Making Dengue a Vaccine Preventable Disease

Harold S. Margolis, MD, FAAP

Joint International Tropical Medicine Meeting (JITMM) Bangkok, Thailand October 13, 2008

Dengue Vaccines

Where are We Today ?

No vaccine licensed

- High levels of country interest
- Low levels of awareness about dengue vaccine development by "vaccine community"
- Strong vaccine 'pipeline'— a number of candidates
- Candidates in different stages of evaluation
- No large-scale clinical trials

Dengue Vaccines – Feasible

Type-specific dengue virus (DENV) infection confers protection against disease

Can produce candidate vaccines

Dengue Vaccines – Challenges

Tetravalent formulation

Interference - live vaccines

- Less than ideal diagnostic tests and assays
 acute illness
 - -measure of protection / correlate of protection
- Evaluation Efficacy and Safety
 - Protection against multiple dengue virus (DENV) types
 - -Wide spectrum of ages
 - Disease occurs in both hemispheres
 - Safety theoretical potential for immune enhanced disease (ADE / DHF)

Types of Dengue Vaccine Candidates

- Cell culture adapted, live attenuated viruses
- Infectious clones
 - -chimeric viruses
 - attenuation by site directed mutagenesis
- Recombinant subunits of DENV envelope proteins
- Inactivated dengue viruses
- DNA and DNA shuffling

The PDVI Dengue Vaccine Portfolio

Vaccines in Commercial Development

Developer	Partner	Approach		
	Live Attenuated			
WRAIR	GSK	Cell culture passage		
Acambis	Sanofi Pasteur	Yellow fever – Dengue chimera		
NIH	Biological E Butantan Banacoa	Dengue 4 - dengue chimeras and gene deletion		
CDC	InViragen/Shantha	Dengue 2- dengue chimeras		
	Subunit			
HBI	Hawaii Biotech (HBI)	Envelope + NS1 recombinant		

Why Multiple Candidate Vaccines ?

No assurance that any one vaccine will be successful in a efficacy trial

Availability of multiple vaccines is more likely to ensure:

- An affordable vaccine

 Sustained and sufficient availability of product

Status of Dengue Vaccines

	Producer	Process Development	Evaluation		
Developer			Phase 1	Phase 2	Phase 2b
Acambis	SanofiPasteur				2009 ?
WRAIR	Glaxo SmithKline				2009 ?
				? 2009 Tetravalent	
- NIH -	Biological E		? Late 2009		
	Butatan		? Late 2009		
	Panacea		?		
CDC	InViragen / Shantha		Mid -2009		
Hawaii Biotech	Hawaii Biotech		Mid-2009		

Vaccine Evaluation – Needs

- Multiple sites in Asia and the Americas
- Laboratory-based dengue fever incidence data
- Population-based, fever surveillance to identify cases over a wide range of ages
- Comparable case definitions and laboratory testing algorithms and methods
- GCP monitoring for surveillance
- GLP with internal and external quality control

PDVI Field Site Consortium

- Population-based fever surveillance
- Reliable estimates of dengue disease incidence/ disease burden
- State-of-the-art dengue diagnostics
- Comparable case definitions
- Clinical care for dengue disease
- Conducted under GCP / GLP
- Sites funded by multiple sources

Field Site Consortium, 2008

"Guidelines for Clinical Evaluation of Dengue Vaccine in Dengue Endemic Populations"

Issue	Recommendation		
Disease (DF) identification	Fever surveillance		
1° end-point (statistical)	Dengue fever (fever + viremia)		
2° end-points (descriptive)	Severe dengue (DHF)		
Correlate (s) of protection	Post-hoc analysis (PRNT <u>+</u> other assays)		
Protection against multiple DENV types	Statistical endpoint likely only for single DENV type in any one site.		
Antibody response	Sample of participants for short and long- term follow-up (up to 5 yrs)		
Safety	Cohort to remain blinded for 3-5 yrs (no crossover) + expanded trials		

Diagnostics: Evaluation of Vaccine Preventable Diseases

Diagnosis of infection / disease

- Clinical diagnosis / management
- Epidemiologic studies (e.g., disease burden, natural history)
- Clinical trials (Phase IIb, Phase III, post- Phase III)
- Surveillance
- **Response to vaccination**
 - Clinical trials (correlates of protection)
 - Post-vaccine introduction surveillance
 - Long-term protection ("immune memory")

Dengue Diagnostics Initiative

To make available dengue diagnostic tests and assays so that:

- Individuals with dengue can be accurately and effectively diagnosed to receive treatment
- Public health officials will have reliable epidemiologic information on dengue

Individuals can have access to safe, effective and affordable vaccines

Objectives

- **Create an enabling environment** to support development, evaluation, manufacture, introduction and use of improved diagnostic tests and assays
- Develop and ensure wide availability and appropriate use of affordable and accurate diagnostic tests for acute dengue for: 1) use in clinical and reference laboratories, 2) point-of-care (POC) settings, and 3) for evaluation of dengue vaccines
- Develop and produce standardized assays to measure serotype-specific protective and enhancing antibody to dengue virus (DENV) infection for dengue vaccine evaluation

What are the Needs ?

- Accurate diagnosis of dengue on a <u>single</u> <u>specimen</u> during the early phase of illness (days 1-5)
- Minimal cross-reaction with other DENV or Flavivirus infections (e.g., JE, YF, WNV)
- Virus detection probably best
- Accurate measure of protective DENV antibody
- Vaccine trials and epidemiologic studies
- Replace the plaque reduction neutralization test (PRNT)

Thank You

