Antitubercular Natural Products and Synthetic Agents against Clinical Multidrug Resistant Isolates of *Mycobacterium tuberculosis*

Prasat Kittakoop ประสาท กิตตะคุปต์

Chulabhorn Graduate Institute

Bioactive compounds

Natural products from plants and fungi

J. Nat. Prod. 2011, 74, 79-81 Phytochemistry 2011, 72, 816-820 Phytochemistry 2011, 72, 2062-2067 J. Nat. Prod. 2011, 74, 1650-1652 Eur. J. Org. Chem. 2011, 3809-3814 Planta Medica 2012, 78, 582-588 Bioorg. Med. Chem. Lett. 2012, 22, 2902-2905 Org. Biomol. Chem. 2012, 10, 7220-7226 Planta Medica 2012, 78, 1562-1567 RSC Adv. 2013, 3, 1781-1788 Med. Chem. Commun. 2013, 4, 1590-1596 J. Nat. Prod. 2013, 76, 1824-1827 Planta Medica 2014, 80, 604-608 Eur. J. Org. Chem. 2014, 19, 3976-3980 Phytochemistry 2014, 108, 87-94 Mar. Drugs 2015, 13, 3567-3580 RSC Adv. 2015, 5, 70595-70603 Phytochemistry 2016, 122, 126-138 Toxicology Reports 2017, 4, 165-171 Bioorg. Med. Chem. 2017, 25, 2868-2877 ChemistrySelect 2017, 2, 4969-4973 Phytochem. Lett. 2018, 24, 140-144 Chem. Biodivers. 2018, in press. J. Microbiol. Biotechnol. 2018, in press.

Synthetic compounds

Green chemistry approach

Tetrahedron Lett. 2012, *53*, 2129–2131 *RSC Adv.* 2014, *4*, 13708-13718 *Eur. J. Med. Chem.* 2015, 89, 1-12 *Angew. Chem. Int. Ed.* 2016, *55*, 3997-4001

WHO Report:

Tuberculosis is the ninth leading cause of death worldwide

♦ In 2016, there were an estimated 1.3 million tuberculosis deaths among HIV-negative people and an additional 374,000 deaths among HIV-positive people.

In 2016, an estimated 10.4 million people fell ill with tuberculosis

WHO Report:

- Drug-resistant tuberculosis is a continuing threat to the world community
- In 2016, there were 600,000 new cases with resistance to rifampicin drug
- In 2016, 490,000 cases had multidrug-resistant tuberculosis

Urgent need to find new effective drugs to battle multidrug-resistant tuberculosis

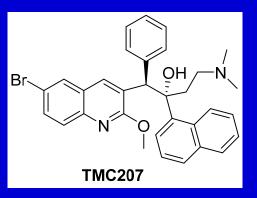
ข่าวเดลินิวส์ สถานีเดลินิวส์ บทความ หางาน สร้างเงิน

หน้าแรก / ข่าวเดลินิวส์ / ข่าวทั่วไทย

ยังพบ'วัณโรค'ในไทย มีผู้ป่วยรายใหม่กว่าแสนราย

"กรมควบคุมโรค" ห่วง "วัณโรค" ในไทย คาดมีคนป่วยรายใหม่กว่าแสนราย เร่งค้นหา เน้นกลุ่มเสี่ยง ผู้ต้องขัง คนขับ รถสาธารณะ พร้อมนำสู่การรักษา ชี้ รู้เร็วรักษาหาย ลดแพร่กระจาย ตั้งเป้ายุติโรคในปี 78

ศุกร์ที่ 17 มีนาคม 2560 เวลา 15.26 น.


In Thailand:

In 2016, there were 117,000 new cases
-with 4,700 cases with multidrug-resistant tuberculosis

Tuberculosis news in Thai newspaper:

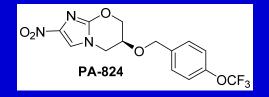
4 April 2018

 Few first-line drugs: isoniazid, rifampicin, ethambutol, pyrazinamide, and streptomycin
The last drug (rifampicin) approved for the treatment of tuberculosis was in 1960s

TMC207: Approved in 2012

◆TMC207 is not only the first anti-TB drug in four decades, but also a new anti-TB drug with a new mechanism of action

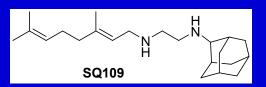
◆ Target: the proton pump of adenosine triphosphate (ATP) synthase of *Mycobacterium tuberculosis* Science 2005, 307(5707), 223-227

