MAHIDOL UNIVERSITY

Nucleotide polymorphisms of pfcrt gene in Thai isolates of Plasmodium falciparum

Setthaudom Ch. ${ }^{1}$, Tan-Ariya P. ${ }^{1}$, Mungthin M. ${ }^{2}$
${ }^{1}$ Department of Microbiology, Faculty of Science, Mahidol University ${ }^{2}$ Department of Parasitology, Phramongkutklao College of Medicine

Malaria situation

- 300-500 million people of world's population suffer from malaria.
- 1-2 million children under than 5 years old die from malaria annually.

Plasmodium falciparum

Asexual erythrocytic stage of Plasmodium falciparum

Plasmodium Digestive Vacuole

Detoxification of Ferriprotoporphyrin (FP)

Ferriprotoporphyrin $\quad \beta$-hematin
(Toxic)

$\mathrm{CH}_{2} \mathrm{COOH}$

Chloroquine

- A schizontocidal 4-aminoquinoline
- Rapid action, Low cost, Low incidence of side effects
- It is still effective against P. vivax, P. malariae, P. ovale and CQ-sensitive P. falciparum.

Chloroquine

Action of Chloroquine in digestive vacuole (DV)

- CQ is a weak base, accumulated as CQ^{2+} in DV of the parasite up to 1000 -fold higher than in the cytoplasm.
- CQ inhibits heam detoxification by binding to ferriprotoporphyrin. The FP-CQ complex will increase membrane permeability of digestive vacuole and cause death of parasite.

CQR Plasmodium falciparum

- CQR parasites showed a markedly reduced concentration of CQ in their digestive vacuoles.

Fidock et al. Mol Cell, 2000

- The putative transporter PfCRT was identified through the analysis of genetic cross between a chloroquine sensitive (CQS) and chloroquine resistant (CQR) clones.

pfort is a major gene of CQR

- This gene encodes 45 kDa peptide which contains 10 predicted transmembrane domains, localized on DV membrane.

K76T mutation in PfCRT

- Point mutation at K76T in PfCRT protein is a key of CQ resistance. This mutation is called "Charge loss mutation"

Charge loss mutation of PfCRT

The schematic structure of the protein product of the pfort gene, PfCRT, showing the ten predicted transmembrane domains. The positions of all of the different mutations identified from the analysis of forty geographically
diverse isolates from the Eastern and Western hemispheres are indicated by filled circles. The K (lysine) $\rightarrow \mathrm{T}$ (threonine) change at position 76 (indicated by the arrow) is critical to CQ resistance in P. falciparum.

Calton et al., 2001

MAHIDOL UNIVERSITY

K76T is major mutation in PfCRT (Cooper et al., 2005)

Geographic distribution	Parasite clone/isolate	PfCRT amino acid positions										
		72	74	75	76	77	97	144	148	152	160	163
CQS parasites												
CQR parasites Africa												
Mali	S35CQ ${ }^{\text {d }}$	c	I	E	T		H	A	L	T	L	s
South Africa	RB8 ${ }^{\text {a }}$	c	1	E	T	I	H	A	L	T	L	s
Southeast Asia												
Thailand	$\mathrm{Dd}^{\text {a }}$	c	I	E	T	I	H	A	L	T	L	s
Thailand	TM93-C1088 ${ }^{\text {fig }}$	c	I	E	T		L	A			L	
Camboclia	$783{ }^{\text {h }}$	c	I	E	T		H	A	L			
Camboclia	$738{ }^{\text {h }}$	c	1	D	T		H	A	I			
Indonesia					-							
Lombok	Field isolate ${ }^{\mathrm{j}}$	C	M		N							
South America												
Ecuador	Ecu1110 ${ }^{\text {a }}$	c	M	N	T	I	H	A	L	T	L	S
Colombia	Jav ${ }^{\text {a }}$	c	M	E	T	I	Q	A	L	T	L	s
Brazil	$7 \mathrm{Gs}{ }^{\text {a }}$		M	N	T	I	H	A	L	T	L	s

"Charged drug leak" hypothesis

- From the "Charge loss mutation" to the "Charged drug leak" hypothesis

CQR

K1 AM
CQ IC50=26nM
K1HF
CQ IC50=38nM
CQS

"Charged drug leak" hypothesis

The schematic structure of the protein product of the pfort gene, PfCRT, showing the ten predicted transmembrane domains. The positions of all of the different mutations identified from the analysis of forty geographically
diverse isolates from the Eastern and Western hemispheres are indicated by filled circles. The K (lysine) $\rightarrow \mathrm{T}$ (threonine) change at position 76 (indicated by the arrow) is critical to CQ resistance in P. falciparum.

