

do more feel better live longer

Advances on the development of next generation differentiated antimalarials

Javier Gamo Director, Malaria DPU Tres Cantos, Spain

Bangkok, Dec 2017

Tres Cantos Medicines Development Campus

Scope of the Presentation

Brief outline

- Introduction
 - Resistance makes urgent discovery of new antimalarials
- Overview of Malaria DPU
 - Mission, priorities and business model
- Antimalarial discovery strategy
 - Most desired antiparasitological profiles
 - Biological profiling and MoA tools
- Case study:
 - Novel antimalarials with dual mode of action
 - Novel "irresistible" blood stage inhibitors
- Summary and conclusions

	All animal studies were ethically reviewed and carried out in accordance with European Directive 2010/63/EU and the GSK
	Policy on the Care, Welfare and Treatment of Animals. The human biological samples were sourced ethically and their
Bangkok_JITMM_DD_Dec2017	research use was in accord with the terms of the informed consents

Malaria still one of the deadliest infectious disease

Malaria numbers are not acceptable

- -50% of world population is at risk
- ca. 200 million people yearly affected
- 429,000 deaths estimated in the last WHO report

Clinical burden of P. falciparum infection

Most deaths are associated with *P. falciparum* infection with Sub-Saharan Africa accounting for more than 90% of the observed mortality

New antimalarial therapeutic options are urgently needed

- Despite progress achieved recently, current antimalarial therapeutic arsenal is very limited
 - No new class of antimalarials into clinical practice since 1996
- Resistance to historic antimalarials has rendered these drugs ineffective
- Emerging evidences of resistance to ACTs threaten all the recent advances in malaria control
- Combinations of novel antimalarials should be the strategy to deploy new treatments

Malaria Drug Discovery in GSK

Differentiated antimalarials for control and eradication

Scientific Opportunities

- WGS and Target ID
- Phenotypic screening assays (*e.g.* TCAMS)
- Recognition that gametocytes and liver stages are important targets
- "Open source" approach with TCAMS

Discovery Approaches

- Fully exploit phenotypic hits
- Identify and use novel antimalarial targets
- Build capability to test all aspects of the malaria lifecycle
- Build full in vitro and in vivo PK/PD modelling knowhow
- Exploit combination approach to avoid resistance and improve efficacy

Malaria DPU: Business model

wellcome^{trust}

Bangkok_JITMM DD Dec2 017

Malaria Discovery Performance Unit (DPU)

Our mission:

Novel modes of action avoiding resistance and enabling combination therapies

Differentiated antimalarials for control and eradication

 Strategy focused on identifying molecules with the most desirable parasitological profile

The best strategy for antimalarial lead discovery?

Differentiated antimalarials for control and eradication

- Validated target can provide desirable the clinical therapeutic profile

The best strategy for antimalarial lead discovery?

The best strategy for antimalarial lead discovery?

Phenotypic Screening

Current global portfolio reflects the success of the whole cell approach

The best strategy for antimalarial lead discovery?

Phenotypic hits: therapeutic profile of final candidates is uncertain

How to identify molecules with the most desirable profile?

Selecting scaffolds with a novel mode of action

....discarding know MoA

Rapid parasite killing properties

Inhibition of targets that induce rapid killing are highly desirable

- Killing profiles can be readily determined *in vitro* and are specific to the MoA
 - Allows for differentation of MoA
- Fast acting compounds have a profound effect on disease progression
 - Avoids disease complications
- Rapid mode of action impairs gametocyte maturation
 - This favours transmission blocking
- Rapid decrease in parasitemia and parasite growth hampers selection of resistance

Discovering Transmission Blocking Potential

Selecting targets critical for asexual growth and gametocyte viability

SMFA

Mosquito feeding Infection of *A. stephensi* mosquitoes

Decapitation, dissection and oocysts counting

- Targets that are critical for both gametocyte and asexual forms are the most desirable
- Multiple assays available to assay gametocyte stages
 - mature gametocytes are a main target for transmission blocking
- Standard Membrane Feeding Assay (SMFA) providing the highest biological content

Translational Animal Models

P.falciparum murine model enables rapid in vivo validation of antimalarial targets

Essential in vitro targets not always required for in vivo growth

Understanding the Propensity for Resistance

Building confidence in the target

Exemplars of GSK strategy on phenotypic screen

Thiotriazoles are novel PfATP4 inhibitors

Pyrazines are "irresistible" antimalarials

GSK'692 (Pyrazine): MoA is differentiated from known antimalarial mechanisms

- Negative functional and cross-resistance studies with known antimalarial targets and pathways
 - Not linked to mitochondrial ETC, *Pf* DHODH, folate pathway inhibition, *Pf* ATP4 pathway, *Pf* PI4K
 - GSK692 does not inhibit hematin formation
- *P. falciparum* kinobead affinity assay (67 Pf kinases) didn't show any positives
- Standard approaches for target identification are not working with pyrazine
- Proteomics (Cellzome):
 - Variety of linkable molecules prepared but not candidate target has been identified
- Genomics:
 - Pyrazine cannot select resistance in vitro
 - Multiple strains and genetic backgrounds used
 - Constant drug pressure *vs* ramping approaches
 - Multiple pyrazine derivatives
 - Selection periods up to 9 months
 - Different starting inocula

Pyrazines are "irresistible" antimalarials

- Whole cell screening <u>is</u> delivering new antimalarial candidates
 - ...but target based programs emerging
- Well populated pipeline but attrition high at this stage
- Phenotypic hits can be filtered using biological assays
 - ...to select those affecting the most critical targets at different stages
 -molecules with low propensity to select for resistance
- It is possible to develop assets against tractable targets that simultaneously hit a number of parasite stages
 - *e.g. Pf*ATP4 molecules inhibit blood asexual and mature gametocyte stages *via* the same MoA
- "Irresistible" compounds possible but difficult to identify mechanism of action

Acknowledgements

Thank you to all our partners and those at GSK

If we are going to need combination therapies, we are all going to need to work together!