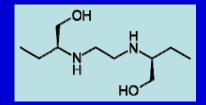


♦ Nitroimidazole

♦ Inhibits the synthesis of mycolic acids, a crucial component of the cell wall of the *Mycobacterium tuberculosis*

2014: Delamanid (OPC-67683) approved in European Commission for treatment of pulmonary MDR-TB in adult patients in the European Union -Also in Japan and Korea


Anti-TB drug candidates currently in clinical trials


Inhibition of mycolic acid biosynthesis

Inhibition of an early step in the initiation phase of protein synthesis

Inhibition of cell wall synthesis, targeting at a membrane transporter of trehalose monomycolate (MmpL3)

Ethambutol

An increasing number of MDR TB implies:

Mycobacterium tuberculosis may rapidly resist the new drugs that are redesigned from the existing chemical scaffolds of the currently used anti-TB drugs

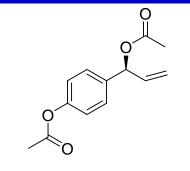
Therefore, the search for anti-TB agents with new chemical scaffolds is important for anti-TB drug development

Alpinia galanga Thai name "Kha" ₪ Edible plant: Tom Yum

This plant root is used as a spice only in Thailand

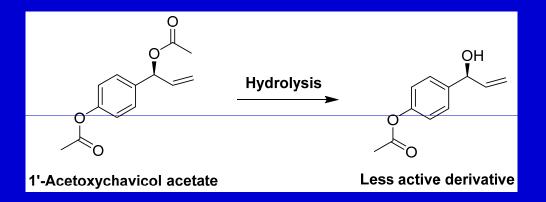
http://www.the-than.com/samonpai/P/9.html

Tom Yum Kung https://pairsu57.wordpress.com/2016/11/19/ด้มยำกู้งน้ำข้น/


Tom Kha Kai

https://food.mthai.com/food-recipe/81171.html

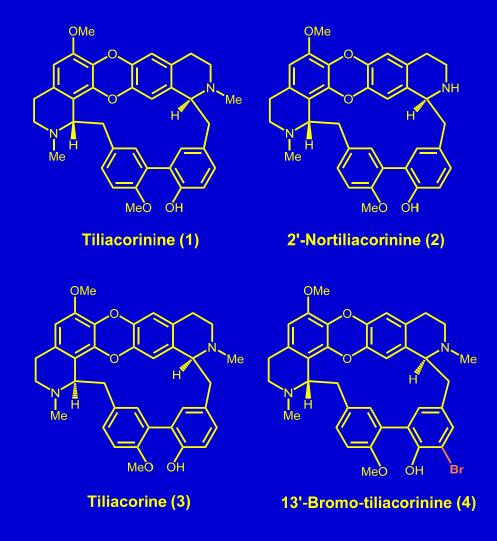
Alpinia galanga Thai name "Kha" ₪ Edible plant: Tom Yum


http://www.the-than.com/samonpai/P/9.html

1'-Acetoxychavicol acetate

Anti-tuberculosis activity against *Mycobacterium tuberculosis* MIC: 0.1-0.5 µg/mL

"1'-Acetoxychavicol acetate for tuberculosis treatment", US Patent no. 2002192262



Tiliacora triandra (Thai name: "Ya-Nang")

Leave: Edible, and used as food ingredient Root: Traditionally used to treat fever

Antimycobacterial activity of bisbenzylisoquinoline alkaloids from *Tiliacora triandra* against multidrug-resistant isolates of *Mycobacterium tuberculosis*

Antimycobacterial activity of bisbenzylisoquinoline alkaloids from *Tiliacora triandra* against multidrug-resistant isolates of *Mycobacterium tuberculosis*

Reference strains of <i>M.</i> tuberculosis	МІС	value (μ	g/ml) of a	alkaloids
	1	2	3	4
H37Ra	3.1	3.1	3.1	6.2
H37Rv	6.2	3.1	3.1	3.1
H37Rv-ETA-R ATCC 35830	3.1	6.2	3.1	3.1
H37Rv-PAS-R ATCC 35821	3.1	1.5	3.1	1.5
H37Rv-PZA-R ATCC 35828	6.2	6.2	6.2	3.1

H37Ra = Non-virulent strain; H37Rv = Virulent strain; H37Rv-ETA-R ATCC 35830 = Ethionamide resistant strain; H37Rv-PAS-R ATCC 35821 = *p*-Aminosalicylic acid resistant strain; and H37Rv-PZA-R ATCC 35828 = Pyrazinamide resistant strain

