IDENTIFICATION OF UNKNOWN OCULAR PATHOGENS IN INFECTIOUS **UVEITIS USING RIBOSOMAL RNA GENE SEQUENCE** ANALYSIS

Torres, Brian Carlmichael L., Ma. Luisa G. Daroy, Juan s. Lopez, Vanessa Oh, Marie Joan Loy, Prospero ma. Tuaño, and Ronald R. Matias

Research and Biotechnology Division and International Eye Institute St. Luke's Medical Center, Philippines

Infectious Uveitis

 Characterized by inflammation inside the eye caused by a virus, bacteria, fungus, or a parasite (White, 2007)

 Red eye, pain, light sensitivity, blurred vision, presence of dark spots in vision (Griggs, 2006)

If left untreated may cause blindness

Diagnosis

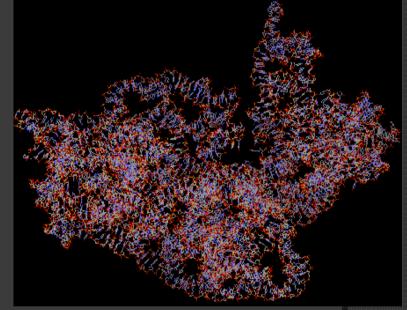
 Physical examination, clinical manifestations

PCR and other molecular techniques

www.calgaryretina.ca/.../SlitLampExamination.jpg

PCR Technology

- OPCR requires very small amount of sample
- Conventional Microbiological culture may not be that sensitive (Caroll et al 2000):
 - Small sample size (~100-400ul)
 - Adherence of microorganisms to solid surfaces (intraocular lens, lens remnants, and capsule)
 - Fastidious nature of some microorganisms

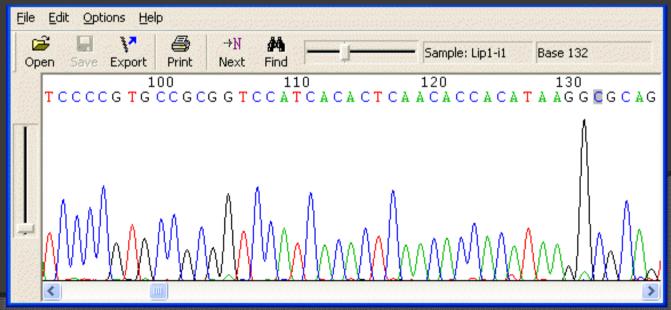


www.turbosquid.com

16S rRNA gene

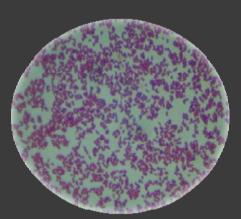
 Highly conserved gene which allows species distinction based on mutation acquired during the course of evolution.

Oniversal in bacteria



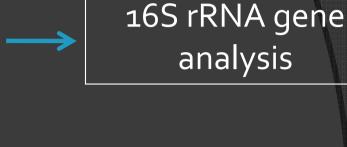
www.biochem.umd.edu/.../ribosome/16SrRNA.html

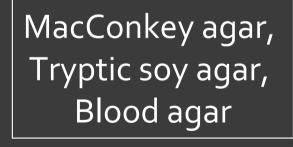
 Excellent choice in identifying non-culturable bacteria (Clarridge, 2004)


Objective

 Describe the PCR-based detection and DNA sequence-based identification of bacterial pathogens from ocular samples taken from patients diagnosed with infectious uveitis by 16S rRNA gene analysis.

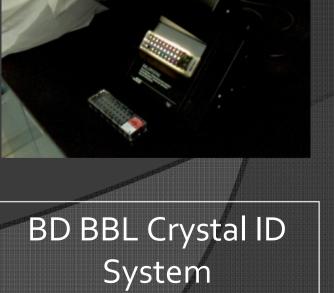
Methods


Gram stain 🗠



Sphingomonas sp. 1000x

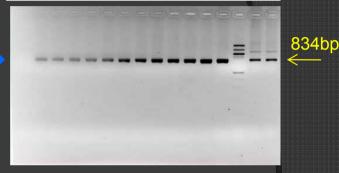
Gram stain


Vitreous aspirate, Anterior chamber tap, other eye specimens

Isolation &

Purification

16S rRNA gene Analysis



Agarose Gel Electrophoresis

DNA Sequencing

www.macrogen.com

PCR Product Purification

www.biokitscom

Sequence Analysis & Identification

Analysis of sequence data

Comparative sequence analysis

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
C TAGE TCAG TAGE TAGE TAGE TAGE TAGE TAGE TAGE TA
¹ ¹ สีวัตรุดราชชาวอานาราวาราราชาวอราราชาวอราราชาวอราราชาวอราราชาวอราราชาวอราราชาวอราราชาวอราราชาวอราราชาวอราราชาวอรา
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
CG CGGC ATGG CTG G AT CAG G CTTTC GCC CATTGT C CAATATT CCC CAC TG CT G CC CC CG C G AGG AGT CTG G AC CGT G T C CAG TT CC AG T C CAG T C CAG AC CAG T A CG A C CG C C C C C C C C C C C C C C
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
and have an