Calton et al., 2001

"Charged drug leak" hypothesis

- "Charged drug leak" hypothesis was proposed by Johnson et al. by using selected lines.

Objectives

- To identify nucleotide polymorphisms of pfCRT in Thai isolates.
- To determine the polymorphisms of pfCRT and changing of CQ resistant levels in Thai isolates.

Materials and methods

Newly Adapted laboratory isolates

DNA extraction
$\longrightarrow \mathrm{PCR}$
\longrightarrow DNA sequencing

DNA \& Protein Alignment

Statistical analysis

Samples

- Ninety isolates of P. falciparum from different malaria endemic areas in Thailand were used.
- CQ IC50 for all samples were determined.

pfcrt

Length 3096 bp Spliced length 1275 bp

13 exons

This gene is separated into 7 fragments

DNA sequencing

- Dye-terminator seqencing

Exon positions of Dd2 line

- In 2000, Su et al. submitted the 47,573 bp of Dd2 line which contain pfcrt gene at positions 23488 to 26557. The position of 13 exons were indicated.

Exon	start pos.	end pos.
1	23488	23578
2	23748	24016
3	24180	24352
4	24522	24654
5	24816	24887
6	25011	25086
7	25192	25274
8	25401	25451
9	25589	25645
10	25788	25880
11	26075	26119
12	26257	26311
13	26481	26557

DNA alignment (Megalign)

Predicted 10 transmembrane domains

Peptide	Amino acid position	Nucleotide position
TM1	$59-78$	$175-234$
TM2	$91-113$	$271-339$
TM3	$126-148$	$376-444$
TM4	$158-175$	$472-525$
TM5	$180-197$	$538-591$
TM6	$212-229$	$634-687$
TM7	$242-264$	$724-792$
TM8	$315-337$	$943-1011$
TM9	$344-366$	$1030-1098$
TM10	$376-398$	$1126-1194$

Predicted 10 transmembrane domains

Cytosol

EditSeq

EditSeq－［Untitled Seq \＃1 ：SEQUENCE］
E）File Edit Search Speech Features Goodies NetSearch Window Help
8｜$\ \backslash \mid$ Selection： $175 \cdot>234=60$

ATGAAATTCGCAAGTAAAAAAAATAATCAAAAAAATTCAAGCAAAAATGACGAGCGTTATAGAGAATTAGATAATTTAGTACAAGAAGGAAATGGCTCAC

MAHIDOL
UNIVERSITY

DNA translation from selected sequence


```
Translate DNA Sequence Untitled Seq #1(175,234)
With Standard Genetic Code
        Molecular Weight 2362.93 Daltons
        20 Amino Acids
        0 Strongly Basic(+) Amino Acids ( }\textrm{K},\textrm{R}\mathrm{ )
        1 Strongly Acidic(-) Amino Acids (D,E)
        13 Hydrophobic Amino Acids (A,I,L,F,N,V)
        6 Polar Amino Acids (N,C,Q,S,T,Y)
        3.745 Isolectric Point
        -1.121 Charge at PH 7.0
    Davis,Botstein,Roth Melting Temp C. 61.35
    Wallace Temp C 134.00
Codon usage:
gca Ala(A)
```

Why|씨》| Unspecified Search]
IV start
C 하 is

Data Table

Samples	$\underset{(\mathrm{nM})}{\mathrm{CQ} \mathrm{IC}_{50}}$	TM1 (20 amino acid)						
		pl	Charge	M.W.	$\begin{gathered} \text { Basic(+) } \\ \text { AA. } \end{gathered}$	$\begin{gathered} \text { Acidic }(-) \\ \text { AA. } \end{gathered}$	Hydrophobic AA.	Polar AA.
$\begin{aligned} & \text { BC36 } \\ & \text { (76T) } \end{aligned}$	99.9	3.745	-1.121	2362.93	0	1	13	6
$\begin{gathered} \text { J10 } \\ \text { (76K) } \end{gathered}$	14	6.151	-0.122	2390	1	1	13	5
$\begin{aligned} & \text { BC38 } \\ & \text { (76T) } \end{aligned}$	160.1	3.745	-1.121	2362.93	0	1	13	6
$\begin{aligned} & \text { BC39 } \\ & \text { (76T) } \end{aligned}$	124. 8	3.745	-1.121	2362.93	0	1	13	6
$\begin{gathered} \text { BC1 } \\ (76 T) \end{gathered}$	75.8	3.745	-1.121	2362.93	0	1	13	6
$\begin{aligned} & \text { BC11 } \\ & (76 \mathrm{~T}) \end{aligned}$	123.7	3.745	-1.121	2362.93	0	1	13	6
$\begin{aligned} & \text { BC12 } \\ & (76 \mathrm{~T}) \end{aligned}$	49. 2	3.745	-1.121	2362.93	0	1	13	6

