts

Saves costs (CO₂ and manpower)

What is the BG-Counter?

How does it work?

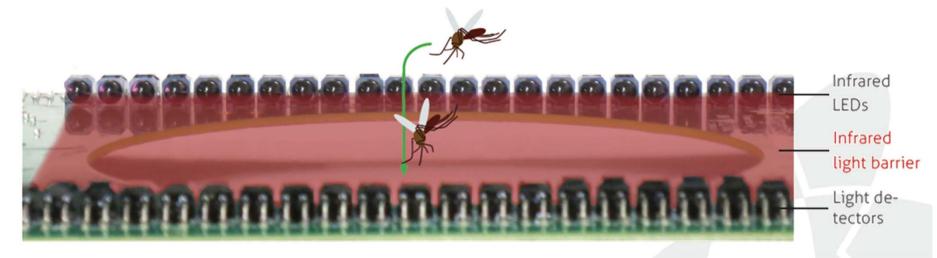
Field Data
Future Goals



TECHNICAL DETAILS

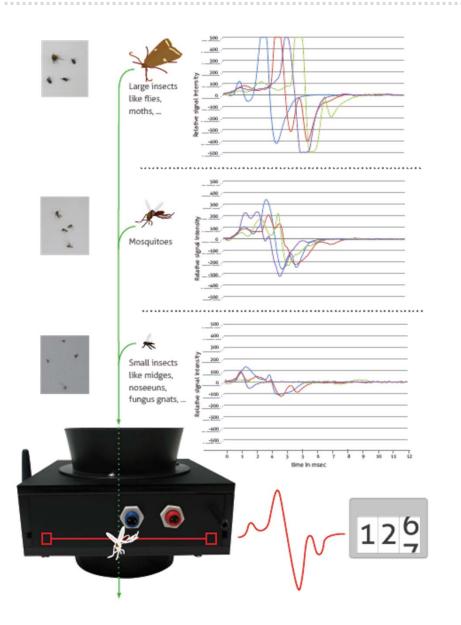
The heart of the BG-Counter is a highly integrated printed circuit board

- An infrared insect sensor
- Two powerful microprocessors for control and communication
- SD card for onboard data storage,
- Fan and C02 valve control
- Environmental sensors for temperature, relative humidity and ambient light
- A cellular module for communication with the web server, GPS location



MOSQUITO DETECTION

Patented insect sensor with:


- arrays of infrared LEDs and light detectors for reliable and sensitive detection
- analog and digital signal processing to differentiate mosquitoes from other objects entering

An insect is sucked through the BG-Counter and disrupts the infrared rays. This is detected by the light detectors.

MOSQUITO CLASSIFICATION

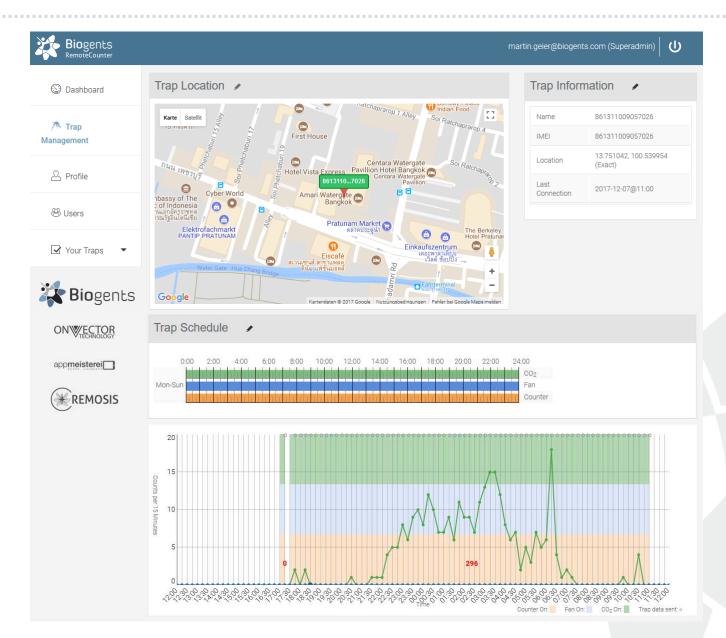
An insect sucked through the BG-Counter generates a "fingerprint" signal

This signal depends on size, shape, and wingbeat frequency of the insect.

Mosquitoes are differentiated from the signals generated by larger or smaller insects.

The maximum counting frequency is about 5 mosquitoes per second = 18,000 mosquitoes per hour.

WEB SERVICE



- Data communication
- Cloud storage of mosquito counts, geospatial and environmental data
- Intuitive graphical user interface can be accessed from PCs as well as smartphones and tablets
- Data can be displayed, analyzed, and downloaded as Excel files at the push of a button
- Remote control

BG-COUNTER DASHBOARD http://live.bg-counter.com

What is the BG-Counter?

How does it work?

Field Data

Future Goals

FIELD VALIDATION

Field testing in the Florida Keys have shown mosquito counts with an accuracy of 90% when working with CO_2 as an attractant. Program released CO2 in half hour intervals.

