

## Impact of Biomass Combustion on Indoor Air Quality in Developing Countries

2018 12 13

KIYOUNG LEE GRADUATE SCHOOL OF PUBLIC HEALTH SEOUL NATIONAL UNIVERSITY

# What Does Mars Sound Like? InSight Just Recorded Martian Wind





### In Earth

• Population using solid fuel (%) at 2010



The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Data Source: World Health Organization Map Production: Public Health Information and Geographic Information Systems (GIS) World Health Organization



(WHO, 2014)

• When solid fuel is incompletely burned in the room, indoor air pollutants such as  $PM_{2.5}$  and volatile organic compounds may occur at a high concentration.



### Impact of solid fuels

• Indoor air pollution (IAP) resulting from solid fuels which burn in open fires or simple stoves is a major threat to health of residents.



Burden of disease attributable to selected environmental risk factors (% DALYs in each subregion)

• <u>Women and vulnerable groups, including children and the elderly</u> who spent most of their time in the house had higher health risk.



#### Biomass Combustion in Developing Countries in ASIA

- More than 50% of those living in developing countries rely on biomass fuel.
- The major sources of domestic biomass fuels are wood, dung, and crop residue.
- Biomass fuels are often burnt without a proper ventilation system -> causing indoor air quality problems.
- WHO recommends that **unprocessed coal** should not be used in residence.



### Cow Dung as Fuel





#### Experimental Methods





#### PM emission factor

|                              | 15 kW/m <sup>2</sup><br>(Ignition<br>stage) | 25 kW/m <sup>2</sup> | 50 kW/m <sup>2</sup><br>(burning<br>stage) |
|------------------------------|---------------------------------------------|----------------------|--------------------------------------------|
| PM <sub>2.5</sub><br>(mg/kg) | 1309                                        | 589                  | 41                                         |
| PM <sub>10</sub><br>(mg/kg)  | 3476                                        | 589                  | 43                                         |

If the typical amount of dried cow dung for each meal preparation is assumed to be 0.7 kg, 30 mg of  $PM_{10}$  could therefore be generated (based on 50 kW/m<sup>2</sup>). Most of them were  $PM_{2.5}$ .



#### VOCs emission factors

|                        | EF (mg/kg)     |                  |                |
|------------------------|----------------|------------------|----------------|
| heat flux (kWm²)       | 15             | 25               | 50             |
| Methylchloride         | 114.3 ± 32.2   | $29.6 \pm 23.4$  | NA             |
| 1,3-butadiene          | 116.9 ± 27.4   | 143.0 ± 30.9     | 85.7 ± 2.3     |
| Acetone                | 1420.1 ± 99.0  | 1522.0 ± 25.5    | 277.5 ± 4.4    |
| Vinyl acetate          | 229.2 ± 28.7   | $454.8 \pm 18.2$ | 81.1 ± 0.7     |
| Methyl ethyl ketone    | 471.0 ± 14.1   | $471.3 \pm 20.5$ | 61.9 ± 1.4     |
| Hexane                 | 69.5 ± 3.6     | 77.6 ± 1.4       | 8.0 ± 0.2      |
| Benzene                | 312.5 ± 9.5    | 372.6 ± 6.5      | 154.8 ± 1.1    |
| Heptane                | 60.9 ± 2.3     | 101.9 ± 63.9     | 19.3 ± 0 .3    |
| Methyl isobutylketone  | $20.0 \pm 0.9$ | $16.7 \pm 0.8$   | 5.3 ± 0.1      |
| Toluene                | 495.3 ± 7.5    | 607.0 ± 5.2      | 121.5 ± 3.3    |
| Ethylbenzene           | 67.5 ± 0.6     | 83.8 ± 1.7       | 19.6 ± 0.1     |
| m,p-Xylene             | 88.7 ± 1.1     | 113.3 ± 2.4      | $27.5 \pm 0.1$ |
| Styrene                | 119.0 ± 2.1    | 160.6 ± 2.9      | $42.1\pm0.4$   |
| o-Xylene               | $42.7 \pm 0.3$ | 55.2 ± 1.0       | $13.4 \pm 0.1$ |
| 1,2,4-Trimethylbenzene | $21.6 \pm 0.6$ | $27.5 \pm 0.7$   | $11.1 \pm 0.0$ |
| Benzyl chlororide      | 35.3 ± 3.1     | 35.9 ± 2.7       | $27.0\pm0.7$   |
| 1,2,4-Trichlorobenzene | 23.7 ± 20.5    | NA               | NA             |



#### Cancer implication

- If the amount of dried cow dung used for the preparation of each meal is 0.7 kg, 108–261 mg of benzene can be generated. With a typical kitchen volume of 50 m<sup>3</sup>, the benzene concentration could reach 2.17–5.22 mg/m<sup>3</sup> (0.68–1.6 ppm) without ventilation.
- This level is higher than the occupational exposure standards of 0.5 ppm [ACGIH threshold limit value time-weighted average (TLV TWA)] and 0.1 ppm [NIOSH recommended exposure limit (REL) TWA].



