Faculty of Tropical Medicine
Mahidol University

Annual Report 1998
CONTENTS

Foreword 3
Editor’s Note 4
Organization Chart 7
Consultants 9
Visiting Professors 9
Faculty Board 9
Dean and Deputy Deans 10
Current Research Activities and Abstracts 11
 Department of Clinical Tropical Medicine 13
 Department of Helminthology 39
 Department of Medical Entomology 42
 Department of Microbiology and Immunology 46
 Department of Protozoology 58
 Department of Social and Environmental Medicine 61
 Department of Tropical Hygiene 69
 Department of Tropical Nutrition and Food Science 73
 Department of Tropical Pathology 82
 Department of Tropical Pediatrics 86
 Department of Tropical Radioisotopes 88
 Vaccine Trial Centre 89
 Wellcome Unit 92
The Bangkok School of Tropical Medicine 104
SEAMEO TROP MED Regional Centre for Tropical Medicine 113
Academic Services 119
Short Training Courses 125
International Linkages 128
Visitors 129
Lecturers and Their Areas of Expertise 131
Ongoing Research Projects of Faculty of Tropical Medicine in 1998 134
TROP MED’s Publications (1 October 1997 - 30 September 1998) 141
TROP MED’s Textbooks 146
FOREWORD

As 1998, another successful year at the Faculty of Tropical Medicine is coming to end, it is my great pleasure to report the activities undertaken by our staff and students as well as the activities of SEAMEO TROPMED Regional Centre for Tropical Medicine. In addition to continuation of our strong tradition of research, teaching, training and health service, the year under review was highlighted by the generous donation from the Lottery Bureau to Her Royal Highness Princess Galyani Vadhana who graciously presented it to the Faculty of Tropical Medicine, Mahidol University for the establishment of the Welfare Trust Fund for Prevention and Control of Tropical Diseases under her royal patronage. The Princess recently visited our malaria field research station in Suan Phung, Ratchaburi Province. I would like to extend my sincere appreciation and congratulations to our staff for their hard work and cooperative spirit which has contributed to such a productive year of the Faculty.

Professor Sornchai Looareesuwan
Dean, Faculty of Tropical Medicine
Mahidol University, Bangkok, Thailand
The Faculty of Tropical Medicine, Mahidol University plays an important role in promoting excellence in teaching and training, research, and clinical care. The Faculty was established by the Thai Government on 5 April 1960. The Faculty has joined the SEAMEO TROPAMED Project in 1967, and was designated by the Thai Government as the TROPAMED National Center of Thailand. In 1994, the national status has been elevated to the regional level, thus becoming SEAMEO TROPAMED Regional Center for Tropical Medicine (TROPAMED/Thailand). In the fiscal year 1997/1998 (FY1997/1998), there were 378 government service staff and 314 employees affiliated in 11 departments, hospital and other supporting units, of whom 87 were academic staff comprising 11 Professors, 28 Associated Professors, 25 Assistant Professors and 23 Lecturers. Sixty two percent of the academic staff are Ph.D. holders or equivalence.

Over the years, the Faculty of Tropical Medicine has retained its strengths in tropical medicine, health science and basic science. Five international postgraduate programs are offered to doctors, researchers, medical personnel and professionals concerned with tropical medicine and public health, including 1 at the diploma level leading to Diploma of Tropical Medicine and Hygiene (D.T.M. & H.), 2 at master’s degree level and 2 at doctoral level in tropical medicine and clinical tropical medicine. Overall, 1895 students from 42 countries were graduated, with the number of enroll in FY 1997/1998 of 95 from 20 countries: Australia, Germany, Norway, Afghanistan, Japan, Singapore, Sudan, the Philippines, Indonesia, India, Sri Lanka, Nepal, Cambodia, Myanmar, Lao PDR, People Republic of China, Bangladesh, Vietnam and Thailand. The Ph.D. Program in Tropical Medicine has been revised in 1997 to include research program (plan I) and the first batch of 14 students was enrolled. The Faculty has also conducted 3 joint courses in collaboration with other institutions within and outside Thailand including those with: the Liverpool School of Tropical Medicine, UK in teaching and training of postgraduates in both institutions registered for Master’s courses in Tropical Paediatrics, but each university issues its own degree in accordance with its own degree regulations since 1993/1994 with the number of annual students enrolled between 2-8; the Austrian Society of Tropical Medicine and Parasitology in joint offering the four-month program leading to the Austrian Diploma in Tropical Medicine with annual enrolls of 9-20; and the Faculty of Public Health and the Faculty of Medicine, Ramathibodi Hospital, Mahidol University in an international program leading to the Master of Science in Medical Epidemiology. The international elective program in tropical medicine has been also offered to last year medical students since 1994/1995 with 15 attendants and continues with 15-20 students from South Africa, Australia, Austria, Germany, the Netherlands, Sweden, UK, Canada, USA and Japan.

The Faculty has ongoing collaborative activities on teaching, research an academic services with more than 24 universities and institutions from 13 countries: United Kingdom, Germany, Canada, Japan, Austria, Australia, France, People Republic of China, USA, Switzerland, Indonesia, the Philippines and Malaysia. Examples of collaboration activities are those with Freie University of Berlin in Germany; University of Calgary in Canada; Nuffield Department of Medicine, University of Oxford, Liverpool School of Tropical Medicine and the Wellcome Trust in UK; University of Innsbruck in Austria; Queensland Institute of Medical Research and James Cook University of North Queensland in Australia, Pasteur Institute and Department des Maladies Infecteuse et Medicine Tropicale, Groupe Hospitalier Pitie...
problems commonly encountered in Thailand and Southeast Asian countries including the followings: malaria, amoebiasis, liver fluke infections, paragonimiasis, soil transmitted helminthiasis, schistosomiasis, filariasis, dengue infection, Japanese Encephalitis, rabies, HIV/AIDS, food borne mutagens and carcinogens, nutritional problems, diarrhea and enteric fever, melioidosis, leprosy, diagnosis of tropical diseases, vaccine trials, vaccine development and vector control, etc. Results of the studies were well recognized and published mainly in international journals, with the number of 109 publications in FY1997/1998. Many staff members of the Faculty received awards in recognition to the outstanding research works from both national and international institutions and organizations.

The Faculty, in conjunction with other National Centers for Tropical Medicine and Public Health in Southeast Asia and some international institutions and organizations, conducts annually the national, regional and international training courses, seminars, meetings and workshops that have directly benefited over 2,324 participants, covering various subjects on medicine, public health and medical sciences aiming to combine training in the methods of research work which contribute to the advancement of knowledge. In FY1997/1998, the Faculty organized and hosted 14 national, regional and international training courses, workshops and meetings with the participants of 488 originated both from 10 SEAMEO member countries and other 10 countries.

Beginning in August of 1997, the Faculty was engaged in organizing annually the Joint International Tropical Medicine Meeting (JITMM) with the objectives to foster a dialogue on scientific advancement in tropical medicine and to serve as a venue for approximately 500 doctors and scientists to exchange ideas leading to collaborative research and joint effort to increase awareness and to face challenges of emerging and reemerging of tropical diseases. Due to the consequences of the national economic crisis, the JITMM 1998 was held at the Faculty with the participants of 350 from various countries.

The Faculty is extensively involved in national and international programs to control tropical diseases. In FY 1997/1998, 140 research projects have been carried out by the staff of the Faculty with the total grants of 46.5 million bahts from both local and international funding agencies. These research projects are directed towards the solution of health problems.

Professor Srisin Khusmith
Editor
Professor Emeritus Chamlong Harinasuta
Professor Emeritus Khunying Tranakhit Harinasuta
Professor Emeritus Danai Bunnag
Professor Emeritus Tan Chongsuphajaisiddhi
Professor Emeritus Sommaiya Vilairatna
Professor Emeritus Mukda Trishnananda
Colonel Sriwatana Chitchang

CONSULTANTS

Professor Emeritus Chamlong Harinasuta
Professor Emeritus Khunying Tranakhit Harinasuta
Professor Emeritus Danai Bunnag
Professor Emeritus Tan Chongsuphajaisiddhi
Professor Emeritus Sommaiya Vilairatna
Professor Emeritus Mukda Trishnananda
Colonel Sriwatana Chitchang

VISITING PROFESSORS

Professor Walther H. Wernsdorfer
Professor Ralf Clemens
Professor Frank P. Schelp
Professor Gunther Wernsdorfer
Professor Kenji Hirayama
Professor Masamichi Aikawa
Associate Professor Dr. Shigeyuki Kano
Professor Somei Koijima
Professor Tozo Kanda
Professor C.P. Ramachandran
Dr. P.F. Beales

Dean
Deputy Dean
Deputy Dean for International Relations
Deputy Dean for Area and Financial Affairs
Deputy Dean for Hospital Services
Deputy Dean for Educational Technology
Deputy Dean for Information Technology
Deputy Dean for Student Affairs
Deputy Dean for Graduate Studies
Assistant Dean for Areas and Maintenance
Assistant Dean for Areas and Maintenance
Assistant Dean for Environment
Assistant Dean for International Relations
Head of Department of Medical Entomology
Head of Department of Tropical Paediatrics
Head of Department of Microbiology and Immunology
Head of Department of Helminthology
Head of Department of Protozoology
Head of Department of Tropical Pathology
Head of Department of Tropical Nutrition and Food Science
Head of Department of Tropical Radiosotopes
Head of Department of Tropical Hygiene
Head of Department of Social and Environmental Medicine
Head of Department of Clinical Tropical Medicine

FACULTY BOARD

Professor Sornchai Looareesuwan
Professor Prayong Radosyvos
Associate Professor Suwanee Supavej
Associate Professor Pornthep Chanthavanich
Associate Professor Polrat Wilairatana
Associate Professor Chamnarn Apiwathnasorn
Assistant Professor Kasinee Buchachart
Dr. Chotechuang Panasoponkul
Dr. Yaowalark Sukthana
Associate Professor Paisal Impand
Assistant Professor Thongchai Deesin
Assistant Professor Kanjana Hongtong
Assistant Professor Pampen Viriyavejakul
Associate Professor Vanida Deesin
Professor Arunee Sabcharcon
Associate Professor Pramuan Taphaisri
Associate Professor Jitra Waikagul
Assistant Professor Thiyoth Chintana
Associate Professor Emsri Pongponrat
Associate Professor Supranee Changbumrung
Assistant Professor Channarong Sanghirun
Assistant Professor Pratap Singhasivanon
Assistant Professor Piya Rat Butraporn
Professor Sirivan Vanijanonta
Professor Wanpen Chaiumpa
Associate Professor Surang Tantivanich
Associate Professor Dwip Kitayaporn
Assistant Professor Achara Asavanich

Dean
Deputy Dean
Deputy Dean for International Relations
Deputy Dean for Area and Financial Affairs
Deputy Dean for Hospital Services
Deputy Dean for Educational Technology
Deputy Dean for Information Technology
Deputy Dean for Student Affairs
Deputy Dean for Graduate Studies
Assistant Dean for Areas and Maintenance
Assistant Dean for Areas and Maintenance
Assistant Dean for Environment
Assistant Dean for International Relations
Head of Department of Medical Entomology
Head of Department of Tropical Paediatrics
Head of Department of Microbiology and Immunology
Head of Department of Helminthology
Head of Department of Protozoology
Head of Department of Tropical Pathology
Head of Department of Tropical Nutrition and Food Science
Head of Department of Tropical Radiosotopes
Head of Department of Tropical Hygiene
Head of Department of Social and Environmental Medicine
Head of Department of Clinical Tropical Medicine

Elected Member
Elected Member
Elected Member
Elected Member

Faculty of Tropical Medicine Annual Report 1998
Current Research Activities and Abstracts
The Department has published more than 300 papers and has continued to pursue its mission on three major activities, teaching, research and services. The Department embarked upon clinical research on several major tropical infectious diseases.

Malaria research activities have focused on clinical trials, pathophysiology, clinical pharmacology and clinically related laboratory studies. Staff of the Department studied not less than 2500 admitted cases of this disease. It was found that 45% were falciparum malaria, 52% were vivax malaria, 2% of mixed infections of the two above, a few cases of malariae malaria and occasionally cases of ovale malaria. The major focus is on clinical trials of multidrug resistant falciparum malaria in uncomplicated and complicated cases. Combination of various antimalarial drugs were carried out continuously; halofantrine, mefloquine, quinidine, amodiaquine, artesunate and artesunate in combination with mefloquine. We found that sequential treatment with artesunate or artemether followed by mefloquine is effective, well tolerated and suitable as an alternative treatment for multidrug resistant malaria.

Besides extensive clinical studies, we also carried out interdepartmental and institutional collaborative studies of antigen in cerebral and non-cerebral malaria patients, of lymphocyte subpopulations during acute and convalescence phases of malaria, and qualitative and quantitative polymerase chain reaction to predict *Plasmodium falciparum* treatment failure.
Pathophysiologic alteration in malaria has been widely investigated. Interesting results were the dynamic alteration in splenic function during acute falciparum malaria, in erythrocyte survival following clearance of malaria parasites, defective production of and response to IL-2 in acute falciparum malaria, cytoadherence and ultrastructure of *Plasmodium falciparum* infected erythrocytes from splenectomized patients and hepatic blood flow and metabolism in severe falciparum malaria. Studies of stage specificity of quinine, chloroquine, mefloquine, artesunate, artemether and halofantrine were carried out in vivax malaria. The antimalarial efficacy of tetracycline, doxycycline, rifampicin and azithromycin was also studied.

Other common parasitic diseases include amoebiasis, opisthorchiasis, paragonimiasis, cysticercosis, scrub typhus, salmonellosis, and the clinical manifestations of HIV/AIDS with parasitic infections have been studied in many aspects.

The Department's titles of current research activities are as follows.

