INVESTIGATION OF Kdr MUTATION IN DENGUE VECTOR Aedes aegypti CYPERMETHRIN-RESISTANT FROM DENGUE ENDEMIC AREA IN MEDAN CITY, NORTH SUMATERA

PROVINCE, INDONESIA

Background

In 2017, dengue affected > 1200 people in Medan City.
Cypermethrin insecticide, the most common used in dengue vector control and Its resistance status and molecular mechanism has not been reported

Objective

Investigating resistance status of *Ae. aegypti* againts cypermethrin and detection of kdr mutation in *Ae. aegypti* VGSC gene

Conclusion

Kdr Mutation were found in population of *Ae. aegypti* resistant and susceptible to cypermethrin from dengue endemic areas in Medan.

Discussion

- **S989P** : Generally associated with V1016G/I.
- □ V1016G : Commonly found in Asia and has been reported in Indonesia. Related to resistance pyretroid type II.
- □ **F1534C** : Distributed worldwide. Related to resistance pyrethroid type I.
- □ Combine Kdr Mutation : S989P+V1016 on DII S6 and F1534C on DIII S6 of VGSC gene are related to pyrethroid type I and II.

Eradication of mosquito breeding site by '1 house 1 Jumantik' is one of the family members living in one house who is assigned to do monitoring larva periodically.

Solution

References

UNIVERSITAS

CDC. 2011. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. Atlanta ; CDC

Hirata, K., et al. 2014. A Single Crossing-Over Event in Voltage-Sensitive Na + Channel Genes May Cause Critical Failure of Dengue Mosquito Control by Insecticides, 8(8). https://doi.org/10.1371/journal.pntd.0003085

Dhiman, S., et al. 2014. Insecticide susceptibility and dengue vector status of wild Stegomyia albopicta in a strategically important area of Assam, India, 1–5.

Hu, Z., et al. 2011. A sodium channel mutation identi fi ed in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids. *Insect Biochemistry and Molecular Biology*, *41*(1), 9–13. https://doi.org/10.1016/j.ibmb.2010.09.005

Plernsub, S., et al. 2016. Additive effect of knockdown resistance in a heterozygous genotype conferring pyrethroid resistance in Aedes aegypti in Thailand. *Parasites & Vectors*, 1–7. https://doi.org/10.1186/s13071-016-1713-0

LOCALLY ROOTED, GLOBALLY RESPECTED

ugm.ac.id