### Air pollution in Mongolia





#### Background

• Ger, traditional dwelling of Mongolian is a one-room type house without a window and used individual stoves to heat and cook.





#### Observation

• Solid fuel Usage Pattern



**Traditional Stove** 



**Improved Stove** 



Other fuel included plastic, tire piece, vinyl, garbage etc.

The amount of fuel usage : 8758±4155 g during day time (N=26)



#### PM emission factor of coal samples

|                              | Alag Tolgoi<br>(coal 1) | Baganuur<br>(coal 2) | Nalaikh<br>(coal 3) |
|------------------------------|-------------------------|----------------------|---------------------|
| PM <sub>1.0</sub><br>(mg/kg) | 1,002.5 ± 422.1         | 822.8 ± 504.6        | 461.2 ± 56.0        |
| PM <sub>2.5</sub><br>(mg/kg) | 1,043.5 ± 458.0         | 892.7 ± 545.5        | 471.5 ± 57.0        |
| PM <sub>10</sub><br>(mg/kg)  | 1,122.9 ± 135.4         | 958.1 ± 584.0        | 472.0 ± 57.1        |

Combustion stage only



### VOC emission factor (mg/kg)

| Compounds              | Alag Tolgoi | Baganuur    | Nalaikh     |
|------------------------|-------------|-------------|-------------|
|                        | (coal 1)    | (coal 2)    | (coal 3)    |
| Acetone                | 88.6±17.2   | 161.5±68.9  | 158.2±88.5  |
| Isopropyl alcohol      | 88.1±4.1    | 103.6±14.2  | 89.3±26.9   |
| Methyl ethyl ketone    | 66.1±30.0   | 125.8±54.6  | 151.7±134.4 |
| Tetra hydrofuran       | 78.8±15.4   | 132.9±5.1   | 115.8±32.2  |
| Benzene                | 105.1±27.8  | 180.2±134.9 | 79.8±20.7   |
| Toluene                | 102.7±13.7  | 152.2±128.2 | 98.7±58.2   |
| m,p-xylene             | 49.3±6.8    | 73.5±60.5   | 59.8±38.4   |
| Heptane                | 43.4±3.4    | 34.4±23.6   | 22.7±9.4    |
| o-xylene               | 26.8±4.2    | 29.4±22.8   | 21.9±13.1   |
| Ethylbenzene           | 19±1.8      | 33.5±24.6   | 19.6±11.6   |
| 1,2,4-Trimethylbenzene | 22.6±4.6    | 23.2±11.3   | 21.6±11.5   |

#### PM<sub>2.5</sub> by stove type



30 Minutes average of PM<sub>2.5</sub> concentrations by stove types



## Factors of PM<sub>2.5</sub> profile



Time



#### Conclusion

- Use of biomass in indoors can cause serious indoor air pollution.
- Dung combustion can cause high benzene concentration.
- Unprocessed coal combustion in Mongolia can cause serious indoor and outdoor air pollution.
- Other fuels may be more serious problem.
- Application of improved stove needs evaluation in lab and field.



#### References

- Park, D., Barabad, M.L., Lee, G., Kwon, S-B., Cho, Y., Cho, K. and Lee, K.\* (2013, 11) "Emission Characteristics of Particulate Matters and Volatile Organic Compounds in Cow Dung Combustion" *Environmental Science & Technology* 47(22): 12952-12957.
- Barabad, M.L.M., Jung, W., Versoza, M., Lee, Y., Choi, K., Park, D., Lee, K., (2018,8) "Emission Characteristics of Particulate Matter, Volatile Organic Compounds and Trace Elements from Combustion of Coals Used in Mongolian Residence" *International Journal of Environmental Research and Public Health* 15, 1706. doi:10.3390/ijerph15081706
- Lim, M., Myagmarchuluun, S., Ban, H., Hwang, Y., Ochir, C., Lodoisamba, D., Lee, K. (2018, 11) "Characteristics of Indoor PM<sub>2.5</sub> Concentration in Gers using Coal Stove in Ulaanbaatar, Mongolia" *International Journal of Environmental Research and Public Health 15*(11), 2524; <u>https://doi.org/10.3390/ijerph15112524</u>
- Ban, H., Hwang, Y., Lim, M., Ochir, C., Lee, K. (2017) "Daytime Profile of Residential PM<sub>2.5</sub> Concentrations in a Ger, Traditional Residence in Mongolia, *The Korean Journal of Public Health* 54(1): 23-30.