1. Effects of intramuscular quinine on tetanus infection mice.
2. Clinical trial and pharmacokinetics of dihydroartemisinin in patients with acute uncomplicated falciparum malaria.
4. Immunogenetic analysis of uncomplicated and severe malaria defined clinically and pharmacologically.
5. Neurotoxicity effect of artemisinin derivatives in mice.
6. Gastric emptying in patients with acute falciparum malaria.
7. Pharmacokinetics and pharmacodynamics of AZT and AZT-triphosphate in healthy subjects, asymptomatic HIV-positive, and symptomatic AIDS patients.
8. SDS-PAGE analysis of whole cell protein and outer membrane protein patterns of clinical isolates of *Burkholderia pseudomallei*.
9. Study on stage development of *Plasmodium falciparum in vitro*.
10. Pharmacokinetics and dose-finding studies of the combination artemether/proguanil in healthy subject and patients with uncomplicated falciparum malaria.
11. Clinical study to fine effective regimen for the treatment of uncomplicated falciparum malaria in rural area.
12. A multicenter, randomized double-blind, Phase II study to evaluate the safety, tolerance and efficacy of multiple doses of SCH 56592 versus fluconazole in the treatment of oropharyngeal candidiasis (OPC) in HIV-positive patients.
13. A comparison treatment between topical and parenteral antifungal drugs in *Pityriasis versicolor*.

INTERNATIONAL INSTITUTION LINKAGE

2. Department of Medicine, the George Washington University Medical Center, Washington DC, USA.
3. Hahnemann University, Philadelphia, USA.
4. Case Western Reserve University, USA.
5. Department of Epidemiology, the University of Michigan, USA.
6. Queensland Institute of Medical Research, the University of Queensland, Brisbane, Australia.
7. Department of Medicine, University of Toronto, Canada.
8. Department of Microbiology and Infectious Diseases, Faculty of Medicine, the University of Calgary, Canada.
10. Department of Infectious Diseases, Ulleval Hospital, University of Oslo, Norway.
11. Department of Infectious Diseases, Faculty of Medicine, University of Vienna, Austria.
12. Department of Tropical Medicine and Specific Prophylaxis, Faculty of Medicine, University of Vienna, Austria.
13. Austrian Society of Tropical Medicine and Parasitology, Vienna, Austria.

The Austrian Society of Tropical Medicine and Parasitology and the Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand have jointly offered the course leading to “the Austrian Diploma in Tropical Medicine” since 1992. This 4-month annual programme aims to enrich the Austrian medical doctors’ understanding on the clinical, biological, epidemiological and social dimensions of tropical diseases particularly in Southeast Asia. Participants of the course attend lectures in Austria for 3 months followed by one month clinical practices at the Bangkok Hospital for Tropical Diseases and other hospitals in Bangkok in the second part of the programme. They also visit some hospitals in the northeast of Thailand.

ABSTRACTS

CHANGES OF LIVER FUNCTIONS AFTER ALBENDAZOLE TREATMENT IN HUMAN GNATHOSTOMIASIS

Ninety-eight out-patients of the Hospital for Tropical Diseases, Bangkok with clinical diagnosis of cutaneous gnathostomiasis were studied. All patients were treated with albendazole at a dosage of 400 mg (two tablets) twice daily for 14 days. They were seen periodically on day 0, day 14, day 28, day 195 and 1 year after treatment with laboratory investigations for any side effects of the treatment. There was a statistically significant increase of total protein, albumin, alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) values when comparing the different periods. The abnormal results are clearly indicated in AST and ALT values (liver enzyme) especially on day 14 both male and female patients had highest levels. No significant association with time was found in ALP value.

Published in: J Med Assoc Thai 1998;81(10).

RESEARCH ON NEW ANTIMALARIAL DRUGS IN BANGKOK HOSPITAL FOR TROPICAL DISEASES

Clinical trials of new antimalarial drugs (atovaquone, artesunate, artemether, dihydroartemisinin, CGP 56697, pyronaridine, and biguanide-dapsone combinations) for treatment of uncomplicated malaria have been studied in the Bangkok Hospital for Tropical Diseases.

Studies in artesunate and artemether have confirmed the earlier Chinese work. Patients with malaria improved faster following treatment with these artemisinin derivatives compared with other antimalarial drugs. The artemisinin derivatives were all well tolerated and had insignificant side effects.

A clinical trial of oral dihydroartemisinin for the treatment of acute, uncomplicated, falciparum malaria involved 53 adult patients. Each received a total dose of 480 mg over 7 days (120 mg given immediately, followed by 60 mg/day) after being admitted to the Hospital for Tropical Diseases in Bangkok for 28 days. Most (92%) completed the 28-day follow-up but four patients left the hospital early, for reasons unrelated to their treatment. Most patients showed clinical improvement 1-3 days after starting treatment and none suffered from serious adverse reactions. The cure rate was 90% (44/49). The mean (S.D.) parasite-
In all experimental mammals tested (rats, dogs, primates) intramuscular injections of the oil soluble antimalarial artemisinin derivatives artemether and arteether have produced an unusual pattern of selective damage to brain stem centres predominantly involved in auditory processing and vestibular reflexes. Artesunate, the most widely of these compounds, is a water soluble hemisuccinate derivative given parenterally either by intravenous or intramuscular injection. The neurotoxic potential of parenteral artemisinin and artemether were compared in a murine model. Adult Swiss albino mice were assigned randomly to 28-day regimens of intramuscular artemether or artesunate in doses ranging from 30 to 100 mg/kg/day. At 30 mg/kg/day no abnormalities were observed in 6/12 artemether recipients and 2/12 artesunate recipients. These were reversible in all but one (artemether) mouse. At 100 mg/kg/day 8/36 artemether recipients, 2/36 artesunate recipients, and 1/18 control mice died. All but 4 surviving mice in the artemether group (86%) showed obvious and usually irreversible abnormalities of balance and equilibrium, whereas only 4 artesunate recipients (11%) exhibited abnormalities, and these were reversible in each case (P<0.001). At this dose the relative risk (95% confidence interval) for death or disability was 5.3 (2.6 to 11.2) for artemether recipients. Intramuscular artemether is significantly more neurotoxic than intramuscular artesunate in this murine model.

In Thailand, national control programme of opisthorchiasis using large scale chemotherapy to treat infected individuals with praziquantel has been launched since 1988. Opisthorchiasis prevalence in the northeast has dropped in the past decade, but Opisthorchis infection in the north has gradually increased. A preliminary study was conducted in Phrae Province, northern Thailand during September to November 1997 to reevaluate the efficacy of praziquantel against O. viverrini. A total of 95 adult patients with O. viverrini or O. viverrini-like ova in their stools were randomly treated with two different manufactured praziquantels at a single dose of 40 mg per kg. Haplorchis taichui, H. yokogawai, Echinostome spp., O. viverrini, Taenia saginata and Enterobius vermicularis were retrieved in the stools after treatment. Minute intestinal flukes were detected in 64% of patients. O. viverrini was found in lower proportions of 17%. The cure rate in both groups on the 30th day of treatment was 100%.
Further study to clarify the situation of opisthorchiasis was extended in 431 residents from 16 provinces in north Thailand who had previously been found positive for *O. viverrini* or *O. viverrini*-like ova in their stools. They were given praziquantel 40 mg. per kg. After treatment, 4 to 6 stool samples were collected from each individual and examined for adult worms. The prevalence of *O. viverrini* was 11.6%. Intestinal flukes, *H. taichui* and *H. yokogawai* were predominantly found in 63.1% and 10.4% respectively. *Echinostoma malayanum*, *H. pumilio*, *Phaneropsolus bunnei*, Plagioccephalid flukes, *Prosthodendrium molenkampi*, and *Stellanchasmus falcatus* and *Centrocestus caninus* were found in small numbers.

In conclusion, minute intestinal flukes (*H. taichui*, *H. yokogawai* and others) were commonly found in the same opisthorchiasis endemic areas in northern Thailand. Minute intestinal fluke infections were predominant. Opisthorchiasis occurred in lower proportions. Praziquantel was effective as treatment against liver and intestinal flukes.

Presented at: Joint International Tropical Medicine Meeting 1998 and The Fourth Chamlong-Tranakchit Harinasuta Lecture.

DIAGNOSIS OF PENICILLIUM MARNEFFEI INFECTION BY QUANTITATION OF URINARY ANTIGEN USING AN ENZYME IMMUNOASSAY

V Desakorn1, M D Smith1,2, A L Walsh1,2, A J H Simpson1,2, D Sahassananda1, A Rajchanuwong1, V Wuthiekanun1, P A Howe1,2, B J Angus1,2, P Suntharasamai1, N J White1,2

1Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
2Department of Medicine, Sappasitprasong Hospital, Ubon Ratchathani, Thailand.
3Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, U.K.

Penicillium marneffei is a major cause of opportunistic infection in patients with AIDS in north and north eastern Thailand. A method for the quantitation of P. marneffei antigen in urine was developed using FITC-labelled purified rabbit hyperimmune IgG in an enzyme-linked immunosorbent assay. This was evaluated in 33 patients with culture proven penicilliosis and 300 controls (52 healthy subjects, 248 hospitalised patients without penicilliosis) from the same endemic area. Urinary antigen was found in all 33 (100%) patients with penicilliosis, with a median titer of 1:20,480. Using undiluted samples, 67 (27%) of 248 hospital patients and 3 (6%) of 52 healthy controls were reactive. At a cut-off titer of 1:40, the urine antigen detection assay had a diagnostic sensitivity of 97% and specificity of 98% (positive predictive value 84%, negative predictive value 99.7%). This test offers a valuable and rapid method for the diagnosis of penicilliosis in patients with AIDS, and could be a useful addition to conventional diagnostic methods in endemic areas.

Presented at: Joint International Tropical Medicine Meeting 1998 and The Fourth Chamlong-Tranakchit Harinasuta Lecture.

MULTIDRUG-RESISTANT FAICIPARUM MALARIA: USE OF DRUG COMBINATIONS

Sornchai Looareesuwan, Polrat Wilairatana

Department of Clinical Tropical Medicine and Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

Multidrug-resistant falciparum malaria is a serious problem in Thailand and therapeutic failures to all existing antimalarials are well documented. New drug development takes years before the drug can be registered for use in man. Therefore studies of currently available drugs with appropriate rationales for use could be beneficial to combat this infection. Two measures have been advocated, modification in dosage’ I and the use of drug combinations.

Until recently when synthetic drugs have been available, a single component has been widely used for treating most infections. The use of a single drug has been generally accepted because the dose can be controlled easily and drug interactions can be avoided. However, with problems of multidrug-resistant falciparum malaria, the rationale for using a single compound warrants change. The mechanism of action of different drugs varies, and they can act in different biosynthetic pathways of the plasmodium parasite. Drug combinations can act additively or in a synergistic way to kill the pathogen. They may also prevent the development of resistance. Some diseases,
such as tuberculosis and leprosy, have been successfully treated with drug combinations. In the treatment of malaria, mixtures of active components have been used for centuries. In China for more than 2000 years, an oriental remedy extracted from the Qinghao plant (Artemesia annua L.) has been used for treatment of chills and fever, presumed to be malaria infections. In South America more than 400 years ago, a mixture of cinchona alkaloids extracted from the barks of the cinchona tree (known as Peruvian bark extract) was introduced for treating malaria symptoms. During the Second World War, a mixture of cinchona alkaloids was manufactured as a tablet (Totaquine) containing mainly quinine, quinidine and cinchonidine, and used successfully in the treatment of malaria. With the deteriorating situation of multidrug-resistant falciparum malaria in Thailand, attempts have been made to delay the development of resistance by the use of certain drug combinations. Some suitable combinations have proved effective in vitro, in animal malaria and in man.

Pentoxifylline, an inhibitor of tumor-necrosis factor, has been evaluated as an antimalarial agent in combination with artesunate in 45 patients with severe falciparum malaria. Patients were admitted to the intensive care unit at the Hospital for Tropical Diseases in Bangkok, Thailand, and randomly assigned to treatment for 72 hr with a combination of intravenously administered artesunate and 1) placebo, 2) low-dose pentoxifylline (0.83 mg/kg/hr), or 3) high-dose pentoxifylline (1.67 mg/kg/hr). All 45 patients had one or more manifestations of severe malaria such as cerebral malaria (n = 18), renal failure requiring hemodialysis (n = 9), azotemia (n = 8), jaundice (n = 25), or hyperparasitemia (n = 30). The overall severity was comparable in the three groups. Clinical outcome was assessed with respect to the parasite clearance time and the fever clearance time in all patients. In addition, a number of subsidiary outcome variables were examined in specific subgroups, including the recovery time from coma I-or patients with cerebral malaria, the duration of intubation in patients with respiratory distress, the number of hemodialysis treatments needed for patients with acute renal failure, and the number of units of blood administered to patients requiring transfusion. Concentrations of tumor necrosis factor were reduced in all three groups at 48 hr, after treatment. No significant differences among the three treatment groups were found for any of the outcome variables examined. We conclude that the addition of pentoxifylline to artesunate therapy for severe malaria produced no evident clinical benefit.

Atovaquone is a broad-spectrum antiprotozoal drug with a novel mechanism of action, via inhibition of parasite mitochondrial electron transport, and a favorable safety profile. Early studies with atovaquone alone for treatment of malaria demonstrated good
initial control of parasitemia but an unacceptable rate of recrudescent parasitemia. Parasites isolated during recrudescence after treatment with atovaquone alone were resistant to atovaquone in vitro. The combination of atovaquone and proguanil is synergistic in vitro, and clinical studies demonstrated enhanced efficacy of the combination compared to either drug alone for treatment of malaria. MALARONE, a fixed-dose combination of 250 mg atovaquone and 100 mg proguanil hydrochloride, is available in many countries for treatment of acute, uncomplicated malaria caused by Plasmodium falciparum. At the recommended dose (in adults, four tablets once daily for 3 days), the overall cure rate was >98% in more than 500 patients with falciparum malaria. In four randomized, controlled clinical trials, treatment with atovaquone and proguanil hydrochloride was significantly more effective than mefloquine (Thailand), amodiaquine (Gabon), chloroquine (Peru and the Philippines) or chloroquine plus pyrimethamine/sulfadoxine (Philippines). In clinical trials where the comparator drug was highly effective, treatment with atovaquone and proguanil hydrochloride was equally effective. Parasites isolated during recrudescence after treatment with the combination of atovaquone and proguanil are generally not resistant to atovaquone in vitro. The most commonly reported adverse events in clinical trials (abdominal pain, anorexia, nausea, vomiting, diarrhea and coughing) occurred with similar frequency in patients treated with a comparator drug. MALARONE is a safe and effective new agent for treatment of malaria.

