

By

Update on New Chimerix JE Vaccine

Associate Professor of Pediatrics

Division of Infectious Diseases, Department of Pediatrics,

Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok, Thailand

Conflict of Interest

 An investigator of a clinical trial of ChimeriVax[™] in children (JE01) at Siriraj Hospital, Bangkok, Thailand

Geographic Distribution of Japanese Encephalitis

3 billion people live in JE endemic area

Culex spp.

http://wwwn.cdc.gov/travel/yellowBookCh4-JapaneseEncephalitis.aspx

Vaccines In Use for Large Scale

- Mouse brain-derived killed vaccine (the most widely used in this region)
 - Efficacy 91% (Hoke CH 1988)
 - Safety concern: urticaria, angioedema, (18-64/10,000 doses) and ADEM (1:100,000)
 - Require 3 doses for 1ry series and booster doses
- Live Attenuated SA 14-14-2 (CD.JEVAX[™])
 - Produced on primary hamster kidney cells
 - Efficacy 95-100% (Vaccine 2000;18:1-25, Lancet 2001;358:791-5, Lancet 2005;366:1375-8)
 - Safe (JID 1997;176:1366-9)
 - Require 2 doses (3-12 months apart)

The New JE Vaccine in The Horizon

- Chimeric attenuated Vaccine (ChimeriVax-JE[™], JE-CV)
 - Premembrane (prM) and envelope (E) protein gene of attenuated SA 14-14-2 replace the corresponding sequences in 17D yellow fever vaccine virus
 - Single dose administration

Chimeric Live-Attenuated Vaccine

- Combining genes from different flaviviruses has been shown to further increase the attenuation of the donor sequences^{*} Pugachev et al (2007) Vaccine 25:6661-6671; McGee et al (2007)
- JE-CV is a live-attenuated vaccine based on :

Structural proteins of JE liveattenuated SA14-14-2 virus Replication engine (NS proteins) of the Yellow Fever 17D strain

The prototype vaccine is ChimeriVax-JE (developed by Acambis and St Louis University in 1997)

http://www.who.int/vaccine_research/documents/Vector_Borne_Viral_Infections.pdf

Origin & Passage History of SA-14-14-2

- SA 14, wild-type parent virus, was isolated from a pool of *Culex pipiens* larvae by 11 passages cultivation in mouse brain
- Further passages in mice and plaque purifications led to the 14-14-2
- The SA 14-14-2 strain was neuro-attenuated and was immunogenic
- The SA 14-14-2 is also used for the live attenuated vaccine

JE-CV Construction*

Chimerix vaccine comprises the prM and E coding sequences of JEV SA-14-14-2 strain inserted into the 17D YFV strain genome

*Chimerivax[™] technology, Acambis

Recovery of JE-CV Virus

Worrisome for Serious Adverse Events Following Yellow Fever Vaccination

- Yellow fever vaccine is live attenuated based on 17D strain developed since 1937
- Very serious AE may occur around 1/25 million doses
 - 27 cases of neurotropic disease (post vaccination encephalitis) reported from 1945
 - 12 cases viscerotropic disease (multiple organ system failure) reported from 1996
- Onset: 1-6 days for viscerotropic, 4-23 days for neurotropic disease
- Most likely from aberrant host response

MMWR 2002; 51:989-993; WHO. Wkly Epidemiol Rec 2001;76:217-224

JE-CV Pre-Clinical Safety

- Neurovirulence (IC inoculation)
 - Less neurovirulent than YF 17D vaccine virus (mice, monkeys)
- Neuroinvasiveness (IP inoculation)
 - Not neuroinvasive (mice, hamsters, monkeys)
- Viremia
 - Low, transient viremia (monkeys)
- Extraneural pathology
 - No organ dysfunction (monkeys)
 - No histopathological lesions (monkeys)

Monath et al (1999) Vaccine 17:1869; Monath et al (2000) J Virol 74:1742; Guirakhoo et al (1999) Virology 257:363; Arroyo et al (2001) J Virol 75:934; Monath et al (2005) Biologicals 33:131

Neurovirulence for Monkeys At 30 days **IC** inoculation >10 monkeys/ group IC inoculation > 5,000 mouse LD50 YF 17D vaccine <10% developed encephalitis Wild-type YF, WN, JE ChimeriVax™ -vaccines

