Malaria and the heritability of being infectious

Whose fault is it anyway?

Rick Paul & Anavaj Sakuntabhai Laboratory of the Genetics of the Human Response to Infection

Copyright: TDR/Wellcome Trust With slight modification

Why gametocytes?

Who & how many?

•Feasibility of targeted intervention

•Re-evaluation of vaccine strategy using Integrated Control Program

Why gametocytes?

Who & how many?

Feasibility of targeted intervention

•Re-evaluation of vaccine strategy using Integrated Control Program What risk factors? (genetic or otherwise)

•Devept novel approaches based on transmission not disease

Why gametocytes?

Understand parasite exploitation of host through its need to transmit

Ross-Macdonald model of malaria (simplified form)

 R_0 : the number of secondary cases arising from a single primary case in a naive population.

 $\underline{ma^2bc}$

 R_0 : the number of secondary cases arising from a single primary case in a naive population.

The primary case remains infected for a period of $1/\gamma$ days.

 $\underline{ma^2bc}$

 R_0 : the number of secondary cases arising from a single primary case in a naive population.

The primary case remains infected for a period of $1/\gamma$ days.

During this time, this 1° case will be bitten (am/γ) times and a proportion c will infect the biting mosquitoes

giving (amc/γ) infected mosquitoes.

 ma^2bc

 R_0 : the number of secondary cases arising from a single primary case in a naive population.

The primary case remains infected for a period of $1/\gamma$ days.

During this time, this 1° case will be bitten (am/γ) times and a proportion *c* will infect the biting mosquitoes

giving (amc/γ) infected mosquitoes.

Each of these mosquitoes lives $(1/\mu)$ days and makes a total number (ab/μ) infectious bites in her lifetime.

 ma^2bc

 R_0 : the number of secondary cases arising from a single primary case in a naive population.

The primary case remains infected for a period of $1/\gamma$ days.

During this time, this 1° case will be bitten (am/γ) times and a proportion c will infect the biting mosquitoes

giving (amc/γ) infected mosquitoes.

Each of these mosquitoes lives $(1/\mu)$ days and makes a total number (ab/μ) infectious bites in her lifetime.

The number of secondary cases is thus $(abl \mu)$ $(amcl \gamma)$

 ma^2bc

Transmission and infection is dynamic

Transmission and infection is dynamic

The effect of « c » on the prevalence of infection

The effect of « c » on the prevalence of infection

Risk factors for gametocyte carriage

1. Anaemia

- 2. Hyperparasitaemia
- 3. Reaction to antimalarial drug treatment

All in symptomatic infections

Gametocytes in asymptomatic infections

1. No acquired immunity to gametocytes (only to gametes – transmission-blocking vaccines)

- 2. No real decrease with age and exposure
- 3. Seasonal variations

Genetic predisposition to carry gametocytes?

Perry (1914) Madras

Dombo people vs. Pojoras

- Dombo are recent immigrants
- Dombo suffer more clinically
- Dombo have increased spleen rates

<16yr old

	Prev Rate (%)
Dombos	51
Pojoras	78

%infections with gametocytes 5 41

Genetic effect: estimation of heritability

Variance components

 $\begin{array}{ll} H_0: & Vp = Ve \\ H_1: & Vp = Ve + Vg \end{array}$

statistic

 χ^2 , df 1 = 2Ln (L1/L0)

Vp = variation of phenotype Ve = variation due to environment Vg = variation due to genetics (additive)

Heritability = Vg/Vp

Family-based longitudinal cohort studies

Study Populations

Population

Dielmo, Senegal

Ndiop, Senegal

 N
 Nuclear families

 589
 190

 644
 208

Suanpung, Thailand

3484 603

Collection of phenotypes

Intensive survey period

Blood smear regardless of symptomsDielmo:twice weekly from June-September (1990)Ndiop:once-twice weekly for 1 year (1992)

Suanpung, Thailand: once a month for 2 years (1994-1996)

Follow up period Record clinical malaria attacks

Dielmo:1990-1999Ndiop:1992-2000

Suanpung, Thailand: 1998-2005

% variability in the proportion of infections that have gametocytes explained by « environmental » and genetic (heritability) factors (1)

% variability in the proportion of infections that have gametocytes explained by « environmental » and genetic (heritability) factors (2)

% variability in the proportion of infections that have gametocytes explained by « environmental » and genetic (heritability) factors (3)

Thailand: (virtually) all infections lead to symptomatic episodes

Correlation of asymptomatic gametocyte prevalence & other parasite phenotypes

Strong positive correlation with asymptomatic as exual parasite density $r^2=0.51 p<0.0001$ Ndiop and $r^2=0.3 p<0.0001$ Dielmo

But heritability greater for gametocyte phenotypes (prevalence or density) than for asexual parasite density (heritability 30-40% vs. ~20%)

& asexual parasite density explain only 0.1% variation in gametocyte prev.

Conclusions

- Very high heritability for gametocyte carriage
 - biology behind correlation with other phenotypes
 - genome scan & candidate gene selection

Absence in symptomatic

- short duration of infection?....
- differing biological (human) stimuli

Acknowledgement

Our collaborators:

 P. Singhasivanon,
 Faculty of Tropical Medicine, Mahidol University, Thailand

A. Tall,
 Institut Pasteur de Dakar, Senegal

& the participants of the study cohorts in Thailand and Senegal