Antimycobacterial activity of bisbenzylisoquinoline alkaloids from *Tiliacora triandra* against multidrug-resistant isolates of *Mycobacterium tuberculosis*

Fifty-nine clinical isolates of multidrug-resistant Mycobacterium tuberculosis (MDR-TB)

MDR-TB isolates of <i>M. tuberculosis</i> (59 strains)	No. of strains		MIC value (μg/ml)				
		INH and RMP	EMB	SM	OFX		
INH, RMP	12	2-≥ 8	≤ 2	≤ 2	≤ 2		
INH, RMP, EMB	5	2-≥ 8	≥ 8	≤ 2	≤ 2		
INH, RMP, SM	23	2-≥ 8	≤ 2	≥8	≤ 2		
INH, RMP, EMB, SM	9	2-≥ 8	≥ 8	≥8	≤ 2		
INH, RMP, EMB, OFX	1	2-≥ 8	≥ 8	≤ 2	≥ 4		
INH, RMP, SM, OFX	1	2-≥ 8	≤ 2	≥ 8	≥ 4		
INH, RMP, EMB, SM, OFX	8	2-≥ 8	≥ 8	≥ 8	≥ 4		

MICs of isoniazid (INH), rifampin (RMP), ethambutol (EMB), streptomycin (SM), and ofloxacin (OFX) towards *Mycobacterium tuberculosis* isolates

Antimycobacterial activity of bisbenzylisoguinoline alkaloids from *Tiliacora* triandra against multidrug-resistant isolates of Mycobacterium tuberculosis

MDR-MTB isolates of *M. tuberculosis* No. of strains Tiliacorinine (1): No. of 2'-Nortiliacorinine (2): No. Tiliacorine (**3**): No. of 13'-Bromo-tiliacorinine isolates for which MIC of isolates for which MIC isolates for which MIC (**4**): No. of isolates for $(\mu g/ml)$ is: $(\mu g/ml)$ is: which MIC ($\mu g/ml$) is: $(\mu g/ml)$ is: 1.5 6.2 0.7 6.2 0.7 6.2 1.5 3.1 1.5 3.1 1.5 3.1 3.1 INH, RMP 12 2 6 4 2 7 3 _ 3 6 3 5 7 INH, RMP, EMB 5 5 4 1 _ 1 2 2 _ 5 _ _ 23 15 8 4 13 6 10 9 7 INH, RMP, SM _ 4 16 2 6 INH, RMP, EMB, SM 9 3 4 1 2 4 3 2 3 6 INH, RMP, EMB, OFX 1 1 1 1 1 _ INH, RMP, SM, OFX 1 1 1 1 1 2 INH, RMP, EMB, SM, OFX 8 1 5 2 5 3 4 2 4 4 59 6 37 18 31 9 18 24 25 Total 16 1 1 16 34

MICs of bisbenzylisoguinoline alkaloids for clinical multidrug-resistant isolates of *M. tuberculosis*

In general, four alkaloids gave the MIC value at 3.1 µg/ml against most multidrug-resistant mycobacterial isolates

Among the alkaloids tested, 13'-bromo-tiliacorinine (4) showed the MIC values at 1.5 (against 25 isolates) and 3.1 (against 34 isolates) µg/ml

Cytotoxicity toward normal cell line (MRC-5 cells):

Natural alkaloids 1-3: IC₅₀ values of 3.13-3.87 µg/ml Bromo derivative 4: IC₅₀ value of 20.0 µg/ml

6.2

_

Antimycobacterial activity of natural products and synthetic agents: pyrrolodiquinolines and vermelhotin as anti-tubercular leads against clinical multidrug resistant isolates of *Mycobacterium tuberculosis, Eur. J. Med. Chem.* 2015, *89*, 1-12 SCOPUS Citation: 33 times

Antimycobacterial activity:

-Various classes of natural products

-Synthetic compounds prepared by green chemistry approaches

The Twelve Principles of Green Chemistry

- 1. **Prevention**. It is better to prevent waste than to treat or clean up waste after it is formed.
- 2. Atom Economy. Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product.
- 3. Less Hazardous Chemical Synthesis. Whenever practicable, synthetic methodologies should be designed to use and generate substances that pose little or no toxicity to human health and the environment.
- 4. **Designing Safer Chemicals**. Chemical products should be designed to preserve efficacy of the function while reducing toxicity.
- 5. Safer Solvents and Auxiliaries. The use of auxiliary substances (e.g. solvents, separation agents, etc.) should be made unnecessary whenever possible and, when used, innocuous.
- 6. **Design for Energy Efficiency**. Energy requirements of chemical processes should be recognized for their environmental and economic impacts and should be minimized. If possible, synthetic methods should be conducted at ambient temperature and pressure.