Mouse Neurovirulence Test*

- Mouse NV test cannot be used for evaluation of YF vaccines because this vaccine is lethal for adult mice inoculated the IC route with as low as 1.6 logs PFU/LD₅₀
- The chimeric viruses are not pathogenic for young adult mice
 - Infant mice become resistance with age. Infant mice can discriminate single amino acid substitutions in chimeric viruses which have minor effects on virulence

*: Guirakhoo et al, Virology 1999; Monath et al., Biological, 2005

Molecular Control of Neurovirulence (JE)*: Mouse Neurovirulence test

*: Chambers et al, JVI 1999, Arroyo et al JVI 2001

Why Chimerix JE Vaccine Is Less Virulent

- Attenuation of ChimeriVax depends on multiple factors
 - Redundant envelope mutations:
 - Envelope is derived from highly attenuated SA14-14-2 JE vaccine
 - Multiple envelope mutations (10 residues difference between JE-CV and JE Nakayama envelope)
 - No single reversion can restore neurovirulence of JE-CV vaccine
 - No case of postvaccination encephalitis has been reported with JE SA14-14-2 vaccine

- Chimerization process add additional attenuation:

 Even if all 10 attenuation residues are reverted, the phenotype of the virus resembled parental YF Vaccine virus rather than wild-type JE virus

JE-CV Vaccine

- Virus grown in a well characterized cell line (Vero) using serum-free culture medium
- Freeze-dried formulation
- No preservative or adjuvant
- Single dose for primary immunization
 0.5 mL per injection

Clinical Proof of Principle of Chimerix Live Vaccine Incorporate Gene of Heterologous Flavivirus, JE-CV

A randomized, double blind study

	Ν	%Viremic*	%JE sero conversion	GMT (PRNT)	A/E**
YF non-immune					
5.0 log CV	6	83	100	254	3/6
4.0 log CV	6	83	100	128	5/6
5.0 log YF-Vax	6	100	0	15	4/6
YF immune					
5.0 log CV	6	83	100	327	3/6
4.0 log CV	6	100	100	270	4/6
5.0 log YF-Vax	6	0	0	13	4/6

Viremic peak on day 4-5 (range 1-9), last 1-2 days ** No SAE, most are local and mild systemic Monath TP. Vaccine 2002;20:1004-18

Phase III Clinical Trials in Adults

- Placebo-Controlled Safety Study
- Immunogenicity and Safety Study

The Study Group Placebo-Controlled Safety Study

AUSTRALIA

- -Andrew Ebringer, Queensland
 - Michael Woodward, Victoria
 - Damon Eisen, Victoria
 - Debbie Marriott, New South Wales
 - Jeff Karrasch, Queensland
 - Michael Chia, South Australia

<u>USA</u>

- •Ivor Emanuel, California
- •Brandon Essink, Nebraska
- •Gregory Gray, lowa
- •Larry Gilderman, Florida
- •James Hedrick, Kentucky
- •Steven Hull, Kansas
- •Thomas Marbury, Florida
- •Dennis Morrison, Missouri
- •Serena Mraz, California
- •Keith Pierce, Michigan
- •Peter Rogge, California
- •Robert Rosen, North Carolina
- •William Seger, Texas
- •Eric Sheldon, Florida
- Theresa Sligh, California Kenneth Kim, California

Placebo-controlled Safety Study Randomized, Double Blind, Multicentre, Placebo Controlled Phase III Study of the Safety and Tolerability Following Administration Of Live Attenuated JE Vaccine

Group	N	Vaccine D0
1	1601	JE-CV (0.5 ml)
2	403	0.9% saline (0.5 ml)

Visit Day 0 (vaccination), 7, 14, 30, phone at 6 M

Subject Disposition
2004 subjects enrolled - 22 centres in Australia (6 sites) and USA (16 sites)

Number of Subjects	Group 1 (JE-CV) n (%)	Group 2 (Placebo) n (%)	All n (%)
Randomized	1600	404	2004
Safety Population*	1601 (100.1)	403 (99.8)	2004 (100.0)
Completed up to D30	1583 (98.9)	395 (97.8)	1978 (98.7)
Withdrew up to D30	18 (1.1)	8 (2.0)	26 (1.3)
Poopon for			
Withdrawal			
<i>Withdrawal</i> Lost-to-follow-up	13 (0.8)	3 (0.7)	16 (0.8)
Withdrawal Lost-to-follow-up Voluntary	13 (0.8) 5 (0.3)	3 (0.7) 3 (0.7)	16 (0.8) 8 (0.4)
WithdrawalLost-to-follow-upVoluntaryAdverse event	13 (0.8) 5 (0.3) 0 (0)	3 (0.7) 3 (0.7) 1 (0.2)	16 (0.8) 8 (0.4) 1 (0.0)

* One subject randomized to receive placebo was administered JE-CV, the safety population is based on actual treatment received.

