The Malaria Elimination Task Force in silico

Ricardo Aguas, Lisa White

Mathematical and Economic Modelling (MAEMOD)

Mahidol-Oxford Tropical Medicine Research Unit (MORU)

The METF Model

- A computer-based reproduction of the real METF strategy
- Individual-based transmission dynamics
- Simulated population has the same spatial distribution as the real population
- Acquisition and loss of immunity
- Resistance

Spatiotemporal dynamics and resistance

- Each village is represented by a dot
- The size of the dot represents the P. falciparum prevalence at any time point
- The colour of the dot represents the proportion of villagers with acting drugs
- MDA is not delivered simultaneously in all hotpots
- The model predicts prevalence of resistant infections

The METF Model versus the METF data

Sinks Sources

Logistics

- The level of connectivity of the villages will influence the impact of the intervention
- Very isolated villages lead to a series of mini-extinctions, but can also create niches where resistance prevents elimination
- Highly connected villages act as one large "patch" where the cold spots gain a herd effect from the eliminations in the hot spots
- Decreasing the threshold for hotspot definition is likely to increase impact

What can we do with the model?

Create a simulated version of the real strategy

- Rebuild to create bespoke simulated strategies
- Predict their potential impact and cost

Predicted long term impact of malaria posts

Universal coverage of MP

Closing MP in June 2016

- Close MP -> full resurgence in 3 years
- Universal coverage of MP -> less malaria BUT not elimination

Changing the threshold for defining hotspots (75 villages)

CASES

qPCR PREVALENCE

Changing the threshold for defining hotspots (106 villages)

CASES

qPCR PREVALENCE

Changing the threshold for defining hotspots (144 villages)

CASES

qPCR PREVALENCE

Changing the threshold for defining hotspots (171 villages)

CASES

qPCR PREVALENCE

Changing the threshold for defining hotspots (237 villages)

CASES

qPCR PREVALENCE

Conclusions

- We have a simulated version of the METF strategy
- We can use this model to
 - Explore the relative contributions of the various components of the strategy
 - Project the long term impact of the strategy
 - Predict the impact of counterfactual scenarios (such as closing down malaria posts)
 - Project the impact in different settings using the same or modified strategies
- Future work will be to incorporate costs

Acknowledgements

- Mahidol-Oxford Tropical Medicine Research Unit
 - Nicholas P J Day
 - Nicholas J White
 - Arjen M Dondorp
 - Richard Maude
 - Mathematical and Economic Modelling group
- Shoklo Malaria Research Unit
 - Francois Nosten
 - Gilles Delmas
 - Aung Myint Thu
 - Jordi Landier
- University of California, Irvine
 - Daniel Parker