Data analysis

- Each peptide of PfCRT was analyzed with the level of CQ IC50 by independent t-test and one-way ANOVA.

Analysis of the pfcrt sequence

Group Statistics						
	TM1 Charge group	N	$\begin{gathered} \text { Mean } \\ \text { CQ_IC50 } \\ \text { (nM) } \end{gathered}$	Std. Deviation	Std. Error Mean	p value
CQ_IC50	76T (-1.12)	83	85.3	40.9	4.5	0.02
	76K (-0.12)	2	16.0	3.1	2.2	

Analysis of the pfcrt sequence

Group Statistics

	TM2 charge group	N	$\begin{aligned} & \text { Mean } \\ & \text { CQ IC50 } \end{aligned}$	Std. Deviation	Std. Error Mean	p value
CQ_IC50	97H (-0.95)	82	81.0	39.6	4.4	0.01
	97L (-1.12)	3	157.8	38.0	21.9	

Boxplot of charge TM2 and CQ IC50

Results of TM1 and TM2

TM1 polymorphism			
	76 K	76 T	
Charge	-0.12	-1.12	decreased
CQ IC50	16.03	85.31	increased

TM2 polymorphism			
	97 H	97 L	
Charge	-0.95	-1.12	decreased
CQ IC50	80.97	157.83	increased

Conclusions

- Polymorphisms of exon 1 and 2 of the pfcrt sequence were identified.
- These polymorphic sequences caused the changing in the charge of the peptides in TM1 and TM2. And it would influence the CQ IC50 level.

Acknowledgements

- Department of Microbiology, Faculty of Science, Mahidol University
- Prof. Peerapan Tan-ariya
- Department of Parasitology, Phramongkutklao College of Medicine
- Col. Assoc. Prof. Mathirut Mungthin
- Staffs of Department of Parasitology, Phramongkutklao College of Medicine

Thank you

Mechanisms of CQR

Two hypotheses

- The first hypothesis: CQR parasite regulates physiological condition in DV by changing pH which then reduces CQ accumulation.
- The second hypothesis: CQR parasite reduces an accumulation of CQ in DV by increased CQ efflux.

CQ makes a comeback

MALARIA

Chloroquine Makes a Comeback

Chloroquine, a malaria drug rendered useless in most of the world by drug-resistant parasites, is once again effective in Malawi. In a study in the 9 November New England Journal of Medicine, researchers report that chloroquine cured 99% of 80 malaria cases in Blantyre, the country's commercial capital.

Cheap, easy to administer, and with few side effects, chloroquine was once considered a miracle drug. But by the 1980s, resistance had spread, and in 1993, Malawi became the firstAfrican country to officially discourage its use. Few suspected that natural susceptibility would return. But in 2001,
molecular studies in Malawi suggested that the resistance mutation had nearly disappeared, and studies of adults hinted that the drug could again clear the parasite.

The new study shows that chloroquine can also work in children with acute infections. Miriam Laufer and Christopher Plowe of the University of Maryland, Baltimore, and their colleagues treated children suffering from uncomplicated malaria with either chloroquine or sulfadoxine-pyrimethamine (SP), the standard first-line drug in Malawi. Chloroquine was effective in 79 of 80 children who received it. In contrast, SP failed in 71 of 87
children. (Those children received backup treatment, and all made full recoveries.)

The result does not mean that Malawi should go back to using chloroquine, Plowe stresses. "Malawi is a little island of sensitivity surrounded by a sea of resistance," he says. "Resistance would come washing back in" if the drug were widely used.