Primary Safety Endpoint

 Similar overall incidence of % of subjects with treatment-related* AEs, D0 - D30 – p=0.203

* All events considered to be possibly, probably or definitely related to study treatments

Secondary Safety Endpoints

 More treatmentemergent AEs in JE-CV Group D0 - D14

Secondary Safety Endpoints

Most common treatment-related* AEs by SOC, D0-D30

	JE-CV	Placebo	Socs between treatment
General	39.4%	35.7%	– More feeling hot, chills, myalgia and arthralgia in
Nervous system	27.0%	25.6%	JE-CV group
Musculoskeletal	19.2%	14.9%	–more treatment-related nasopharyngitis in placebo group
Gastrointestinal	15.6%	13.4%	
			* All events considered to be possibly, probably

or definitely related to study treatments

Secondary Safety Endpoints Most commonly reported systemic reactions D0-D30

			Systemic reactions
	JE-CV	Placebo	– Headache (p=0.015), myalgia
Headache	37.3%	30.8%	(p=0.02) and <i>arthraigia</i> (p=0.013) significantly higher in the JE-CV group
Fatigue	29.9%	27.8%	 No statistically significant difference in SI* score > comparable severity of systemic reactions
Malaise	23.9%	22.8%	Durations for most commonly reported AEs were similar
Myalgia	22.0%	16.6%	– 0–3 days – <i>Injection site pain</i> of longer duration in JE-CV group:
Arthralgia	11.2%	6.9%	Arthralgia and nausea slightly longer duration in placebo group.

Customia reactio

Secondary Safety Endpoints

- Injection Site Reactions D0-D30
 - More in CV-JE but non-significant

	JE-CV	Placebo
Pain	12.4%	8.9%
Erythema	4.6%	3.7%
Pruritus	4.1%	3.0%
Haemorrhage	1.3%	1.0%
Swelling	1.1%	1.0%

Secondary Safety Endpoints

- 68 treatment-emergent AEs rated as severe reported by 51 subjects
 - 9 related: 3 probably related and 6 possibly related to study medication
 - JE-CV more than placebo 2.7% v 2.0%
- 7 Serious AEs D0 D30
 - JE-CV 5 events
 - Placebo 2 events
 - 6 considered *definitely not related* to study medication
 - 1 (pyrexia) considered to be *probably related* to JE-CV resolved after 7 days
- 9 Serious AEs reported from D31 to Month 6
 - All definitely not related SAEs

Placebo-controlled Safety Study Conclusions

- JE-CV was safe
- AE incidence 30 days post-vaccination not statistically different between JE-CV and placebo
- AE profile consistent with previous studies

The Study Group : Immunogenicity and Safety

-AUSTRALIA

- Jim Buttery, Victoria
- Joseph Torresi, Victoria
- · Sepehr Shakib, South Australia
- Malcolm Handel, New South Wales
- Peter Nasveld, Queensland
- -USA
 - Luis Angles, Kansas
 - Jeffrey Geohas, Illinois
 - William Lumry, Texas
 - Royce Morrison, Washington
 - George Risi, Montana
- Development
 - -Acambis
 - Thomas Monath

Immunogenicity, Safety and Tolerability Study vs JE-VAX[®]

A multicentre, randomized, double-blind, phase III study of the comparative immunogenicity, safety and tolerability of two Japanese encephalitis vaccines

Group	Ν	Vaccine D0 Left ∳ Arm	Vaccine D7 Right ∳ Arm	Vaccine D30 Left ∳ Arm	Vaccine D30 Right ↓ Arm
1	408	Saline (1ml)	Saline (1ml)	Saline (1ml)	JE-CV (1ml)
2	408	JE-VAX [®] (1ml)	JE-VAX® (1ml)	JE-VAX® (1ml)	Saline (1ml)

Visit on Day 0, 7, 14, 30, 44, 60 (serology), phone at 7M

Subject Disposition

820 subjects enrolled across 10 centres (5 in USA and 5 in Australia)