- 7. Use of Renewable Feedstocks. A raw material or feedstock should be renewable rather than depleting whenever technically and economically practicable.
- 8. **Reduce Derivatives**. Unnecessary derivatization (use of blocking groups, protection/ deprotection, temporary modification of physical/chemical processes) should be minimized or avoided if possible, because such steps require additional reagents and can generate waste.
- 9. **Catalysis**. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents.
- 10. **Design for Degradation**. Chemical products should be designed so that at the end of their function they break down into innocuous degradation products and do not persist in the environment.
- 11. **Real-Time Analysis for Pollution Prevention**. Analytical methodologies need to be further developed to allow for real-time, in-process monitoring and control prior to the formation of hazardous substances.
- 12. Inherently Safer Chemistry for Accident Prevention. Substances and the form of a substance used in a chemical process should be chosen to minimize the potential for chemical accidents, including releases, explosions, and fires.

Anastas and Eghbali, Chem. Soc. Rev. 2010, 39, 301-312

2018 Green Chemistry Challenge Awards

• Two winners optimized *manufacturing processes for HIV drugs*. Synthesis of doravirine and nevirapine. By using a common solvent for several transformations, the teams avoided multiple intermediate isolations, and increased their chemical yields. "In both cases, the *environmentally sustainable processes* that were developed were also more economically attractive, which *allowed a significant reduction in the cost of the drug*"

https://cen.acs.org/environment/green-chemistry/2018-Green-Chemistry-Challenge Awards/96/web/2018/10?utm_source=Newsletter&utm_medium=Newsletter&utm_campaign=CEN An Organocatalyst from Renewable Materials for the Synthesis of Coumarins and Chromenes: Three-Component Reaction and Multigram Scale Synthesis

Green chemistry: Renewable materials

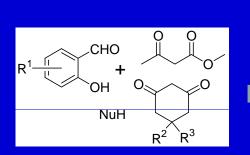
Tendon hydrolysate: Oganocatalyst

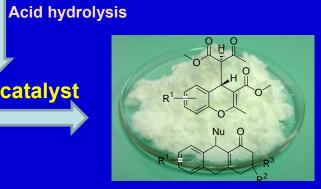
Amino acids play an important role as organocatalysts for various reactions (*Chem. Rev.* 2007, 107, 5471-5569; *Org. Biomol. Chem.* 2008, 6, 2047-2053)

Tendons are composed of various collagen fibers, which are proteins rich in hydroxyproline and proline (*Biochem. Biophys. Res. Commun.* 1973, 52, 106-114; *Biochem. J.* 1974, 1 39, 461-468)

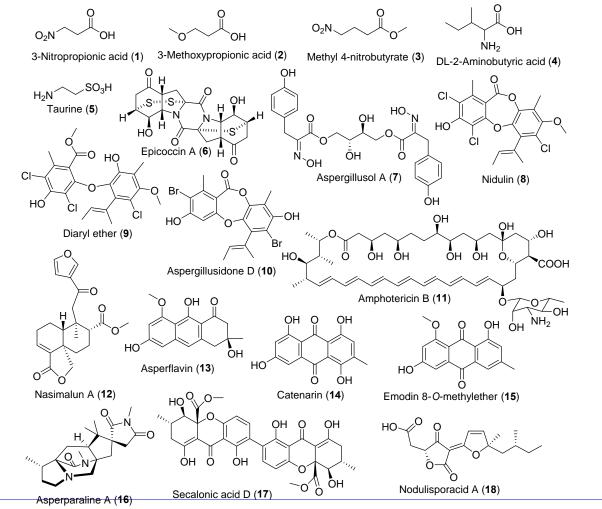
L-Proline and hydroxyproline are robust organocatalysts for many reactions (J. Am. Chem. Soc. 2000, 122, 2395-2396; Nature 2008, 455, 304-308; Org. Lett. 2006, 8, 4653-4655)