CHLOROQUINE SENSITIVITY OF PLASMODIUM VIVAX IN THAILAND

Sornchai Looareesuwan1, Polrat Wilairatana1, Srivicha Krudsod2, Pratap Singhavijon2, Sombat Treeprasertsuk1, Valai Bussaratid1, Watcharee Chokjindachai1, Pammen Viriyavejakul1, Kobsiro Chailemur1, Douglas S Walsh3, Nicholas J White4

1Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
2Department of Tropical Hygiene, Faculty of Tropical Medicine, Department of Pathology, Faculty of Tropical Medicine,
3Department of Tropical Pediatrics, Faculty of Tropical Medicine, Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine,
4Department of Infectious Diseases, Tropical Medicine and AIDS, Academic Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, U.K.

Chloroquine has been the standard treatment for Plasmodium vivax malaria for more than 40 years. Recently chloroquine-resistant P. vivax has been reported from Oceania and several parts of Asia. In order to assess the situation in Thailand, we studied prospectively 1181 patients, mean (SD) age of 24.6 (8.6) years, admitted to the Bangkok Hospital for Tropical Diseases with vivax malaria. They were randomized to treat with oral chloroquine (25 mg base/kg body weight over 3 days) with or without primaquine 15 mg/day for 14 days. Most of studied cases (64.7%) contracted the malaria infection on the western border of Thailand. All patients responded initially to treatment, and there was no significant difference in the clinical or parasitological responses between those treated with or without primaquine. The mean parasite (PCT) and fever clearance times (FCT) were 60.2 (18.7) hrs and 29.5 (24.5) hours respectively. During the follow up period of 28 days in hospital 295 cases (25%) developed P. falciparum. Only four patients (0.3%) had reappearance of asexual forms of P. vivax in peripheral blood smears between the 14th and 28th day after treatment. These cases were retreated with the same regimen of chloroquine and responded well. These data provide no evidence for significant chloroquine-resistance in P. vivax in Thailand.

Efficacy of Artemether-Lumefantrine (Co-Artem™) in MDR Settings

Sornchai Looareesuwan1, Polrat Wilairatana1, Watcharee Chokejindachai1, Michele van Yuli1,2,3, François Nosten1,2,4, C Luxemburger2,4, R N Price2,4, A Brockman1, W Wernsdorfer1, Nicholas J White1,2,4

1Department of Clinical Tropical Medicine and Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University Bangkok Thailand
2Shoklo Malaria Research Unit, Mae Sai, Tak Province, Thailand
3Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok.
4Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, UK.

Three randomized, clinical trials, to compare the efficacy and tolerability of a new oral fixed combination of artemether and lumefantrine (benflumetol)
(CGP 56697; CO-ARTEM™ Novartis) were conducted in Thailand between 1995 and 1997. In the first study in Bangkok Hospital for Tropical Diseases (BHTD) the combination was compared with mefloquine in a double blind trial in 252 adult patients. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™. Two for the clinical trials were an open, randomized comparison of the CO-ARTEM™.

All three clinical trials were approved by the Ethical Review Committee. In the first study, adult patients with uncomplicated malaria aged over 12 years, with parasitemias of between 1,000-200,000/ml, who gave written informed consent to trial, were not pregnant or in lactation period, and had not been treated for malaria in the proceeding 2 weeks were randomized treated either with CO-ARTEM™. (4x4 tablets each containing 20 mg artemether and 120 mg benflumetol, given at 0, 8, 24 and 48 hours), or to mefloquine (3 tablets of 250 mg at initial diagnosis, followed by 2 tablets of 250 mg at 8 hours). All patients were admitted in the Hospital for 28-days to exclude reinfection and for careful monitoring of side effects. The 28-days cure rate with CO-ARTEM™ was lower than with mefloquine (69.3% vs. 84.2%, p = 0.02). However, CO-ARTEM™ was more effective than mefloquine in parasite clearance time (PCT; 43 hours vs. 66 hours, p<0.001), fever clearance time (FCT; 32 hours vs. 54 hours, p<0.005), and gametocyte clearance time (152 hours vs. 331 hours, p<0.001). The first study revealed that CO-ARTEM™ is effective against multi-drug resistant falciparum malaria in Thailand, but higher doses were probably needed to improve the cure rate.

The second trial to study the efficacy and safety of CO-ARTEM™ in a large randomized trial in both children and adults with uncomplicated falciparum malaria along the western border of Thailand. The comparator was artesunate plus mefloquine as it is the current standard therapy at the area. This study was an open, randomized comparison of CO-ARTEM™ with artesunate-mefloquine conducted in 617 patients with acute uncomplicated multidrug-resistant falciparum malaria. Patients who fulfilled the inclusion criteria (aged over 5 years, with uncomplicated falciparum malaria, and not pregnant) and gave informed consent were randomized to treat either CO-ARTEM™, in the same dose as the first trial (total dose was 1-2 mg of artemether per kg of body weight plus 6 to 12 mg of benflumetol per kg. The minimum dose for patients weighing less than 20 kg was one tablet. For patients weighing between 21 and 30 kg a dose of two tablets was given; for patients weighing between 31 and 40 kg, a dose of three tablets was given; and for patients weighing more than 40 kg, the usual adult dose of four tablets was given. Each dose was given at 0, 8, 24, and 48 hours) or artesunate in a single daily dose of 4 mg/kg for 3 days plus mefloquine (25 mg/kg) in a split dose, i.e. 15 mg/kg on day 2 and 10 mg/kg on day 3. Both treatments rapidly and reliably cleared fever and parasitemia, and there was no significant difference in the initial therapeutic response parameters. Parasite genotyping was used to distinguish recrudescences from new infections. The 63-day cure rate for artesunate-mefloquine (94%) was significantly higher than the cure rate for CO-ARTEM™ (81%) (p<0.001). Both regimens were well tolerated. Nausea, vomiting, dizziness, sleep disorders, and other neurological side effects were between two and four times more common in the artesunate-mefloquine group than in the CO-ARTEM™ group (p<0.001). It was concluded that CO-ARTEM™ is effective and very well tolerated in the treatment of multi-drug resistant falciparum malaria but that a higher dose may improve efficacy further.

The third trial was a dose-optimization study with two six-dose schedules (total adult dose 480 mg artemether and 2,880 mg of benflumetol) were compared with the previously used four-dose regimen (320 mg artemether and 1,920 mg of benflumetol as used in the first and second trial) in a double-blind trial involving 359 patients with uncomplicated multi-drug resistant falciparum malaria. The third trial was conducted in two places (BHTD with the same entry criteria as the first trial, and SMRU with the same entry criteria as the second trial). There were no differences between the three treatment groups in parasite and fever clearance times, and reported adverse effects. The two six-dose regimens gave 96.9% and 99.1% adjusted 28 days cure rates respectively, compared to 83.3% for the four-dose regimen (p<0.001). These six dose regimens of artemether-benflumetol provide a highly effective and very well tolerated treatment for multi-drug resistant falciparum malaria.

Presented at: The 2nd European Congress on Tropical Medicine, Liverpool, UK. 14-16 September 1998, Abstract No. 464 page 117.
The pathogenesis of severe malaria remains unclear. Studies in human patients and the laboratory have provided evidence for the roles of both mechanical and toxic-cytokine production in the pathogenesis of this condition. The sequestration of mature forms of *Plasmodium falciparum* parasites to microvascular endothelium called, "cytoadherence", leads to inadequate oxygen supply to vital organs. Sequestration, with or without rosetting, leads to microcirculatory obstruction in falciparum malaria and as a consequence increases anaerobic glycolysis and lactate production. Sequestration occurs most in brain, and might be the cause of coma in cerebral malaria, and also occurs in other vital organs such as the heart, liver, kidneys, intestines and subcutaneous tissues. The cytoadherence phenomenon requires two factors; (1) candidate ligands of the surface of parasitized erythrocytes such as *P. falciparum* erythrocyte membrane protein 1 (PfEMP-1), erythrocyte band 3 anion transporter and sequestrin and (2) endothelial receptors such as thrombospondin, and candidate endothelial receptors (ICAM-1, CD36, VCAM-1, ELAM, E-selectin, chondroitin sulphate A).

Toxic cytokines such as tumour necrosis factor alpha (TNFα) and some other cytokines were elevated and correlated with clinical and complications. Studies in African children with cerebral malaria have provided convincing evidence of an association between high circulating levels of TNFα and other cytokines with the severity, case fatality and frequency of neurological sequelae. In addition, children with a variant allele of the TNFα promoter region gene had a five times greater risk of developing cerebral malaria, and a ten times greater risk of dying of this complication. Results of two studies using monoclonal antibody to TNFα were quite interesting. In the Gambian study of 41 children with cerebral malaria treated with three different doses of a murine monoclonal antibody directed against TNFα, there was a dose dependent reduction in fever suggesting that the monoclonal antibody might be holding TNFα in circulation. Another study using a monoclonal antibody to TNFα in 610 Gambian children with cerebral malaria also showed an antipyretic effect with the antibody but did not affect mortality. Studies using a polyclonal anti-TNFα treating cerebral malaria have been continued for several reasons. A polyclonal anti-TNFα Fab might be expected to be more effective than a monoclonal antibody since its smaller size allows greater and more rapid penetration into tissue fluid and its neutralisation of many epitopes and higher binding affinities should inhibit the biological activity of TNFα more effectively. At present, a randomised, double blind, placebo controlled study of this adjuvant is being trialed in Thailand. Tissues from patients who died from cerebral malaria do show evidence of cytokine production whether this is a result of the disease severity, or relates to the primary pathogenesis of cerebral malaria needs further investigation.

Two clinical trials using pentoxiphylline (a drug believed to suppress overproduction of TNFα which also may improve impaired capillary blood flow) have showed no clinical benefit. The role of increased nitric oxide production in cerebral malaria remains uncertain. Recent studies have not correlated nitrate or nitrite levels in plasma with disease severity.

Mechanical obstruction (sequestration) is still believed to play an important role of the pathophysiology of severe malaria. Cytoadherence was demonstrated *in vitro* and sequestration was demonstrated *in vivo*. The capillaries in vital organs are packed with mature infected erythrocytes leading to hypoxia. Direct evidence of retinal haemorrhages and increased permeability of the retinal capillary network by direct examination of eye and fluorescein angiography all indicate marked microcirculatory dysfunction in severe malaria.

Case-management of severe malaria bases on the early diagnosis and early treatment with a potent antimalarial drug. Early detection and treatment of complications (convulsions, acute renal failure, pulmonary oedema, acidosis, hypoglycaemia, hyperthermia) are essential. The aim of management is to save the patient’s life. The choice of antimalarial chemotherapy depends on the clinical severity, the drug sensitivity of the parasites and the availability and preparation of the drug. Chloroquine is still the drug of choice for chloroquine-sensitive parasites but there are now rare. Quinine and quinidine are the only widely available drugs which are effective against chloroquine-resistant strains. Ideally, in serious ill patients, intravenous treatment should be initiated
with a loading dose and patients should be monitored for hypoglycaemia, a most important side-effect of cinchona alkaloids. There is some evidence of increasing resistance to quinine therapy especially in Thailand and Vietnam. The difficulty in administration of intravenous infusion in rural areas and greater chance of hypoglycaemia favour use of artemisinin and its derivatives. Qinghaosu (artemisinin - an ancient Chinese herbal medicine) and its derivatives have been used successfully in treating of severe falciparum malaria. Their rapid effectiveness in eliminating parasites has been extensively documented. Large, randomised comparisons of artesether with quinine in African children (Gambian and Kenyan children) with cerebral malaria and Vietnamese adults with severe falciparum malaria have confirmed that artesether is as effective as quinine in reducing case fatality. Coma was significantly prolonged in the artesether-treated groups in two of these studies.

LH Camacho1, VR Gordeuk2, P Wilairatana3, P Pootrakul4, GM Brittenham5, S Looareesuwan3
1Department of Medicine, The George Washington University Medical Center, Washington, DC, USA (LHC, VRG, MAM)
2The George Washington University Medical Center, Suite 3-428, 2150 Pennsylvania Avenue N.W., Washington, D.C., USA
3Department of Clinical Tropical Medicine, Faculty of Tropical Medicine.
4Thalassemia Research Center, Mahidol University, Bangkok, Thailand.
5MetroHealth Medical Center, Rammelkamp Building, room 114, 2500 MetroHealth Drive, Cleveland, Ohio 44109-1988, USA

To determine the course of anaemia following treatment for acute falciparum malaria, 72 adult Thai patients were followed for 4 weeks after starting effective therapy. Using the criteria of haemoglobin concentrations of < 13 g/dl in males and < 12 g/dl in females to define anaemia, all but two (97%) of the patients were anaemic at some point during the study period. At weekly observations, the erythropoietic response of each patient with anaemia was categorized clinically, on the basis of absolute reticulocyte counts (ARC) and indirect bilirubin concentrations (IBC). At 4 weeks, 40 (56%) of the patients were still anaemic. The results of tests on samples of peripheral blood from these 40 patients were consistent with hypoproliferative erythropoiesis (low normal ARC and IBC; 33 patients), ineffective erythropoiesis (low normal ARC but elevated IBC; five patients) or an appropriate response (elevated ARC and normal IBC; two patients). Of the variables measured at the time of enrolment into the study, only low serum albumin (P = 0.002) and elevated direct bilirubin (P = 0.009) were independently associated with persisting anaemia at 4 weeks. Anaemia may therefore persist in about one in every two Thai patients for up to 28 days after beginning effective treatment for acute Plasmodium falciparum malaria, hypoproliferative erythropoiesis appearing to be the most common mechanism of this anaemia. While it is likely that the malarial episode itself is somehow responsible for these persistent haematological changes, other, underlying, chronic processes might have a contributory role. Whatever the cause, the continuing anaemia appears to be related to the degree of hepatic dysfunction on admission.