Number of Subjects	Group 1 (JE-CV) n (%)	Group 2 (JE-VAX®) n (%)	All n (%)
Randomized	410	410	820
Completed up to D60	381(92.9)	389 (94.9)	770 (93.9)
Withdrew up to D60	29 (7.1)	21 (5.1)	50 (6.1)
Reason for Withdrawal			
Voluntary	10 (2.4)	8 (2.0)	18 (2.2)
Lost-to-follow-up	12 (2.9)	5 (1.2)	17 (2.1)
Physician decision	4 (1.0)	3 (0.7)	7 (0.9)
Adverse event	3 (0.7)	0 (0.0)	3 (0.4)
Protocol violation	0 (0.0)	3 (0.7)	3 (0.4)
Sponsor decision	0 (0.0)	2 (0.5)	2 (0.2)

Primary Immunogenicity Endpoint

 Proportion of seronegative subjects who seroconverted* to homologous JE vaccine strain, 30 days after primary immunisation schedule (D60)

Primary Immunogenicity Endpoint

 Proportion of subjects who seroconverted* to respective homologous JE vaccine strain, 30 days after completion of the primary immunisation schedule (D60)

*Subjects seronegative at baseline (<1:10) required a serum dilution PRNT₅₀ titre of ≥ 1:10; Subjects with pre-existing neutralising antibody at D0 seroconverted ≥four-fold in neutralising antibody titre between D0 and D60 samples

Secondary Immunogenicity Endpoints (1)

Neutralising antibody GMTs at D60 - GMT Ratio (JE-CV/JE-Vax) D60 = 37.4(95% CI: 29.7, 47.0) → statistical non-inferiority of JE-CV to JE-VAX®

Secondary Immunogenicity Endpoints (2)

- Titre fold increase in serum dilution PRNT50 between D0 and D60
 - •Difference in mean fold increases = 807 (95% CI: 689.3, 924.8) in favour of JE-CV

Secondary Immunogenicity Endpoints (3)

- Distribution of neutralising antibody titres at D60
 - Statistically significant difference between groups (p<0.001)

Primary Safety Endpoint

- % of subjects reporting solicited* AEs, D0 - D60
 - D0 D60 significantly lower in JE-CV group (p=0.031)

* All AE reporting in both study periods was "actively solicited" via structured interviews and diary cards

Secondary Safety Endpoints (1)

- More AEs reported D0-D29 than D30-D60
- JE-CV vaccination was at D30
 - Percentage of subjects
 in JE-CV group with AEs
 higher after placebos
 (D0-D29) than after CV JE vaccination (D30-D60)

□ JE-VAX

Secondary Safety Endpoints (2)

 Most commonly reported SOC for treatment-related* AEs, D0-D60

	JE-CV	JE-VAX®
General [†]	55.1%	75.9%
Nervous system	37.6%	38.3%
Musculoskeletal	22.9%	25.9%
Gastrointestinal	22.4%	20.7%

* All events considered to be possibly, probably or definitely related to study treatments

† p < 0.001

Secondary Safety Endpoints (3)

 Most commonly reported treatmentemergent systemic reactions, D0-D60

	JE-CV	JE-VAX®
Headache	47.1%	46.3%
Fatigue	37.1%	32.0%
Malaise	27.6%	27.6%
Myalgia	25.6%	26.1%

Secondary Safety Endpoints (4)

 Injection site AEs, D0-D60

	JE-CV	JE-VAX®
Pain	25.6%	63.9%
Erythema	6.6%	30.0%
Pruritus	7.1%	26.1%
Swelling	3.7%	20.7%

Secondary Safety Endpoints (6)

- 81 treatment-emergent AEs rated as severe reported up to D60
 - 7.1% JE-VAX[®] vs. 4.1% JE-CV
- 14 AEs rated as severe were considered treatment related

- 12 JE-VAX[®] vs. 2 JE-CV

- 7 Serious AEs D0-D60. All *definitely not related* to study treatment
 - JE-VAX[®] 3 events for 3 subjects
 - JE-CV 4 events for 2 subjects
 - No treatment-related SAEs reported from D60 to Month 7
 - Five unrelated SAEs were reported from D60 to Month 7

Conclusions

- Higher immunogenicity in JE-CV
 - Seroconversion at D60- in those with seronegative at baseline: 99.1% JE-CV vs. 74.8% JE-VAX[®]
 - Seroconversion or increased 4-fold at D60 98.1% JE-CV vs. 73.4% JE-VAX[®]
- Rapid immune response
 - 93.6% seroconverted 14 days after JE-CV vaccination
- No safety concerns
 - Profile consistent with previous reports
- Fewer AEs reported following one dose of JE-CV + placebo (post D30) than two placebo doses (pre D30)