db [FJ190080.1] Pseudomonas aeruginosa strain Am7 165 ribosomal RNA gene, partial					
88Gw8DG8 Length-1393					
Identities	Score - 1343 bits (727) Expect - 0.0 Identities - 738/743 (99%), Gaps - 4/743 (0%) Strand-Plus/Minus				
Quers12	CGCTTTC-CA-CTCANTGGTC-GTATCAGTCCAGGTGGTCGCCTTCGCCACTGGTGTTCC	68			
Sb1ct743.	CGCTTTCGCACCTCAGT-GTCAGTATCAGTCCAGGTGGTCGCCTTCGCCACTGGTGTTCC	685			
Quren	TTCCTATATCTACGCATTTCACCGCTACACGGAAATTCCACCACCCTCTACCGTACTCT	128			
Sb1ct684	TTCCTATATCTACGCATTTCACCGCTACACAGGRAATTCCACCACCCTCTACCGTACTCT	625			
Quarx	AGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCAACTTGC	188			
Sb1ct524	AGCTCAGTAGTATTTGGATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCAACTTGC	565			
Query189.	TGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTTCGTAT	248			
Sb1ct564	TGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTTCGTAT	505			
Qurey249	TACCGCGGCTGCTGGCACGAAGTTAGCCGGTGCTTATTCTGTTGGTAACGTCAAAACAGC	308			
Sb1ct504	TACCGCGGCTGCTGGCACGAAGTTAGCCGGTGCTTATTCTGTTGGTAACGTCAAAACAGC	445			
Query309.	AAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTTACAATCCGAAGACCTTC	368			
Sb1ct444	ARGUATTACTACTGCCCTTCCTCCCAACTTAAAGTGCTTTACAATCCGAAGACCTTC	385			
Qurty	TTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTCCAATATTCCCCACTGCT	428			
Sb1ct384	TTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTCCAATATTCCCCACTGCT	325			
Qurey429.	GCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGACTGATCATCCTCTCAGAC	488			
Sb1ct324	GCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGACTGATCATCCTCTCAGAC	265			
Qurey489.	CASTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACTAGCTAATCCGACCTAGG	548			
Sb1ct264	CAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACTAGCTAATCCGACCTAGG	205			
Qurey549.	CTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCCTCAGGACGTATGCGGTA	608			
Sb1ct204	CTCATCTGATAGCGTGAGGTCCGAAGATCCCCCCACTTTCTCCCTCAGGACGTATGCGGTA	145			
Qures	TTAGEGEEEGTTTEEGGAEGTTATEEECEACTAEEAGGEAGATTEETAGGEATTAETEAE	668			
Sb1ct144	TTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGATTCCTAGGCATTACTCAC	85			
Qures	CCGTCCGCCGCTGRATCCRGRAGCRAGCTCCCTTCATCCGCTCGRCTTGCATGTGTTAGG	728			
SbictRA	CCGTCCGCCGCTGAATCCAGGAGCAAGCTCCCTTCATCCGCTCGACTTGCATGTGTTAGG	25			
Quarx729.	CCTGCCGCCAGCGTTCAATCTGA 751				
Sb1ct24	CCTGCCGCCAGCGTTCAATCTGA 2				

Results

 Ninety-two samples from infected eyes of 56 patients and 4 control samples were tested.

	Gram Stain	Culture	Control samples
Positive	3 (3.3%)	7 (7.6%)	0
Negative	89	85	4

Table 1. Identification of bacterial pathogens of the eye based on biochemical test profiles and 16S rRNA gene sequence analysis.