The sialylated P-selectin ligand was trypsinsensitive, which suggests that it could be part of the parasite antigen PfEMP1 that interacts with CD36 and intercellular adhesion molecule-1 (ICAM-1), but different from a trypsinresistant IRBC ligand that adheres selectively to chondroitin sulfate A. Studies on the rolling and adhesion of IRBC on activated platelets that express both CD36 and P-selectin showed that inhibition of rolling on P-selectin reduced the adhesion of some clinical parasite isolates to CD36, whereas other parasite isolates appeared to interact directly with CD36. Thus, cytoadherence under physiological flow conditions may be mediated by multiple IRBC ligands that interact with different adhesion molecules in a cooperative fashion. These findings underscore the complexity of the interactions between IRBC and vascular endothelium.

We compared the safety and efficacy of three formulations of dihydroartemisinin for the treatment of acute uncomplicated falciparum malaria in patients who received a total dose of 600 mg dihydroartemisinin over 5 days. The first group was treated by dihydroartemisinin produced and formulated in the People’s Republic of China, the second group was treated by dihydroartemisinin produced in Vietnam but formulated by the Government Pharmaceutical Organization of Thailand and the third group was treated by dihydroartemisinin produced and formulated by the Government Pharmaceutical Organization of Thailand. All patients were admitted to hospital to evaluate safety and efficacy for a total of 28 days. By the third day of treatment, most patients were blood-smear negative for parasites and none had serious adverse effects. Minor symptoms such as nausea, dizziness and headache were similar in the three groups and disappeared after 3 days of treatment, One-hundred and thirty-three patients completed the 28-day follow up period. The cure rates of groups I, II and III were 80%, 85% and 92% respectively (p > 0.02). There were no significant differences in fever clearance or parasite clearance among the three groups. We conclude that the three formulations of dihydroartemisinin produced and formulated in different countries were safe and effective in treating uncomplicated falciparum malaria acquired in Thailand.

Tumor necrosis factors-α (TNF-α), interleukin (IL)-1β, and IL-6 are implicated in the pathogenesis of severe *Plasmodium falciparum* malaria. In this study, the effect of IL-10 on their production by peripheral blood mononuclear cells (PBMC) from acutely infected patients was examined. Exogenous IL-10 inhibited malarial antigen-induced cytokine production by reducing mRNA accumulation. Maximal inhibition occurred when IL-10 was added in the first 2 h of stimulation. Conversely, the addition of anti-IL-10 markedly enhanced TNF-α, IL-1p, and IL-6 production. The effect was significantly greater on PBMC from patients with uncomplicated infection than PBMC from patients with severe disease. Kinetics studies showed that TNF-α, IL-6, and IL-1/3 were produced within 2-4 h of stimulation, while IL-10 was first detectable after 8 h. These findings suggest that IL-10 counter-regulates the proinflammatory response to *P. falciparum*. Severe falciparum malaria may be associated with an inadequate negative feedback response by IL-10.

Published in: *J Infect Dis* 1998;178:520-5.

Thalassemia is common in Southeast Asia, where artemisinin derivatives are frequently used in the treatment of malaria. It has been previously reported that artemisinin derivatives can be concentrated by uninfected thalassemic erythrocytes in vitro but not by normal erythrocytes. As a follow-up to this report, we studied the antimalarial kinetics of intravascular artesunate (2.4 mg/kg of body weight) in 10 persons with normal hemoglobins and in 10 patients with thalassemia (2 with α-thalassemia type 1-hemoglobin Constant Spring and 8 with α-thalassemia type 1-α-thalassemia type 2). Concentrations of artesunate and its active metabolites in plasma were measured by bioassay and expressed relative to those of dihydroartemisinin, the major biologically active metabolite. Concentrations of intravascular artesunate in plasma peaked in both the normal individuals and the thalassemic individuals 15 min after injection (the first time point). Plasma drug concentrations at all time intervals, except that at 1 h, were significantly higher in thalassemic subjects than in normal subjects (P < 0.05). The area under the concentration-time curve was 9-fold higher (P < 0.001) and the volume of distribution at steady state was 15-fold lower (P < 0.001) in thalassemic than in normal subjects. In light of the potential neurotoxicity of artemisinin derivatives, these results suggest that thalassemic subjects may need a drug administration regimen different from that of normal patients.

Previous studies have reported increased serum concentrations of nitrite/nitrate the degradation products of nitric oxide in *Plasmodium vivax* malaria. In all these studies, however, nitrite/nitrate has been measure spectrometrically using Griess reagent which carries major disadvantages in the determination of serum nitrite/nitrate. The method does not allow an exact differentiation of nitrite and biogenic amines that are physiologically present in plasma. In the present study we introduce high-performance liquid chromatography as a new, accurate and cost effective method for determination of serum nitrite/nitrate levels. Significantly increased nitrate concentrations were found in malaria patients and serum values remained above normal levels for at least 21 days. It could be shown that our HPLC method is a sensitive and cost-effective method for direct determination of nitrite/nitrate in serum samples, which is not influenced by the presence of biogenic amines.

Published in: J Chromato 1998;706:347-51.

The ability of *Plasmodium falciparum* infected erythrocytes from 162 Thai patients with uncomplicated malaria, 82 patients with severe malaria and 19 patients with cerebral malaria to form rosettes *in vitro* was studied. Of 263 isolates, 62 were evaluated for their adherence to different target molecules. We found that wide variation occurred in isolates from all groups in the level of rosette formation and adherence to CD36, intracellular adhesion molecule-1, thrombospondin and chondroitin sulfate A. No statistically significant correlation between the magnitude of rosette formation and disease severity was found (p > 0.05). In addition, our results from the use of purified CD36 as an adherence receptor showed no association between the degree rosetting and level of cytoadherence (p > 0.05, r = -0.04). Our data provide evidence that rosette formation and cytoadherence involve different molecular mechanisms and both phenomena can occur in all manifestations of the disease.

The effect of pentoxifylline (PTX) was tested for its capacity to modulate cytokine responses during therapy of severe *Plasmodium falciparum* malaria in a placebo-controlled, randomized study in 45 adult patients in Bangkok, Thailand. The patients received standard antimalarial treatment with artesunate (120 mg intravenously given immediately, then 60 mg every 12 hr for a total dose of 600 mg). The patients received either low-dose PTX (20 mg/kg/day, n=15), high-dose PTX (40 mg/kg/day, n=15), or placebo (n=15) as continuous infusion for the first three days of antimalarial treatment. Tumor necrosis factor (TNF)
and interleukin-6 (IL-6) plasma levels were markedly elevated in all patients prior to treatment. After 6 hr of high-dose PTX treatment, TNF and IL-6 level significantly decreased while and increase in TNF and IL-6 levels was seen after 6 hr of low-dose PTX or placebo treatment (p < 0.01). After 12 and 24 hr of high-dose PTX infusion, TNF-receptor plasma concentrations were lower than in low-dose PTX- or placebo-treated patients (p < 0.01), whereas no differences between the groups with regard to IL-6 receptor levels were observed. We conclude that 40 mg/kg/day of PTX reduces plasma levels of TNF, IL-6, and TNF-receptor in patients with severe malaria. Whether this reduction improved clinical outcome remains to be determined.

Plasmodial infection results in a significant elevation of the blood concentrations of immunoglobulins including IgE. To elucidate the role of the latter in malaria, two well characterized groups of adult Thai patients with either uncomplicated or severe P. falciparum malaria were studied during four weeks. At admission the mean parasitemias were approximately 3x higher in patients with severe than in those with uncomplicated disease. While almost 70% of the patients had IgG anti-plasmodial antibodies at admission, this incidence increased to 100% within a few days. The concentration of these antibodies as well as that of total IgG was higher in the patients with uncomplicated disease than in those with severe disease for at least 3 weeks. IgE anti-plasmodial antibodies were present in approximately 65% of the patients and their concentrations were positively correlated to parasitemia, suggesting that the number of infecting parasites may be instrumental in the switch to an enhanced production of IgE. In the patients with severe disease IgE antibodies were present at higher concentrations than in the patients with uncomplicated disease. Taken together, the results confirm that IgG anti-plasmodial antibodies are protective in P. falciparum malaria and contribute to reduce disease severity. The different distribution of IgE antibodies together with their capacity to induce local overproduction of TNF suggests that they contribute to the pathogenesis of this infection.

Pulmonary edema (PE) is considered a serious complication of falciparum malaria. Usually, it occurs with cerebral malaria (CM), acute renal failure, high parasitemias, or delayed antimalarial treatment. From 1993 to 1996, 120 patients with CM admitted to the intensive care unit of the Bangkok Hospital for Tropical Diseases were enrolled in a prospective treatment study using artesunate and mefloquine, in combination. A majority of patients developed complications in other organs, especially acute renal failure. Twenty-five patients (21%) developed PE. All were treated supplemental oxygen and for ARDS, positive end-expiratory pressure (PEEP). In most patients (19 of 25), PE was noted on the first day of admission and was associated with higher parasitemias and levels of acidemia, in comparison with non-PE patients. Ten of the 25 patients diagnosed with PE developed an
ARDS-like syndrome: 7 died, 5 within 24 hours of admission. There were no deaths in PE patients without ARDS. The mean CVP when PE was diagnosed was markedly lower in ARDS than non-ARDS, supporting the argument that fluid imbalance is not essential for malaria-induced lung injury. Early diagnosis and prompt treatment remain important principles to reduce the morbidity and mortality associated with complicated falciparum malaria. This report emphasizes the importance of pulmonary monitoring in adults with CM and that ARDS, as in other diseases, is an especially poor prognostic indicator.

Concomitant infection with malaria and filariasis is known to occur in animals and the co-infection appears to lessen the severity of malaria. We report here the incidence of co-infection with filariasis among 4,201 malaria patients admitted to the Bangkok Hospital for Tropical Diseases, Mahidol University, Thailand, between 1995 and 1997. There were eight patients (0.2%) with microfilariae (all Wuchereria bancrofti) in the peripheral blood smear. Four of the 8 patients had falciparum malaria and two patients among this group had cerebral malaria which responded to treatment without any long term sequelae. The rest four patients, three had vivax malaria while the last one had uncomplicated mixed infection of falciparum and vivax malaria. Filariasis was asymptomatic in all patients and cured with diethylcarbamazine. The eight patients resided along the Thai-Myanmar border, which is known to be endemic for both diseases. Our findings indicate the existence of co-infection of malaria and filariasis in Thailand, especially among patients from the Thai-Myanmar border. From this small number of patients, it is difficult to conclude that filariasis affects the severity of malaria. However, the data does emphasize the importance of instituting early diagnosis and early treatment of both infections.

The difficulties in treating drug-resistant falciparum malaria in Thailand are compounded by the necessity of giving antimalarials over long periods of time. The resultant fall in patient compliance not only lowers cure rates but also predisposes to the further spread of drug-resistance. Sequential treatment with artemesunate given over 5 days followed by mefloquine produced 100% cure rates in previous study, but might not be a suitable regimen for field treatment. We conducted a clinical trial of a combination of artemesunate and mefloquine given twice daily for 2 days in 150 patient with acute uncomplicated falciparum malaria. The dose of artemesunate (200 mg) and mefloquine (312.5 mg) were given simultaneously in a separate package. All patients were admitted to hospital in Bangkok for 28 days to exclude re-infection and monitor the possible adverse effects. One hundred and thirty patients completed the study 28 days follow up. Twenty patients (13%) left the hospital prior to completion of follow-up for reasons unrelated to their treatment. Cure rate was 97% (126/130). There was no RII or RIII failures and all four patients of the treatment failures were at the RI type. The mean parasite clearance time and fever clearance...
time were 46.4 and 42.5 hours respectively. All patients tolerated the combination drugs well and there were no serious toxic adverse reactions. The results indicate that combination of artesunate and mefloquine given twice daily for 2 days is effective and well tolerated in patients with acute, uncomplicated falciparum malaria and suitable as an alternative treatment for multidrug resistant falciparum malaria.

PREDICTING MORTALITY IN PATIENTS WITH MALARIAL ACUTE RENAL FAILURE

EK Westerlund¹, P Wilairatana¹, S Loaareesuwan¹, S Vannaphan¹, S Krudsood¹, S Treeprasertsk¹, P Siriuriya¹, M Aikawa², VR Gordeuk³, GM Brittenham⁴, GH Neild⁵

¹Department of Clinical Tropical Medicine and Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
²Research Institute of Medical Sciences, Akai University, Isehara, Kanagawa, Japan
³The George Washington University Medical Center, Suite 3428, 2150 Pennsylvania Avenue N.W., Washington, D.C., USA
⁴MetroHealth Medical Center, Rammelkamp Building, room 114, 2500 MetroHealth Drive, Cleveland, Ohio 44109-1988, USA
⁵Institute of Urology and Nephrology, Middlesex Hospital, Mortimer St., London W1N 8AA, United Kingdom

APACHE III scores, calculated within the first 24 hours of admission, were analyzed in 108 patients with acute renal failure due to falciparum malaria who were admitted to Bangkok Hospital for Tropical Diseases, Thailand. Twelve (11.1%) patients died. The mean APACHE III score was 82.0 ± 25.5 (range, 45-171). There was a close relation between the APACHE III score and the hospital mortality rate. The nonsurvivors had significantly higher APACHE III scores than the survivors, 109.8 ± 36.7 and 75.7 ± 21.6 respectively (p<0.001). Patients with APACHE III score 82 had a 4.2-fold higher risk of dying compared with patients with a lower score (95% CI 1.2-14.7; p=0.013).