Pediatric Trials

- Ongoing pediatric studies Acambis Inc. sponsored study
 - H-040-004: Phase II comparative study in India
- Sanofi Pasteur sponsored studies
 - JEC01: Phase II comparative study in Thailand
 - JEC02: Phase III comparative study in Thailand and the Philippines

H-040-004 Phase II comparative study

- Objectives
 - To evaluate the safety, tolerability and immunogenicity of JE-CV vaccine and inactivated mouse brain JE vaccine
- Country: India
- Age-population: 9 mo to 10 yr old
- Sample size: 96
- JE-CV single dose vs. MBDV (KasauliInstitute) 2-dose schedule
- Independent Data Monitoring Committee to monitor safety data
- Status
 - Ongoing (9 mo to 2 yr old group to be completed)
- No data analyzed yet

Two Pivotal Studies in Children

JEC01: Phase II comparative study

JEC02: Phase III comparative study

- THAILAND
- Prof. Arunee Sabchareon (Faculty of Tropical Medicine, Bangkok)
- Assoc. Prof. Kulkanya Chokephaibulkit(SirirajHospital, Bangkok)
- Prof. UsaThisyakorn, Assoc. Prof. Chitsanu Pancharoen(ChulalongkornHospit al, Bangkok)

THAILAND

- Assoc. Prof. Chitsanu Pancharoen(ChulalongkornHospital, Bangkok)
- Assoc. Prof. Pope Kosalaraksa(Srinagarindhospital, KhonKaen)
- Assoc. Prof. Veerachai Watanaveeradej(Phramongkutklaohos pital, Bangkok)
- Prof. SuteeYoksan (CVD Mahidol University)

The PHILIPPINES

 Dr. Maria Rosario Capeding, (Research Institute for Tropical Medicine (RITM), MuntinlupaCity)

JE01: Phase II Controlled Study of the Safety and Immunogenicity

Objective

- To describe the safety of a single dose of JE-CV in comparison to Hepatitis A

- To describe the immune response to JE before and after a single dose of JE-CV

JE-CV vs. Hep. A (cross-over)

- STEP 1: 2-5 yrs old children previously vaccinated with mouse-brain derived JE vaccine
- STEP 2: 12-24 mos old Toddlers previously not vaccinated with a JE vaccine

STEP 2 start after the D14 safety data reviewed of STEP 1 by Safety Review Committee

Immune responses to JE virus strains

- Homologous JE-CV strain
- Wild types and genotypes

JE01: A Controlled Study of the Safety and Immunogenicity of ChimeriVax[™]-Japanese Encephalitis Vaccine in Thai Toddlers and Children

Vaccination	D 0	D 28	D 180
Group 1	JE-CV	HAV1	HAV2
Group 2	HAV	JE-CV	HAV2

Phone D2-7 after vaccination

F/U Visit on Day 0, 4, 15, 43, 56, 180 Check viremia on Day 4 after JE-CV

JE01: Study Enrolment Status, Thailand

JEC01 Investigator's newsletter #4 Aug 2008

Serious Adverse Events Reported Up to Day 56

11 Serious AE reported, all were assessed as not related to the vaccine

Serious AE by organ system		
	JE-CV	HAV
Respiratory	2	6
GI	0	1
Ac febrile ill	0	2

JEC01 Investigator's newsletter #4 Aug 2008

JEC01 Follow-up Study

 A five year long term follow-up for immunogenicity will be implemented in all sites at time of 6 months follow-up visits

JE02: Phase III comparative study

Bridging study between Acambis lot and GPO-MBP lots vs. control group

Objective

- To demonstrate the equivalence of the lot produced by Acambis with the lots produced at GPO-MBP

- To describe the safety

12-18 mos old toddlers previously not vaccinated with a JE vaccine

- Groups 1-3 : GPO-MBP
- Groups 4 : Acambis
- Groups 5 : Hepatitis A Sample size: 1200

Thailand and The Phillippines

Status: Enrollment completed

What yet to learn

- Long term protection
 - need booster dose?
- Impact of co-administration with other vaccines
- Immunogenicity and safety in immunocompromised persons

Thank You For Your Attention