Sample #	Specimen	Identity of bacterial isolate		
		Biochemical test profiling (BD BBL Crystal ID)	16S rRNA gene sequence (% identity)	
03a-2004	Vitreous tap	Burkholderia cepacia	Ralstonia mannitolilytica (99%) (778/780)	
03C-2004	Vitreous aspirate	Burkholderia cepacia	Ralstonia mannitolilytica (97%); (748/749)	
04a-2004	Anterior chamber tap	Streptococcus sanguis	Uncultured bacteria (99%) Streptococcus oralis (98%); (754/765) Streptococcus sp. (98%); (765/778)	
04b-004	Vitreous tap	Streptococcus constellatus	(Sequences of poor quality)	
05b-2004	Vitreous tap	Hafnia alvei Enterobacter cloacae	Hafnia alvei (98.5%); (605/611) Escherichia coli (98.5%) Salmonella enterica (98.5%)	
53a-2007	Vitreous tap	Pseudomonas aeruginosa	Pseudomonas aeruginosa (99%) (738/743)	
53b-2007	Corneal scraping	Pseudomonas aeruginosa	Pseudomonas aeruginosa (99%) (747/748)	

	16S rRNA gene detection
Positive	23 (25%)
Negative	69

- Out of the 23:
 - 16 did not grow in the 3 media used.
 - 18 products were sequenced.
 - 16 out of the 18 products produced sequences of good quality.

Table 2. Identification of unculturable bacaterial pathogens of the eye by 16S rRNA genesequence analysis

Sample #	Specimen	Identity of bacterial isolate		
		Biochemical test profiling	16S rRNA gene sequence (% identity)	
12a-2004	Anterior chamber tap	No growth after 72 hours	Sphingomonas sp. (97%); (633/641)	
12b-2004	Vitreous tap	No growth after 72 hours	Sphingomonas sp. (98.1-97.1); (624/695)	
13b-2004	Vitreous tap	No growth after 72 hours	Xanthomonas sp. (98%); (759/774)	
22b-2005	Anterior chamber tap	No growth after 72 hours	Haemophilus influenzae (99%); (610/615)	
24-2005	Eyeball	No growth after 72 hours	Klebsiella pneumoniae (99%); (733/737)	
35a-2005	Anterior chamber tap	No growth after 72 hours	Staphylococcus haemolyticus (99%); (723/725)	
35b-2005	Vitreous tap	No growth after 72 hours	Staphylococcus haemolyticus (99%); (723/724)	
38b-2005	Vitreous tap	No growth after 72 hours	Mycobacterium sp. (96%); (658/679)	
44a-2006	Anterior chamber tap	No growth after 72 hours	Klebsiella pneumoniae (96%); (432/449)	
46a-2006	Anterior chamber tap	No growth after 72 hours	Morganella morganii (96%); (580/604)	
47b-2006	Vitreous tap	No growth after 72 hours	Morganella morganii (94%); (561/594)	

 Sequence-based identification produced different results obtained by culture-based methods in one sample – Ralstonia mannitolilytica vs. Burkholderia cepacia (De Baere et al. 2001)

 Identification of bacterial pathogens rarely seen in infectious uveitis (*Ralstonia mannitolilytica*, *Xanthomonas sp.*, and *Sphingomonas sp.*)

Discussion

 A few of the identified bacteria are associated with nosocomial infections:

- Pseudomonas aeruginosa (Froggat, 1989)
- *Sphingomonas sp.* (Kelley, 2004)

Some have been reported to cause eye infections:

- Morganella morganii (Miller, 2008)
- *Klebsiella pneumoniae* (Lindstorm, 1997)
- Streptococcus sp. (Narayanan, 2006; Okharvi, 2000)
- *Mycobacterium sp.* (Freitas, 2003)

Discussion

 Other bacteria were found to be opportunistic pathogens especially in immunocompromised patients:

• *Staphylococcus haemolyticus* (Falcone, 2007)

Discussion

- An advantage of this technique lies with its capability to identify bacteria that may be difficult to culture (*Haemophilus influenzae*, *Mycobacterium sp.*) due to:
 - Small sample amount (~100-400 ul)
 - Low bacterial load in the sample
 - Fastidiousness of the pathogen

Limitations

 Presence of inhibiting substances in the sample submitted that may lead to false negative results.

 Presence of contaminating agents that may lead to false positive results

Poor sequence quality

Length of the product being sequenced

Conclusion

 16S rRNA gene sequence analysis has successfully identified both common and unusual bacteria associated with infectious uveitis.

May also lead to identification of novel pathogens.

Conclusion

 16S rRNA gene sequence analysis can be an adjunct to conventional culture method for the identification of bacteria in very minute amounts of sample and that are difficult to culture.

Significance

 The data gathered from this study may be used to construct a database of pathogens of the eye

Epidemiological studies and further scientific research

Thank you and good day to everyone!

Torres, Brian Carlmichael L., Ma. Luisa G. Daroy, Juan s. Lopez, Vanessa Oh, Marie Joan Loy, Prospero ma. Tuaño, and Ronald R. Matias

Research and Biotechnology Division and International Eye Institute St. Luke's Medical Center, Philippines