Hemodialysis treatment was performed in 97 (89.8%) of the patients. Although the mean APACHE III score for patients who were not treated with hemodialysis (95.9 ± 38.0) was not significantly higher than for patients who received hemodialysis (80.4 ± 23.5; p>0.05), the former had a 4.4 times higher risk of dying compared with patients who received hemodialysis (95% CI 1.6-12.3; p=0.019).

Using the APACHE III score and its ability to predict death, we calculated its sensitivity, specificity and accuracy to be 0.92, 0.31 and 0.41 respectively at a cutoff score of 67 points. The area under the receiver operating characteristic (ROC) curve was 0.75.

The APACHE III scoring system correlated well with the mortality of critically ill malaria patients with acute renal failure, although it was not possible to identify individual survivors or nonsurvivors. APACHE III should not be used for individual prognosis or treatment decisions.

TREATMENT OF MALARIAL ACUTE RENAL FAILURE BY HEMODIALYSIS

P Wilairatana¹, EK Westerlund¹, B Aursudkij¹, S Vanaphan¹, S Krudsood¹, P Viriyavejakul¹, W Chokejindachai¹, S Treeprasertsk¹, P Siriuriya¹, VR Gordeuk¹, G Brittenham¹, G Neild¹, S Loaareesuwan¹

¹Department of Clinical Tropical Medicine and Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
²The George Washington University Medical Center, Suite 3428, 2150 Pennsylvania Avenue N.W., Washington, D.C., USA
³MetroHealth Medical Center, Rammelkamp Building, room 114, 2500 MetroHealth Drive, Cleveland, Ohio 44109-1988, USA
⁴Institute of Urology and Nephrology, Middlesex Hospital, Mortimer St., London W1N 8AA, United Kingdom

We studied 112 patients with malarial acute renal failure (ARF) during the years of 1991 to 1997 at Bangkok Hospital for Tropical Diseases, Mahidol University in Bangkok, Thailand. Hemodialysis was performed in 101 (90.2%) of these patients. The mean number of times the patients were hemodialysed was 6.5 (range, 1-27). Ninety-three (83.0%) patients were oliguric and the remainder were nonoliguric. Patients who had oliguric renal failure required more hemodialyses and had more complications than the nonoliguric patients. The oliguric patients had an eight-fold higher risk of requiring six or more hemodialyses (95% CI of 1.2-53.9; p=0.0008). The overall mortality rate was 10.7% (12 of 112). Eleven of the patients who died were jaundiced and eight of them had cerebral malaria with GCS ≤ 8. We conclude that hemodialysis is a useful treatment for oliguric and nonoliguric ARF from severe malaria, particularly when initiated early in the course of illness.

To determine if hemoglobin E trait influences the course of acute malaria, adult patients hospitalized for the treatment of symptomatic infection with Plasmodium falciparum were studied retrospectively. Forty-two patients with hemoglobin E trait were compared to 175 reference subjects who did not have hemoglobin E, b-thalassemia, glucose-6-phosphate dehydrogenase deficiency, or a-

thalassemia. One patient with hemoglobin E trait (2.4%) had a severe complication of malaria by World Health Organization criteria (cerebral malaria) while 32 subjects in the reference group (18.3%) had one or more severe complications: cerebral malaria (n=18), hyperparasitemia (n=16), renal failure (n=10), severe anemia (n=1) (p=0.044 after adjustment for ethnic categories). The estimated odds of severe complications in the reference subjects were 6.9 times the odds in patients with hemoglobin E trait (95% confidence interval of 1.2 to 146.4). These results suggest that hemoglobin E trait may ameliorate the course of acute falciparum malaria.

Published in: J Infect Dis 1999;179 (in press).

Plasma levels of members of the interleukin-6 (IL-6) family (IL-6, soluble IL-6receptor, soluble gpl30, leukemia inhibitory factor (LIF), and ciliary neutrophic factor (CNTF)) were analyzed in 32 patients with severe malaria. 10 patients had renal failure, 8 patients had cerebral, and 14 patients had other causes of severity. Prior to treatment plasma IL-6, and soluble IL-6 receptor were significantly higher in cerebral and/or renal malaria compared to the other group (<0.05 for both). The highest levels were seen in cerebral malaria (p< 0.05 compared to renal malaria or other forms of severe malaria). 24 hr. after initiation of therapy IL-6 levels dropped but soluble IL-6 receptor levels increased further in all groups. CNTF levels were significantly reduced in cerebral malaria and renal failure compared to moderate severe malaria or healthy controls, and normalized 24 hr. after start of treatment. Plasma concentration of gpl30 and LIF were not different between malaria patients, and healthy controls. We conclude that i. excessive levels of IL-6 could be controlled by a subsequent shedding of the soluble IL-6 receptor, ii. in contrast of septicemia LIF levels are not elevated in severe malaria, and iii. low level CNTF expression could contribute to cerebral malaria and/or renal failure.

Submitted for publication (1998).
It was the aim of the present study to investigate the time course of G-CSF serum concentrations in patients with complicated *P. falciparum* malaria in comparison with other immunological parameters.

26 patients suffering from complicated *P. falciparum* malaria were included into the study, 20 age and sex matched healthy volunteers were used as negative control group. Serum samples for determination of G-CSF were taken on day 0, 7 and 14. A commercially available ELISA was used for analysis.

Serum concentrations of G-CSF were increased in patients with complicated *P. falciparum* malaria on admission (583 ± 740 pg/ml). Values had decreased to within the normal range by day 7 (13.3 ± 8.4 pg/ml; control group: 16.3 ± 5.4 pg/ml). A significant correlation was found between G-CSF (do) and procalcitonin, the parasite count, erythropoietin and macrophage inflammatory protein-1 alpha serum concentrations.

In conclusion elevated serum concentrations of G-CSF were found in patients with complicated *P. falciparum* malaria on the day of admission. This might indicate a role of G-CSF in the acute defense mechanism against these parasites.

Submitted for publication (1998).

The decreased susceptibility of malaria parasites to the drugs currently used for treatment of malaria is one of the main reasons for failure to control this disease in many endemic areas in Thailand. Several groups have reported that many of the *Plasmodium falciparum* isolates from Thailand have resisted antimalarials other than chloroquine which include cycloguanil, pyrimethamine and sulfadoxine (Edstein et al., 1996; 1997; Wilairatana et al., 1997). Resistance to chloroquine and pyrimethamine is widespread in Thailand and it has been reported that pyrimethamine resistance is still rising (Thaithong et al., 1990). Genetic analysis has demonstrated associations between point mutations in codon 108 of the DHFR gene and resistance to pyrimethamine and cycloguanil (Edstein et al., 1996; 1997; Wilairatana et al., 1997). Resistance to chloroquine and pyrimethamine is widespread in Thailand and it has been reported that pyrimethamine resistance is still rising (Thaithong et al., 1990). Genetic analysis has demonstrated associations between point mutations in codon 108 of the DHFR gene and resistance to pyrimethamine and cycloguanil. A serine at position 108 is linked to sensitivity to both these drugs while a mutation to asparagine (Asn-108) or threonine (Thr-108) at this position confers resistance to pyrimethamine and cycloguanil respectively (Foote et al., 1990; Peterson et al., 1990). Polymerase chain reaction (PCR) using specific primers has been used successfully to detect these mutations in *P. falciparum* isolates from other geographical areas such as Africa (Plowe et al., 1995) and the Brazilian Amazon (Peterson et al., 1991). However, in a study with Malaysian *P. falciparum* isolates, there was no clear association found between the presence of Asn-108 and pyrimethamine resistance (Lim et al., 1998). In addition, there was considerable heterogeneity found in a large number of these isolates with both Ser-108 and Asn-108 found in the same individual. Therefore we would like to determine whether these mutations occur frequently in *P. falciparum* isolates from Thailand and whether any heterogeneity of these markers exists.

Published in: *Southeast Asian J Trop Public Health* 1998 (in press).
CIRCULATING RECEPTORS ICAM-1, VCAM-1, E-SELECTIN AND CHONDROITIN-4-SULFATE A IMPLICATED IN CYTOADHERENCE IN THE COURSE OF SEVERE PLASMODIUM FALCIPARUM MALARIA IN THAILAND

Kabongo Muanza¹, Boubacar Traore¹, Frederick Gay¹, Srivicha Krudsood², Martin Danis¹, Sornchai Looareesuwan²

¹Service de Parasitologie–INSERM U313, Groupe Hospitalier Pitié-Salpêtrière, Paris, France. ²Hospital for Tropical Disease, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

The kinetic profiles of the circulating receptors was compared in a case control study to determine if they could be considered as predictive markers for the severity of *P. falciparum* malaria. We observed a significant difference between ICAM-1 concentrations in severe malaria cases compared to the uncomplicated cases (*p*=0.01). However, there was a significant increase in CSA concentrations in both groups compared to a control group (*p* = 10^-5), without correlation between the plasma level of CSA and the severity of malaria infection. Plasma levels of E-selectin and VCAM-1 were increased in the two groups compared to the corresponding control groups. Our results suggest that the plasma concentration of ICAM-1 may be considered as a marker for the severity of malaria.

THE EOSINOPHILIC RESPONSE AND HEMATOLOGIC RECOVERY AFTER TREATMENT FOR PLASMODIUM FALCIPARUM MALARIA

Luis H Camacho¹, Polrat Wilairatana³, Gunter Weiss², Marco A Mercader¹, Gary M Brittenham⁴, Sornchai Looareesuwan³, Victor R Gordeuk¹

¹Department of Medicine, The George Washington University Medical Center, Washington, DC, USA. (LHC, VRG, MAM) ²Department of Medicine, University Hospital, Innsbruck, Austria. (GW); ³Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand (PW, SL), ⁴Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH. (GMB).

To examine a possible relationship between the T-helper cell type 2 (Th-2) immune response and hematologic recovery after acute falciparum malaria, we followed peripheral blood eosinophil counts and hemoglobin concentrations for four weeks after starting effective treatment in 16 adult Thai patients whose stools were negative for ova and parasites. Eosinophils are induced by Th-2 cytokines and reflect the activity of this arm of the immune response. Eosinophil counts were normal in all but one subject at presentation, probably reflecting predominance of the Th-1 response over the Th-2 response early in the infection, but were elevated in all but one subject by day 7. Eosinophil counts then decreased markedly by day 14 and did not change significantly thereafter. A significant positive correlation was found between peak eosinophil counts on day 7 and the hemoglobin concentration on day 28 (*r* = 0.65, *p* = 0.006). These results suggest that a robust Th-2 immune response shortly after completing antimalarial therapy predicts for a good recovery from malaria-associated anemia.

Submitted for publication (1998).
Multi-drug resistant falciparum malaria is a serious problem in Thailand. Therapeutic failures with all available antimalarial drugs are well documented. With this deteriorating situation, new drugs are urgently needed. The new drugs including atovaquone, artemisinin derivatives (artesunate, artemether, dihydroartemisinin), CGP 56697, pyronaridine and gilvanide-dapsone have been studied in clinical trials in Bangkok Hospital for Tropical Diseases since 1988. This paper is an overview of these clinical studies on new antimalarial drugs in patients with uncomplicated falciparum malaria.

Clinical trials of new antimalarial drugs (atovaquone, artemisin, dihydroartemisinin, CGP 56697, pyronaridine, and gilvanide-dapsone combinations) for treatment of uncomplicated malaria have been studied in Bangkok Hospital for Tropical Diseases. Atovaquone, artemisinin derivatives, and CGP 56697 have proved effective and safe.

Single doses (250, 500, 1000 or 2000 units/kg) of an ovine polyclonal specific Fab fragment directed against tumor necrosis factor-α were given to 17 adult patients with severe falciparum malaria immediately before treatment with artesunate in a pilot study to assess safety and optimal dosage with a view to future studies. Clinical and laboratory variables were compared with 11 controls. In the groups given Fab there was a tendency for a faster resolution of clinical manifestations and reduction of fever but also a tendency towards longer parasite clearance times. Adverse events were more common in the control group and no early anaphylactoid or late serum sickness reactions occurred in the Fab treated patients. On admission all patients had markedly elevated TNFα (85-1,532 ng/L) and IL-6 concentrations (30-27,500 ng/L), most had elevated IFNγ values and a few had raised IL-2, IL-8 and IL-18 levels. Antibody treatment reduced IFNγ concentrations in a dose-related manner, but had no obvious effects on levels of other cytokines in this small study, although unbound TNFα was undetectable after Fab treatment. Circulating concentrations of soluble E-selectin, ICAM-1 and VCAM-1 were not affected by Fab treatment. The Fab exhibited a two compartment, dose proportional kinetics with an average elimination half-life of 12.0 hr and with about 20% being excreted renally. These results encourage a randomized, placebo-controlled trial in patients with cerebral malaria and provide some guidance about dosage.

