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Understanding relationships is critical
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Relationships
“Surprisingly powerful correlation between chocolate intake per capita and the number of p g y p p p
Nobel laureates in various countries…”

Messerli NEJM 2012

“…it seems most likely that in a dose-dependent way, chocolate intake provides the 
abundant fertile ground needed for the sprouting of Nobel laureates…”



Causality?
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Association vs causalityy
• Hill’s criteria 

– Strength of association 
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– Specificity of the agent in eliciting a particular effect
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Counterfactual outcomes



What is causal inference?
• Individual causal effects cannot be identified
• Aim is to derive average causal effect in a 

populationpopulation
• Ideal experiment – Randomised controlled 

trial 

Hernan and Robins, Causal Inference, 2018
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Conventional methods of analysesy
Intention to treat
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Causal inference methods
• Instrumental variable

C f dConfounders

Intervention EffectRandomization

Assesses how instrument is related to intervention and the outcome, then uses that to 
understand how the exposure predicts the outcomeunderstand how the exposure predicts the outcome



Causal inference methods
• Inverse probability weighting 

– estimate the probability of the intervention for a particular 
person, and using the predicted probability as a weight

• Matching 
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In the presence of unobserved confounders
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Summaryy
• Causal inference is a ‘paradigm shift of mind 

over data’
• Requires clarity in causal pathways• Requires clarity in causal pathways 
• Potential for harnessing observational data to 

establish causality 



Thank you!y
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