RSC Advances 2014, 4, 13708-13718

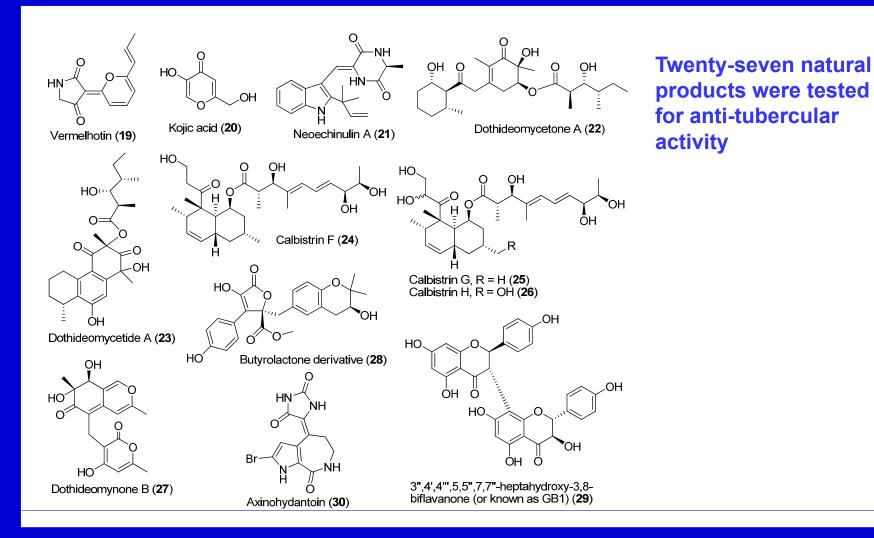

An Organocatalyst from Renewable Materials for the Synthesis of Coumarins and **Chromenes: Three-Component Reaction and Multigram Scale Synthesis**



Bovine tendons


Solvent-free conditions or **Three-component reaction**

Organocatalyst


Multigram scale synthesis

RSC Advances 2014, 4, 13708-13718

Twenty-seven natural products were tested for anti-tubercular activity

Eur. J. Med. Chem. 2015, 89, 1-12

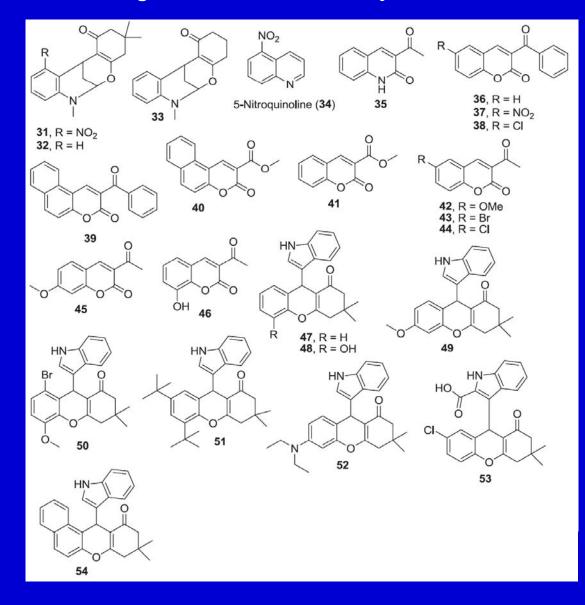
Eur. J. Med. Chem. 2015, 89, 1-12

Vermelhotin

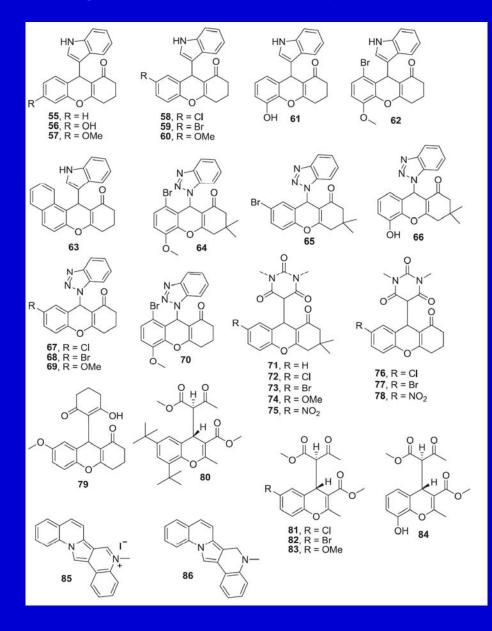
Isolated from an unidentified fungus CRI247-01 Phytochemistry 2008, 69: 2621-2626

Reference strains of <i>M</i> . tuberculosis	MIC value (µg/mL) of vermelhotin
H37Ra	3.1
H37Rv	6.2
H37Rv-ETA-R ATCC 35830	3.1
H37Rv-PAS-R ATCC 35821	3.1
H37Rv-PZA-R ATCC 35828	6.2