A rapid selective, sensitive, and reproducible reversed-phase HPLC procedure for the quantitative determination of the active metabolite of an immunosuppressant - mycophenolate mofetil i.e., mycophenolic acid (MPA) in plasma is described. The procedure involved a single step extraction of MPA and the internal standard, carboxy butoxy ether mycophenolic acid (MPA) with dichloromethane (6 ml) at acidic pH. Chromatographic separation consisted of the mobile phase (acetonitrile: 0.05 M phosphate buffer pH 3.2 = 50:50 v/v) running through the column (Techopak-10 C18 : 10 cm x 4.6 mm i.d., 10 (m particle size) at flow rate of 0.8 ml/min. Detection was at uv wavelength of 254 nm. The mean recoveries of MPA and the internal standard at concentration range of 1 and 200 µg/ml were 98.9 vs 89%, and 94.7% vs 96% for MPA vs CMPA. The within-day coefficients of variation were 2.47-9.02% for MPA, and 5.9-8.4% for CMPA. The day-to-day coefficients of variation were 2.1-4.1% for MPA and 5% for CMPA. The minimum detectable concentrations for MPA and CMPA in plasma were 5 and 10 ng/ml. The method was found to be suitable for use in clinical pharmacokinetic study.

Submitted for publication.
PHARMACOKINETICS OF A SINGLE ORAL DOSE OF DIHYDROARTESMININ IN VIETNAMESE HEALTHY VOLUNTEERS

Juntra Karbwang1, Kesara Na-Bangchang1, Le Ngoc Hung1,2, Ratawan Ubalee1, Umaporn Tasanor1
1Clinical Pharmacology Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 2Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam

Pharmacokinetics of a 240 mg single dose of oral dihydroartemisinin (DHA) was investigated in 8 healthy (5 males, 3 females) Vietnamese volunteers. Plasma concentrations were measured by high-performance liquid chromatography with electrochemical detection in the reductive mode. The concentration time profile of DHA was fitted with one-compartment model with a lag time. Pharmacokinetics of DHA is comparable between males and females even when adjusting with dosage. The median (range) values of pooled pharmacokinetics of oral DHA were: t_{lag} 0.41 (0.09-0.78) hours, $t_{1/2a}$ 0.58 (0.17-1.43) hours, t_{max} 1.6 (1.1-2.2) hours, C_{max} 466 (128-787) ng/ml, C_{max}/dosage 97.7 (27.2-124.6) ng/ml, $t_{1/2z}$ 2.0 (1.5-3.4) hours, AUC 1867 (420-3535) ng.h/ml, AUC/dosage 364.3 (89.3-559.7) ng.h/ml/dosage, Cl/F 45.8 (30.0-190.0) ml/min/kg, V_z/F 8.0 (5.5-29.9) l/kg. Interindividual variation was large, the coefficients of variation (CV) were 47.8% and 45.3% respectively to AUC and C_{max}. The t_{max} of DHA formulation was comparable with that of DHA metabolite of artemisinin derivatives. The $t_{1/2z}$ was longer and shorter than that of DHA metabolites of oral formulations of artesunate and artemether respectively. DHA is suggested to combined with another long acting blood schizontocidal drugs in malaria treatment.

Submitted for publication.

PHARMACOKINETICS OF A SINGLE ORAL DOSE OF DIHYDROARTESMININ IN VIETNAMESE PATIENTS WITH UNCOMPLICATED FALCIPARUM MALARIA

Kesara Na-Bangchang1, Le Ngoc Hung1,2, Ratawan Ubalee1, Pidist Molunto1, Vick Banmairuroi1, Juntra Karbwang1
1Clinical Pharmacology Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 2Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam

Pharmacokinetics of 240 mg single oral dose of dihydroartemisinin (DHA) was studied in 26 (21 males, 5 females) adult Vietnamese patients with uncomplicated falciparum malaria. There was no difference in DHA pharmacokinetics between male and female patients. Pharmacokinetic parameters in patients were significantly different from those corresponding in Vietnamese healthy subjects in previous study except the half-lives of absorption ($t_{1/2a}$) and elimination ($t_{1/2z}$). In patients, the median [range] of t_{lag} was longer (0.82 [0-1.48] vs 0.41 [0.09-0.78] h), t_{max} was later (2.2 [1.1-3.84] vs 1.6 [1.1-2.1] h), C_{max} and C_{max}/dosage were higher (845 [345-2280] vs [128-787] ng/ml and 161.1 [27.2-124.6] ng/ml/dose/body weight), but V_d/F and total systemic clearance Cl/F were lower (3.3 [1.4-11.07] vs 8.0 [5.5-29.91] 1/kg and 24 [7.1-43.03] vs 45.8 [29.9-101.1] ml/min/kg, respectively), compared to healthy subjects. These data suggested the increase of plasma protein binding and the reduction in systemic clearance of DHA in acute phase of malaria illness.

The mean [SD] of lag time for observed DHA concentration to be up to the maximum MIC of DHA (7.47 ng/ml) previously reported in Vietnamese $P.falciparum$ isolates was 0.8 [0.4] h. The latest time for observed DHA concentrations to be down to the MICmax of DHA was 15.0 [3.7] h, thus the duration time to be above the MICmax was 14.2 [3.6] h. Therefore, the treatment dose for oral DHA is suggested to be at least 240 mg (equal 5.04 [0.9] mg/kg) per day for 5 days, no reduced dose after the first treatment dose if suggested for DHA monotherapy.

Submitted for publication.
THE COMPARISON BETWEEN TWO METHODS OF THE IN VITRO SENSITIVITY TEST OF PLASMODIUM FALCIPARUM ISOLATES

Ratawan Ubalee, Pongsri Tippawangkosol, Sum-arng Chawanakavee, Kesara Na-Bangchang, Juntra Karbwang
Clinical Pharmacology Unit, Faculty of Tropical Medicine, Mahidol University, Hospital for Tropical Disease, Faculty of Tropical Medicine, Mahidol University

Two different methods for the in vitro sensitivity testing of Plasmodium falciparum based on the in vitro micro-technique of Rieckmann et al., (1978) were applied for the assessment of the susceptibility of the parasites to the antimalarial—mefloquine. Method-I involved direct application of the fresh isolates obtained from patients’ blood without pre-cultivation, while method-II involved the pre-cultivation of the parasites for 1 cycle (48 h) prior to assay. Of the 60 isolates tested, 37 (61.6%) exhibited successful growth [14 (23.3%), 22 (36.67%), and 1 (1.67%) for growth in either method-I or method-II, method-I alone, and method-II alone, respectively], whereas 23 (38.33%) were unable to demonstrate significant growth following a successive incubation period of 24-36h of sensitivity testing. No significant association was observed between the initial parasitaemia and the success growth rate in method-I [median (range) 0.5 (0.1-2%) and 0.2 (0.1-1%), respectively for the isolates with and without successful growth]. The in vitro assays were eventually successful evaluated from 21 isolates out of the 37 isolates with successful growth (21.19 and 9 isolates from either method-I or method-II, method-I alone, and method-II alone, respectively). The final success rate of in vitro sensitivity testing was found to be significantly higher for method-I compared with that of method-II (p<0.0001, 95% C.I. 2.18-10.66). Both methods however, revealed similar susceptibility pattern of the parasites to mefloquine. Method-I is considered more preferable for the assessment of the susceptibility of P. falciparum isolates obtained from patients’ blood.

Submitted for publication.

INVESTIGATIONS OF INCIDENCE OF PYR PRETREATMENT, DRUG SENSITIVITY IN VITRO AND PLASMA LEVELS OF PYRIMETHAMINE IN PATIENTS WITH MULTIDRUG RESISTANCE FALCIPARUM MALARIA FOLLOWING THE THREE COMBINATION REGIMENS OF ARTEMETHER/PYRIMETHAMINE

Kesara Na-Bangchang1, Pongsri Tippawangkosol1, Ratawan Ubalee1, Kanungal Congpuong2, Jirapat Sirichaisinthop2, Juntra Karbwang1
1Clinical Pharmacology Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 2The Malaria Division, Department of Communicable Diseases Control, Ministry of Public Health, Bangkok, Thailand

The study was carried out to investigate the status of in vitro susceptibility of Plasmodium falciparum to pyrimethamine (PYR) in multidrug resistance area of Thai-Myanmar border, the incidence of unregulated use of PYR (as Fansidar®) in this area and the relevance of pharmacodynamic and pharmacokinetic factors in determining the treatment outcome from the three combination regimens of ART/PYR (1-, 2- and 3-day regimens), in patients with acute uncomplicated falciparum malaria. The majority of patients had baseline concentrations between 1-100 (50.6%) and more than 100-500 (34.8%) ng/ml while concentrations of more than 500 ng/ml were found in only 1.1%. All of the isolates exhibited high grade resistance to PYR with the minimum inhibition concentration (MIC) of as high as 10-5 M. No association was observed between treatment outcome and the presence of baseline plasma PYR concentrations. In addition, lack of association between plasma concentrations during the acute phase (day -1 and -2) and treatment outcome was found.

Submitted for publication.
A pharmacokinetic study with prophylactic doses of mefloquine hydrochloride was conducted in 12 healthy adult subjects (Caucasian), 6 males and 6 females, mean age 29.2 ± 6.4 years, mean weight 70.6 ± 13.4 kg. Doses of 250 mg mefloquine were administered on days 0 and 1, 7, 14, 21 and 28. Six subjects received 5 more weekly doses of 250 mg mefloquine, the others 5 more weekly doses of 125 mg. After the third dose the protective threshold concentration was reached in all subjects. In female subjects mean C_{minSS}, C_{maxSS}, and AUC$_{0-35}$ were significantly higher, and the weight-adjusted V_{ss} values significantly lower, than in males. After the fifth dose mean C_{maxSS} in females reached 1692 ng/ml (4.48 mmol/l), equivalent to a high therapeutic concentration. This may be explained by gender-associated with excessive drug concentrations. This calls for an appropriate adjustment of the prophylactic dose regimen of mefloquine in females.

Submitted for publication.
IN VITRO SENSITIVITY OF PLASMODIUM FALCIPARUM AND CLINICAL RESPONSE TO BENFLUMETOL AND ARTEMETHER

Ratawan Ubalee2, Peerapan Tanariya1,2, Juntra Karbwang2, Kesara Na-Bangchang2, Walther H. Wernsdorfer2,3, Oumaporn Tasanor2

1Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
2Unit of Clinical Pharmacology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
3Institute of Specific Prophylaxis and Tropical Medicine, University of Vienna, Austria.

In vitro sensitivity tests with 103 Plasmodium falciparum isolates were conducted in Thailand in the framework of a clinical dose finding trial with combination of artemether and benflumetol (CGP 56697) for the treatment of uncomplicated falciparum malaria in an area affected by multi-drug resistance. The CGP 56697 tablets contain 20 mg artemether and 120 mg benflumetol. In the trial standard dose regimen, namely 4 doses of 4 tablets over 48 hours, was compared with two lower dose regimens (4 x 2 tablets and 3 x 4 tablets). The parasites showed high resistance to chloroquine, fairly advanced resistance to mefloquine and compromised sensitivity to quinine. Sensitivity to artemisinin and benflumetol prior to treatment was similar in all treatment groups. The 4 x 4 tablet regimen was more effective than the other regimens in coping with infections with relatively low sensitivity to artemisinin and/or benflumetol. Parasite density at the start of treatment was identified as the critical predictor of treatment outcome, indicating that parasite exposure to the drugs may have been too short in the cases of treatment failure, particularly, marked in the lower dose regimens. This could be remedied by an improved drug regimen.

Submitted for publication.

PHARMACOKINETICS OF MEFLOQUINE IN VIETNAMESE HEALTHY VOLUNTEERS

Juntra Karbwang1, Kesara Na-Bangchang1, Le ngoc Hung1, Vick Banmairuroi1, Auratorai Thanavibul1

1Unit of Clinical Pharmacology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
2Tropical Disease Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Viet Nam

The pharmacokinetics of mefloquine was investigated in eight (5 males, 3 females) Vietnamese healthy subjects following the administration of a single oral of 750 mg of mefloquine (Mephaquine®; 250 mg per tablet; Mepha Pharmaceuticals, Switzerland). The pharmacokinetics of mefloquine in both female and male Vietnamese subjects were comparable to those reported in Thai subjects in previous studies. Pharmacokinetic parameters of a fixed 750 mg dose were similar between males and females except Cmax and AUC which were significantly higher and VSS/F which was lower in females than in males (p = 0.025). When normalising for dosage, Cmax/dosage and VSS/F of both groups, but not AUC/dosage were still significantly different (p = 0.0.25). Difference in volume of distribution could have contributed in part, to the observed higher whole blood concentration of mefloquine in females. Therapeutic or prophylactic regimens of mefloquine based on dosage per kilogram body weight are suggested in Vietnamesees.

Submitted for publication.

PHARMACOKINETICS OF INTRAMUSCULAR ARTEMETHER IN PATIENTS WITH SEVERE FALCIPARUM MALARIA PATIENTS WITH ACUTE RENAL FAILURE

Juntra Karbwang1, Kesara Na-Bangchang1, Tha Tin1, Khom Sukontason1, Wilajpan Rimchola1, Tranakjit Harinasuta1

1Clinical Pharmacology Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
2Department of Medicine, Propokklao Hospital, Chantaburi, Thailand

The pharmacokinetics of intramuscular artemether and its major plasma metabolite-dihydroartemisinin, were investigated in patients with severe manifestations of falciparum malaria. Six severe falciparum malaria patients with acute renal failure (ARF) and 11 without ARF were recruited into the study. They were treated with intramuscular artemether at a loading dose of 160 mg, followed by daily doses of 80 mg for another 6 days (total dose 640 mg). Patients with and without ARF showed a good initial response to treatment; the parasite and
fever clearance time were 66(30-164) and 76(36-140) h [median(range)], respectively. None had reappearance of parasitaemia in their peripheral blood smear within 7 days after the initiation of treatment. In comatose patients, the time to recovery of consciousness was 51.6(22-144) h. Artemether was detected in plasma as early as 1 h of 160 mg dose, and declined to undetectable level within 24 h in most cases. Patients with ARF had significantly higher C_{max}, AUC, and lower V_Z/F and CL/F when compared with those without ARF. In addition, t_{1/2,z} was significantly longer in the first group. The pharmacokinetics of dihydroartemisinin in these two groups of patients was comparable. Malaria and ARF conditions significantly modified the pharmacokinetics of intramuscular artemether. The changes could be attributed to either improved absorption/bioavailability, or reduction of systemic clearance, or change in plasma protein binding.