Date Set	Date Collected	Counted By	Total	% Accuracy
14/10/2015	15/10/2015	Human	120	100%
		BG-Counter	120	
21/10/2015	22/10/2015	Human	139	99.3%
		BG-Counter	140	
23/10/2015	24/10/2015	Human	171	98.8%
		BG-Counter	173	
27/10/2015	28/10/2015	Human	169	95.3%
		BG-Counter	161	
14/12/2015	15/12/2015	Human	183	77.2%
		BG-Counter	237	
15/12/2015	16/12/2015	Human	164	79.2%
		BG-Counter	207	
05/01/2016	06/01/2016	Human	5	35.7%*
		BG-Counter	14	
09/01/2016	10/01/2016	Human	38	82.6%
		BG-Counter	46	
13/01/2016	14/01/2016	Human	11	100%
		BG-Counter	11	

^{* =} heavy rain during sampling

FIELD VALIDATION

Additional field testing in Suffolk, VA also showed mosquito counts with an accuracy of 90% when working with CO_2 as an attractant. Here, CO2 was released continuously.

Date Set	Date Collected	Counted By	Mosquitoes	% Accuracy
15/10/2015	16/10/2015	Human	136	95.59%
		BG-Counter	130	
20/10/2015	21/10/2015	Human	67	83.75%
		BG-Counter	80	
21/10/2015	22/10/2015	Human	197	94.42%
		BG-Counter	186	
22/10/2015	23/10/2015	Human	259	85.71%
		BG-Counter	222	
26/10/2015	27/10/2015	Human	55	83.64%
		BG-Counter	46	
27/10/2015	28/10/2015	Human	450	90.00%
		BG-Counter	405	
28/10/2015	29/10/2015	Human	404	94.80%
		BG-Counter	383	
29/10/2015	30/10/2015	Human	695	90.36%
		BG-Counter	628	
03/11/2015	04/11/2015	Human	238	86.97%
		BG-Counter	207	
04/11/2015	05/11/2015	Human	206	87.86%
		BG-Counter	181	
05/11/2015	06/11/2015	Human	199	90.95%
		BG-Counter	181	

What is the BG-Counter?
How does it work?
Field Data

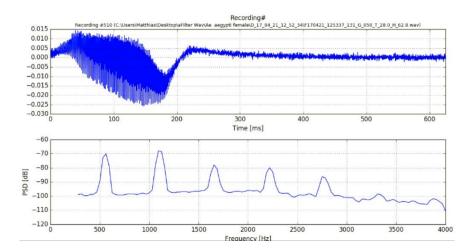
Future Goals

"Remote Mosquito Situation and Identification System

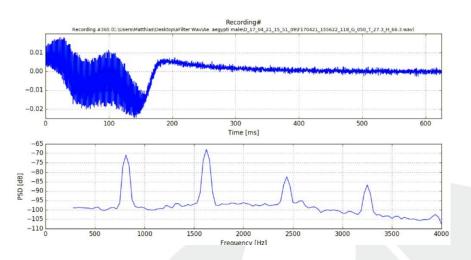
Project Goal: "Make it species specific"

The development of the BG-Counter was partly supported by the EU's 7th Framework Programme (grant 306105,), the continuation of the development is being supported by the EU's Horizon 2020 programme (grant 691131)

REMOSIS PROJECT



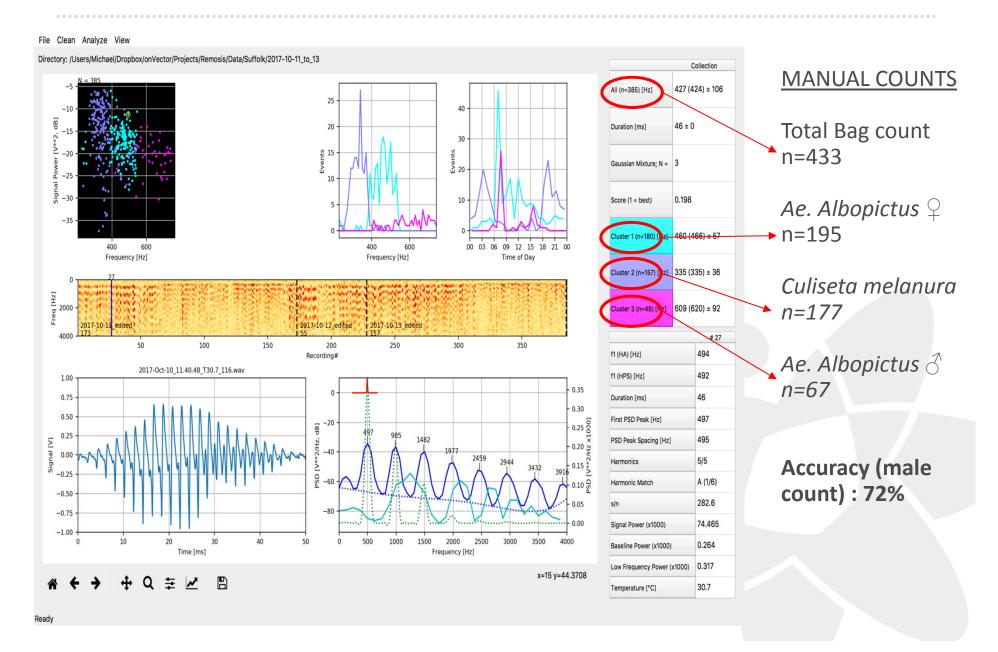
Measuring wing beat frequency of individual mosquito



Differentiation between males \triangleleft and females \triangleleft

♀ Aedes aegypti

Typical optoacoustic recordings of female and male *Aedes aegypti* wing-beat events recorded as they crossed the optical sensor and Power Spectral Density (PSD)


REMOSIS PROJECT: Lab Data with Ae. aegypti

REMOSIS PROJECT: Field Data in Suffolk, USA

Thank you for your attention