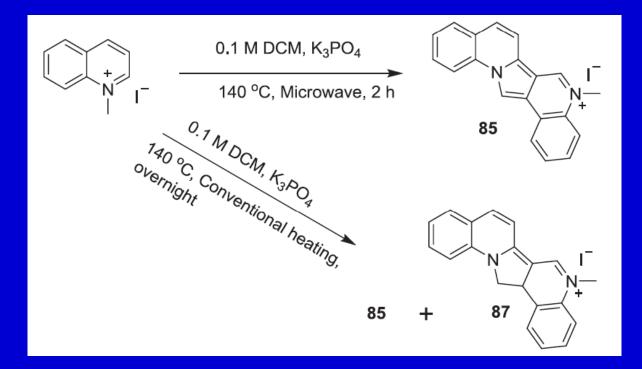
H37Ra = Non-virulent strain; H37Rv = Virulent strain; H37Rv-ETA-R ATCC 35830 = Ethionamide resistant strain; H37Rv-PAS-R ATCC 35821 = *p*-Aminosalicylic acid resistant strain; and H37Rv-PZA-R ATCC 35828 = Pyrazinamide resistant strain



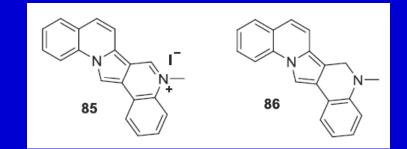
Vermelhotin

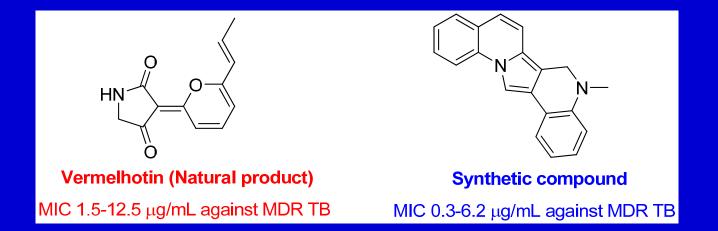

MDR TB isolates of <i>M</i> .	No. of	Vermelhotin : No. of isolates					
tuberculosis	strains	for w	for which MIC (µg/mL) is:				
		1.5	3.1	6.2	12.5		
INH, RMP	12	-	4	6	2		
INH, RMP, EMB	5	-	3	2	-		
INH, RMP, SM	23	1	11	10	1		
INH, RMP, EMB, SM	9	-	4	5	-		
INH, RMP, EMB, OFX	1	1	-	-	-		
INH, RMP, SM, OFX	1	-	1	-	-		
INH, RMP, EMB, SM, OFX	8	-	4	3	1		
Total	59	2	27	26	4		

Isoniazid (INH); rifampin (RMP); ethambutol (EMB); streptomycin (SM); ofloxacin (OFX)


Eur. J. Med. Chem. 2015, 89, 1-12

Eur. J. Med. Chem. 2015, *89*, 1-12




Eur. J. Med. Chem. 2015, 89, 1-12

MDR-TB isolates of <i>M. tuberculosis</i>	No. of strains	Compound 85 : No. of isolates for which MIC (μ g/mL) is:				Compound 86 : No. of isolates for which MIC (μ g/mL) is:					
		0.3	0.7	1.5	3.1	6.2	0.3	0.7	1.5	3.1	6.2
INH, RMP	12	2	1	3	6	_	2	1	2	7	_
INH, RMP, EMB	5	1	_	2	1	1	1	_	2	1	1
INH, RMP, SM	23	1	3	9	7	3	1	3	11	7	1
INH, RMP, EMB, SM	9	_	2	1	5	1	1	2	1	3	2
INH, RMP, EMB, OFX	1	_	_	_	1	_	_	_	_	1	_
INH, RMP, SM, OFX	1	_	_	_	1	_	_	_	1	_	_
INH, RMP, EMB, SM, OFX	8	_	_	2	5	1	_	_	3	4	1
Total	59	4	6	17	26	6	5	6	20	23	5

MIC values of compounds **85** and **86** for clinical multidrug-resistant isolates of *M. tuberculosis*.

Eur. J. Med. Chem. 2015, *89*, 1-12

Eur. J. Med. Chem. 2015, *89*, 1-12

Acknowledgements

 The Center of Excellence on Environmental Health and Toxicology (EHT), Science & Technology Postgraduate Education and Research Development Office (PERDO)

The Thailand Research Fund (TRF)

♥My students (M.Sc. and Ph.D. students)

Thank you for your attention