INITIAL EVALUATION OF LOW-DOSE PHENOBARBITAL AS AN INDICATOR OF COMPLIANCE WITH ANTIMALARIAL DRUG TREATMENT

Juntra Karbwang1, Wijit Fungladda2, CE Pickard3, S Shires4, A Hay4, M Feely5
1Department of Tropical Medicine, 2Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 3Department of Chemical Pathology, Leeds General Infirmary, Leeds, England, 4Division of Clinical Sciences, School of Medicine, University of Leeds, Leeds, England, 5Division of Medicine, School of Medicine, University of Leeds, Leeds, England

Since poor compliance with antimalarial therapy is often suspected but difficult to prove, this study attempted to establish a model for predicting the plasma concentration of phenobarbital (given in low doses in conjunction with the drug) as an indicator of compliance. Phenobarbital was chosen because its value had been demonstrated as a marker of compliance in long-course therapies, any significant departure from steady-state concentrations (achieved with full compliance) indication one or more missed doses. Therapy for uncomplicated malaria varies from 5 days with artesunate to 7 days with quinine + tetracycline. Volunteers with confirmed falciparum malaria were randomized into 5 groups and given malaria therapy as well as phenobarbital daily for 3-7 days. Plasma samples for determination of phenobarbital concentrations were taken just prior to the daily dose of phenobarbital. Although there was a clear and predictable individual pattern of blood concentrations following each dose of phenobarbital, inter-individual variation in blood levels was significant and reduced their predictive value beyond the second day’s dose. The cause of the variations is not clear; it could be attributable to different sources of the drug, previous intake of phenobarbital by the patient, or differences in drug absorption an disposition in malaria patients.

Results for the 5-day artesunate regimen suggest that phenobarbital may be useful as a marker of compliance if the patient stops medication after 3 days; clear differences were evident at the end of the course of treatment between plasma phenobarbital concentrations in individuals completing the 5-day course and those who stopped after 3 days. For the quinine-tetracycline regimen, results suggest that it may be possible to discriminate between subjects where there is a 3-day difference in treatment. Phenobarbital is a better discriminant when dosing is every 24 hours as with artesunate, rather than the 8-hourly regimen for quinine-tetracycline. When measuring compliance for malaria treatment, if it is important to know what proportion of patients reach 3, 5 or 7 days of compliance, then phenobarbital might have a role to play in this assessment, but further investigations in more patients would be required. Alternatively, different markers could be used for the doses to be given on these days and, as long as the patient dose not mix the doses for the different days, sequential doses and determination of compliance could be based on an all or none detection of the marker rather than on drug levels.

This study was supported by the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases

Head
Associate Professor Jitra Waikagul
Telephone: 331
E-mail: headtmhm@mahidol.ac.th, tmjwk@mahidol.ac.th

Consultant
Professor Suvajra Vajrasthira M.D., M.P.H.

Deputy Head
Associate Professor Malinee Thairungroj D.V.M., D.A.P.& E., Ph.D. (Med. Sc.)

Assistant Professor
Ponganan Nontasut M.D., Cert. of Proficiency (Ped.), D.T.M.& H.
E-mail: tmpond@mahidol.ac.th
E-mail: tmckm@mahidol.ac.th
E-mail: tmwrj@mahidol.ac.th

Scientist
Wattana Pahuchon B.S. (Zool.)
E-mail: tmwpbh@mahidol.ac.th
Wanna Maijanich B.Sc. (Biol.), M.S.P.H. (Parasit.), D.A.P.& E.
Paron Dekumyoy B.S. (Biol.), M.Sc. (Trop. Med.)
E-mail: tmpdk@mahidol.ac.th
Sanan Yaempit B.Ed. (Gen. Sc.)
Supaporn Nuamtanong B.S. (Biol.), M.Sc. (Trop. Med.)
Chatree Muennoo B.Ed. (Gen. Sc.)
Surapol Sa-nguankiat B.Ed. (Gen. Sc.), D.A.P.& E.
Tippayarat Yoonuan B.S. (Microbiol.), B.B.A Medical Science Associate

General Affairs Officer

CURRENT RESEARCH ACTIVITIES

1. Monoclonal antibody-based competitive ELISA and indirect ELISA for immunodiagnosis of trichinosis
2. The effects of *Trichinella spiralis* infection on renal functions in rats
3. Comparison of biochemical extract preparations of *Cysticercus cellulosae* by SDS-polyacrylamide gel electrophoresis and immunoblot technique
4. IgG-ELISA for detection of bancroftian filariasis by using antigenic molecules of partial surface and excretory-secretory of *Dirofilaria immitis* adult worms
5. Densitometric appearance of 24 kDa of albendazole-treated patients for gnathostomiasis, relationship between infectivity and eosinophilia
6. Ivermectin and albendazole in treatment of gnathostomiasis
7. Seasonal variation in the intensity of *Gnathostoma* larvae in swamp eels (*Flinta alba*) sold in local market of Bangkok
8. *Toxocara canis* antigens (excretory-secretory, crude extract, fractionate) for serodiagnosis of human toxocariasis
9. *Angiostrongylus cantonensis* antigens for serodiagnosis of angiostrongyliasis
 : improvement of crude antigens
 : fractionated antigens
10. Comparative protein patterns of developmental stage of *Angiostrongylus cantonensis* by SDS-polyacrylamide gel electrophoresis and immunoblot
11. Experimental infection of freshwater fish in Thailand with infective stage of *Angiostrongylus sp.*
12. Thermal effect on opisthorchid metacercariae in fish
13. Utilizing cystic fluid of *Taenia solium* metacestodes for IgG-ELISA in the detection of neurocysticercosis

TRAINING COURSE

The APCO Training Course for Senior Administrators and Leaders of Parasite Control Project for Community Health Development

Office Telephone: 246 0321, ext. 331, 332
The viscera of swamp eels were obtained from a local market in Bangkok twice a month from June 1996 to May 1997. The livers were separated, weighed and counted. *Gnathostoma* larvae were recovered from the livers by the digestion technique, examined, identified, and counted. A total of 12,278 *Gnathostoma* larvae were obtained from 18,561.1 g (15,264 pieces) of eel livers. The overall average number of larvae/g liver and the overall average number of larvae/liver are 0.91 and 0.94, respectively. The greatest number of larvae/g liver (on average) was December (high levels of infection during the months of October to December) whereas the lowest was in April (lowest levels of infection during the months of March to April). Thus there was a marked decrease in the average number of larvae/g liver during January to April, which then started to rise in May. The finding suggests that the level of infection abruptly decreases soon after the completion of the rainy season, starts to rise when the rain has come, and reaches its peak when the amount of rainfall is highest. More than 99% of the total gnathostome larvae recovered were identified to be *G. spinigerum*, and 25.4% of the entire larvae recovered bore variant of abnormal cephalic hooklets. The most common unusual feature was that there were extra rudimentary hooklets above row one, below row four and in between the four rows of hooklets which comprised 21.4%. In addition, the body size and the number of cephalic hooklets of *G. spinigerum* are also discussed.

ABSTRACTS

SEASONAL VARIATION IN THE INTENSITY OF GNATHOSTOMA LARVAE IN SWAMP EELS (FLUTA ALBA) SOLD IN A LOCAL MARKET IN BANGKOK

Wichit Rojekittikhun, Somchit Pubampen, Jitra Waikagul

Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

The viscera of swamp eels were obtained from a local market in Bangkok twice a month from June 1996 to May 1997. The livers were separated, weighed and counted. *Gnathostome* larvae were recovered from the livers by the digestion technic, examined, identified, and counted. A total of 12,278 *Gnathostoma* larvae were obtained from 18,561.1 g (15,264 pieces) of eel livers. The overall average number of larvac/g liver and the overall average number of larvae/liver are 0.91 and 0.94, respectively. The greatest number of larvae/g liver (on average) was December (high levels of infection during the months of October to December) whereas the lowest was in April (lowest levels of infection during the months of March to April). Thus there was a marked decrease in the average number of larvac/g liver during January to April, which then started to rise in May. The finding suggests that the level of infection abruptly decreases soon after the completion of the rainy season, starts to rise when the rain has come, and reaches its peak when the amount of rainfall is highest. More than 99% of the total gnathostome larvae recovered were identified to be *G. spinigerum*, and 25.4% of the entire larvae recovered bore variant of abnormal cephalic hooklets. The most common unusual feature was that there were extra rudimentary hooklets above row one, below row four and in between the four rows of hooklets which comprised 21.4%. In addition, the body size and the number of cephalic hooklets of *G. spinigerum* are also discussed.

HUMAN LUNG FLUKE PARAGONIMUS HETEROTREMUS: DIFFERENTIAL DIAGNOSIS BETWEEN PARAGONIMUS HETEROTREMUS AND PARAGONIMUS WESTERMANI INFECTIONS BY EITB

Paron Dekumyoy¹, Jitra Waikagul¹, KS Eom²

¹Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
²Department of Parasitology, College of Medicine, Chungbuk National University, Chungbuk, Korea

The specificity of three major polypeptides (35, 33 and 32.5 kD) from *Paragonimus heterotremus* antigens prepared from ether-extracted adult worms was tested against sera from heterologous infections as well as against *P. westermani*-infected sera. Only the 35 kD polypeptide was not present, its antigenic determinant being bound to the antibodies from all *P. westermani*-infected cases. Its cross-reactivity against various sera from heterologous helminthiases and other lung infections showed that it is not bound to these antigenic polypeptides. These major bands cannot be detected by Concanavalin A detector. Our research encourages the pattern (35, 33 and 32.5 kD) of immunoblot reactions for the diagnosis of *P. heterotremus* infections; the 35 kD antigen is specific for corresponding species and able to differentiate infections between both species of *Paragonimus*.

APPLICATION OF THE GELATIN PARTICLE INDIRECT AGGLUTINATION TEST IN THE SERODIAGNOSIS OF HUMAN OPISTHORCHIOSIS

Dorn Watthanakulpanich, Jitra Waikagul, Paron Dekumyoy, Malinee T Anantaphruti

Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Bithynia funiculata snail antigens were partially purified by Sephacryl S-200 gel filtration chromatography. Four fractions of *B. funiculata* snail antigens were obtained—fraction 1 (F1), fraction 2 (F2), fraction 3 (F3) and fraction 4 (F4), which F1 was chosen for the study since this is the most abundant and most reactive fraction. Levels of antibodies in sera of 85 patients with opisthorchiosis, 15 normal healthy
PREVALENCE AND INTENSITY OF HELMINTHIASES IN PRIMARY SCHOOL CHILDREN IN AMPHOE MUANG, PRACHIN BURI

Chatree Muennoo, Wichit Rojekittikhun, Jitra Waikagul
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University

A total of 761 stool samples from children of six primary schools in Amphoe Muang, Prachin Buri were examined for intestinal helminths using cellophane-covered thick smear technique. Two-hundred and twenty of the 761 children (28.9%) were found to be infected with the parasites. Hookworm infection is the most prevalent (28.4%), followed by opisthorchiasis (1.0%), strongyloidiasis (0.9%), trichuriasis (0.5%) , and enterobiasis (0.4%) , all being light infections.

EVALUATION OF LATRINE CONTAMINATION IN ASSOCIATION WITH SOIL-TRANSMITTED HELMINTHIC INFECTION IN THE ENDEMIC COMMUNITY OF SOUTH THAILAND

Jitra Waikagul, Chatree Muennoo,
Surapol Sanguankiat, Wanna Maipanich,
Somchit Pubampen, Ponganant Nontasut, Tippayarat Yoovan
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Thailand

This study was conducted in Muang District Nakhon Si Thammarat Province from June 1996 to June 1997 for the purpose of evaluating the association between latrine contamination and soil-transmitted helminthic (STH) infections among household inhabitants. Utilizing the floatation methods, soil samples collected around latrines of 115 households were examined. One hundred and twenty-nine persons from 23 latrine negative households were examined for the presence of STH eggs in their feces by Kato-Katz method. Fecal examination was performed every three months and all infected persons were treated with mebendazole 100 mg twice daily for 3 consecutive days following each examination. The prevalence of STH in the latrine-positive households was 73.7% at the beginning and 18.6% at the end of the study; in the latrine-negative households, it was 37.3% and 9.6% respectively. The infection rates in the latrine-positive group were about double the rates in the latrine-negative group; the difference was significant during the periods June and September 1996 and June 1997, but there was no difference during December 1996 and March 1997 which is the heavy rain season in this region. The study revealed that the hookworm infection rate reaches its peak during the heavy rain period among both laterine-negative and latrine-positive household members. These results suggest that during the dry season, contaminated latrines are the main source of infection, but the latrine content were disseminated by rain water throughout the community and the whole population became equally susceptible to the parasites infective stages.

individuals and 72 patients with other helminthic infections were assayed against crude antigens from O. viverrini adult worms and the F1 fraction using the gelatin particle indirect agglutination test (GPAT). For both antigens, the mean reciprocal titer in the sera of opisthorchiosis patients was significantly higher than sera from patients with other helminthic infections and normal healthy individuals (p<0.0001). In an attempt to search for another antigen in place of O. viverrini antigens for the serodiagnosis of opisthorchiosis, the sensitivity and specificity of the two antigens were compared. It was shown that hundred and twenty of the 761 children (28.9%) were found to be infected with the parasites. Hookworm infection is the most prevalent (28.4%), followed by opisthorchiasis (1.0%), strongyloidiasis (0.9%), trichuriasis (0.5%) , and enterobiasis (0.4%) , all being light infections.

The research conducted in the Department of Medical Entomology involves both basic and applied knowledge applicable in controlling vectors of tropical diseases especially mosquito-borne diseases. Other insects and arthropods of medical importance such as house flies, sand flies, cockroaches, ticks and mites are also studied in various aspects.