But knowing that the drug can regain its usefulness after a prolonged absence gives researchers hope that the same might be true for other resistance-plagued drug regimes. The result "is another argument for getting chloroquine out of Africa," says malaria expert Thomas Wellems of the U.S. National $\frac{\tau_{2}}{2}$ Institute of Allergy and Infectious Diseases in Bethesda, Maryland. -GRETCHEN VOGEL

4-Aminoquinoline

- Amodiaquine
- Chloroquine
- Hydroxychloroquine

Reistance haplotype region	$\mathbf{7 2}$	73	74	75	76	77	97	220	271	326	356

Sequence of P. falciparnm lines $106 / 1$ from Fidock, D.A.

J10 vs BC36

Results from DNA alignment

Samples	Nucleotide position	nucleotide change	amino acid change	peptide
BC28	16	$A>C$	K6Q	CP1
BC35	12	$A>C$	A4A	CP1
	16	$A>C$	K6Q	CP1
	29	$A>G$	Q10R	CP1
	77	T>G	L26S	CP1
PCM6	12	$A>C$	A4A	CP1
	16	$A>C$	K6Q	CP1
PCM12	12	$A>C$	A4A	CP1
J10	227	$\mathrm{C}>\mathrm{A}$	T76K	TM1
RN28	227	$\mathrm{C}>\mathrm{A}$	T76K	TM1
BC33	198	T>C	1661	TM1
J6	290	A>T	H97L	TM2
PCM11	290	$A>T$	H97L	TM2
KS25	290	A>T	H97L	TM2

Overview

- Introduction
- Basic knowledge of malaria
- Antimalarial drug i.e., Chloroquine
- Chloroquine resistant P.falciparum and pfcrt gene
- Research
- Materials and Methods
- Results
- Conclusions
- Future plan

Antimalarial drug response assays

[3H]-hypoxanthine uptake
[Low]
[High]

Steps to CQR

- Under CQ pressure, malaria parasites acquired pfcrt mutation sequentially.
- As many as 8 to 9 pfcrt mutations are associated with CQR in some geographical regions whereas only 4 mutation was required for the other regions. The number of acquired mutations for CQR was varied with genetic background of P. falciparum strains)
- However, the mutation at position 76 from K to T was definitely required for CQR.

Characters of pfort gene in Plasmodium falciparrm

	$p f c r t$						
Codon	76	163	220	271	326	356	371
Wild type $(\%)$	$3(2.7)$	$110(100)$	$2(1.8)$	$2(1.8)$	$2(1.8)$	$6(5.3)$	$2(1.8)$
Mutant $(\%)$	$110(97.3)$	0	$111(98.2)$	$111(98.2)$	$111(98.2)$	$105(92.9)$	$111(98.2)$
Mixed (\%)	-	-	-	-	-	$2(1.8)$	-
Total	$113(100)$	$113(100)$	$113(100)$	$113(100)$	$113(100)$	$113(100)$	$113(100)$

Results from DNA alignment

Samples	position	nucleotide change	amino acid change	peptide
BC4	16	A $>$ T	K6stop	CP1
	34	A $>$ T	N12Y	CP1
BC6	13	A $>$ T	S5C	CP1
	16	A>T	K6stop	CP1
BC9	16	A>T	K6stop	CP1
BC10	16	A $>$ T	K6stop	CP1

- A point mutation, or single base substitution, is a type of mutation that causes the replacement of a single base nucleotide with another nucleotide.
- Genetic polymorphism is the occurrence together in the same locality of two or more discontinuous forms of a species in such proportions that the rarest of them cannot be maintained just by recurrent mutation [5]. It is sometimes called balancing selection, and is intimately connected with the idea of heterozygote advantage.

TM analysis program

- Protscal
- TMMHM 2.0

PCR results from E1-2 and xxx

PCR results from xxxx

Mechanisms of drug resistance

- Mutations in drug target
- Increasing of drug target
- Decreasing of drug accumulation (includes increasing efflux)
- Drug inactivation (physiological change at drug action site)
- Using alternative pathway

Position of PfCRT on DV

Acknowledgements

- Department of Microbiology, Faculty of Science, Mahidol University
- Prof. Peerapan Tan-ariya
- Suradej Siripattanapipong
- Department of Parasitology, Phramongkutklao College of Medicine
- Col. Assoc. Prof. Saovanee Leelayoova
- Col. Assist. Prof. Paanjit Taamasri
- Col. Assoc. Prof. Mathirut Mungthin
- Capt. Punlerd Piyaraj
- Department of Military and Community Medicine, Phramongkutklao College of Medicine

Col. Assist. Prof. Ram Rangsin