Laboratory colonies of different strains of mosquito vector species of *Anopheles*, *Aedes*, *Culex*, and *Mansonia* are continuously maintained in the insectarium for further uses. The filarial parasite, *Brugia pahangi*, is also maintained in the reservoir host.

The study on biology and ecology of mosquito vectors of malaria at Am Phur Suan Pung, Ratchaburi Province, i.e. *Anopheles minimus*, *An. maculatus*, *An. dirus*, and *An. aconitus* are conducted. The infection rate of malaria parasites, vector capacity, and susceptibility to insecticides are also studied in each mosquito species. The baseline data obtained from this study will be used in the
study on their species complex and malaria control in the study area.

The vectors of Japanese encephalitis, *Culex tritaeniorhynchus*, *Cx. gelidus*, *Cx. fuscocephala*, and that of dengue haemorrhagic fever, *Aedes aegypti* and *Ae. albopictus*, are studied for their ecology and vector potential. The species complex of these mosquitoes from various locations in Thailand are also investigated by enzymatic studies.

Effective controls on mosquito vectors are directed both in laboratory and field trials. The efficacy of chemical insecticides, insect growth regulator and chemosterilant are evaluated against the vectors. The studies on the development of insect resistance to these chemicals are also conducted. Non-polluted control methods such as the use of biological insecticides, and medicinal plants are tested. The use of insecticide impregnated bed nets and blankets (permethrin, etofenprox), especially for malaria control, has been introduced. The selection of mosquito resistance to permethrin-and etofenprox-impregnated bed nets is conducting in the laboratory to study the impact on mosquito vectors.

Moreover, the Department of Medical Entomology acts as a reference center on mosquito vectors in Thailand through the establishment of the Mosquito Museum Annex and a project on computer aided management and service of biological museums. The Department also provides academic consultation especially on mosquito-borne diseases and their control measures, and also services on detection of filarial parasites, identification of mosquitoes and other medically important insects and arthropods.

AWARD

The research project on "*Anopheles minimus* Species A complex in Thailand and their impact on malaria control" by Sucharit S, Komalamisra N, Surathinth K, Apiwathnasorn C (*J Trop Med Parasitol* 1997;20(2):57-67) was awarded as the Best Research Work 1998 by the National Research Council of Thailand.
ABSTRACTS

THANAKA (LIMONIA ACIDISSIMA) AND DEET (DI-METHYL BENZAMIDE) MIXTURE AS A MOSQUITO REPELLENT FOR USE BY KAREN WOMEN

Yupha Rongsriyam1, Atchariya Jitpakdi2, Wej Choochote2, Pradya Somboon2, Benjawan Tookyang2, Wannapa Suwonkerd3

1Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
2Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
3Malaria Center, Region 2, Chiang Mai, Thailand.

Two karyotypic forms of laboratory raised Anopheles sinensis, i.e. Form A (XY1) and Form B (XY2), were experimentally infected with various indigenous strains of Plasmodium falciparum and P. vivax using an artificial membrane feeding technique, and a rodent malaria, P. yoelii, using a direct feeding technique and dissected 7-9 days and 10-15 days after feeding for oocyst and sporozoite rates, respectively. The results revealed that two forms of An. sinensis were refractory vectors for P. falciparum and P. yoelii since 0% of oocyst and sporozoite rates were obtained, but poor vectors for P. vivax since 0.00-85.71% and 0.00-5.88% of oocyst and sporozoite rates were recovered. The sporozoite-like crystal found in the median lobe of the salivary gland of An. sinensis which could be a misleading factor in identification of true sporozoites in the salivary glands is reported for the first time.

The prevention and treatment of drug-resistant malaria is becoming increasingly difficult. On the Thai-Myanmar border multi-drug resistant strains of falciparum malaria are increasing and, because the malaria vector Anopheles bite outdoors during early evening, insecticide house-spraying or impregnated bednets provide only limited protection. Therefore, the protective efficacy of repellent formulations containing di-methyl benzamide (deet) and permethrin against local vectors was estimated, when applied to the skin, and their acceptability amongst pregnant Karen women who are at relatively high risk from malaria was assessed. Human landing catches of mosquitoes showed that almost complete protection was achieved using different formulations of 20% deet and 0.5% permethrin for up to 6 h. All-night collections from human subjects indicated that this repellent combination reduced exposure to malaria parasites by at least 65 and 85% for those transmitted by Anopheles minimus and An. maculatus, respectively, the two principal vectors in this area. Pregnant women in the camps preferred repellents which were mixed with thanaka, a root paste made from pulp of the wood apple tree, Limonia acidissima, used locally as a cosmetic. Apart from a temporary warming sensation where repellent thanaka was applied to the skin, the repellents were well tolerated. An intervention trial is currently in progress to determine whether deet mixed with thanaka can protect pregnant women against malaria in this part of the world. Bioassays using a laboratory strain of Aedes aegypti demonstrated that thanaka is itself slightly repellent at high dosages and the mixture with deet provides protection for over 10 h. This treatment would therefore also provide some personal protection against dengue, which is increasing locally, transmitted by Ae. aegypti and Ae. albopictus biting during the daytime.

According to the introduction of permethrin-impregnated bednets for malaria vector control, it is of interest to study vector resistance to permethrin since the selection of mosquito with the insecticide may occur in the nature. It is possible that the selection can affect vectors susceptibility to permethrin, feeding activity, fecundity, longevity and some morphological character. The permethrin susceptibility was studied in *Anopheles dirus* in laboratory by exposing the mosquitoes to the impregnated bednet. It showed a LC50 of 0.011 gm/m2 for the P generation. Then a dose of 0.00625 gm/m2 was used for selection in consecutive generations. With this concentration, 42.6% mortality was obtained and the number of survivors was sufficient for further study. However, the changes in insecticide susceptibility, morphology and other activities were not found in the F2 generation. The selection are in progress.
CURRENT RESEARCH ACTIVITIES

The current research activities of the Department involve studies on biology, molecular biology and immunology of infectious agents/diseases particularly those causing problems in tropical areas with the ultimate aims at 1) development of the simple, rapid, specific, sensitive, cost-effective and practical diagnostic methods for use in the remote areas and for self-reliance of the country; 2) identification of potential protective antigens for the vaccine development; 3) understanding of the host responses and immunity and 4) acquisition and acquaintance to modern technology, eg. genetic engineering. Further details are given below:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunoblotting have been used for identification of the specific antigens of various pathogens including *Opisthorchis viverrini, Paragonimus heterotremus, Trichinella spiralis, Strongyloides stercoralis, G. spinigerum, Entamoeba histolytica, Plasmodium falciparum and P. vivax, Leptospira*, etc. Successful identifications of the specific antigens of these pathogens lead to the development of more simple, rapid, sensitive and specific immunodiagnostic methods for patients suffering from the diseases. For example, in human gnathostomiasis, a 24 kDa specific diagnostic component of *G. spinigerum* was further purified from the crude extract by column chromatography, anion exchange chromatography and isoelectric focussing and used in the enzyme-linked immunosorbent assay (ELISA) which gave 100% sensitivity and specificity for the disease. Attempts to produce the antigen either by affinity chromatographies, recombinant DNA technology or anti-idiotypic antibodies are underway.

Specific polyclonal and/or monoclonal antibodies against various parasitic helminths, protozoa, bacteria and their toxins and viruses including *Opisthorchis viverrini, Paragonimus heterotremus, Schistosoma mekongi, Trichinella spiralis, Gnathostoma spinigerum, Entamoeba histolytica, Plasmodium falciparum and P. vivax, Leptospira, etc.* Successful identifications of the specific antigens of these pathogens lead to the development of a more simple, rapid, sensitive and specific immunodiagnostic methods for patients suffering from the diseases. For example, in human gnathostomiasis, a 24 kDa specific diagnostic component of *G. spinigerum* was further purified from the crude extract by column chromatography, anion exchange chromatography and isoelectric focussing and used in the enzyme-linked immunosorbent assay (ELISA) which gave 100% sensitivity and specificity for the disease. Attempts to produce the antigen either by affinity chromatographies, recombinant DNA technology or anti-idiotypic antibodies are underway.

Specific polyclonal and/or monoclonal antibodies against various parasitic helminths, protozoa, bacteria and their toxins and viruses including *Opisthorchis viverrini, Paragonimus heterotremus, Schistosoma mekongi, Trichinella spiralis, Gnathostoma spinigerum, Entamoeba histolytica, Plasmodium falciparum and P. vivax, Leptospira, etc.* Successful identifications of the specific antigens of these pathogens lead to the development of a more simple, rapid, sensitive and specific immunodiagnostic methods for patients suffering from the diseases. For example, in human gnathostomiasis, a 24 kDa specific diagnostic component of *G. spinigerum* was further purified from the crude extract by column chromatography, anion exchange chromatography and isoelectric focussing and used in the enzyme-linked immunosorbent assay (ELISA) which gave 100% sensitivity and specificity for the disease. Attempts to produce the antigen either by affinity chromatographies, recombinant DNA technology or anti-idiotypic antibodies are underway.

Specific polyclonal and/or monoclonal antibodies against various parasitic helminths, protozoa, bacteria and their toxins and viruses including *Opisthorchis viverrini, Paragonimus heterotremus, Schistosoma mekongi, Trichinella spiralis, Gnathostoma spinigerum, Entamoeba histolytica, Plasmodium falciparum and P. vivax, Leptospira, etc.* Successful identifications of the specific antigens of these pathogens lead to the development of a more simple, rapid, sensitive and specific immunodiagnostic methods for patients suffering from the diseases. For example, in human gnathostomiasis, a 24 kDa specific diagnostic component of *G. spinigerum* was further purified from the crude extract by column chromatography, anion exchange chromatography and isoelectric focussing and used in the enzyme-linked immunosorbent assay (ELISA) which gave 100% sensitivity and specificity for the disease. Attempts to produce the antigen either by affinity chromatographies, recombinant DNA technology or anti-idiotypic antibodies are underway.

Specific polyclonal and/or monoclonal antibodies against various parasitic helminths, protozoa, bacteria and their toxins and viruses including *Opisthorchis viverrini, Paragonimus heterotremus, Schistosoma mekongi, Trichinella spiralis, Gnathostoma spinigerum, Entamoeba histolytica, Plasmodium falciparum and P. vivax, Leptospira, etc.* Successful identifications of the specific antigens of these pathogens lead to the development of a more simple, rapid, sensitive and specific immunodiagnostic methods for patients suffering from the diseases. For example, in human gnathostomiasis, a 24 kDa specific diagnostic component of *G. spinigerum* was further purified from the crude extract by column chromatography, anion exchange chromatography and isoelectric focussing and used in the enzyme-linked immunosorbent assay (ELISA) which gave 100% sensitivity and specificity for the disease. Attempts to produce the antigen either by affinity chromatographies, recombinant DNA technology or anti-idiotypic antibodies are underway.

Specific polyclonal and/or monoclonal antibodies against various parasitic helminths, protozoa, bacteria and their toxins and viruses including *Opisthorchis viverrini, Paragonimus heterotremus, Schistosoma mekongi, Trichinella spiralis, Gnathostoma spinigerum, Entamoeba histolytica, Plasmodium falciparum and P. vivax, Leptospira, etc.* Successful identifications of the specific antigens of these pathogens lead to the development of a more simple, rapid, sensitive and specific immunodiagnostic methods for patients suffering from the diseases. For example, in human gnathostomiasis, a 24 kDa specific diagnostic component of *G. spinigerum* was further purified from the crude extract by column chromatography, anion exchange chromatography and isoelectric focussing and used in the enzyme-linked immunosorbent assay (ELISA) which gave 100% sensitivity and specificity for the disease. Attempts to produce the antigen either by affinity chromatographies, recombinant DNA technology or anti-idiotypic antibodies are underway.

Specific polyclonal and/or monoclonal antibodies against various parasitic helminths, protozoa, bacteria and their toxins and viruses including *Opisthorchis viverrini, Paragonimus heterotremus, Schistosoma mekongi, Trichinella spiralis, Gnathostoma spinigerum, Entamoeba histolytica, Plasmodium falciparum and P. vivax, Leptospira, etc.* Successful identifications of the specific antigens of these pathogens lead to the development of a more simple, rapid, sensitive and specific immunodiagnostic methods for patients suffering from the diseases. For example, in human gnathostomiasis, a 24 kDa specific diagnostic component of *G. spinigerum* was further purified from the crude extract by column chromatography, anion exchange chromatography and isoelectric focussing and used in the enzyme-linked immunosorbent assay (ELISA) which gave 100% sensitivity and specificity for the disease. Attempts to produce the antigen either by affinity chromatographies, recombinant DNA technology or anti-idiotypic antibodies are underway.
litis virus and respiratory syncytial virus have been produced in our laboratory for detection of the pathogens/diagnosis of diseases caused by them in clinical specimens and/or contaminated food and environmental samples. The monoclonal antibodies produced against the whole cells, somatic and/or excretory-secretory antigens of these pathogens have been tested for their analytical as well as diagnostic sensitivities and specificities. Development of the simple, specific, sensitive, rapid and cost-effective methods which are practical for use in the remote areas such as the conventional or dot-blot ELISA, immuno-colloidal gold and/or the dip-stick techniques as well as the use of immunomagnetic separation for higher sensitivity of detection of the pathogens are being carried out.

Additional work includes the application of DNA technology, e.g. development of DNA probes, PCR technology as well as other modern technology for the detections of several pathogens, e.g. *Paragonimus*, *Entamoeba*, *Plasmodium*, *Salmonella*, *Vibrio cholerae*, *Bordetella pertussis*, dengue and respiratory syncytial viruses, etc. from the clinical specimens and/or foods. DNA manipulations have been used for genetical analyses of various pathogens, e.g. *Trichinella*, *Vibrio cholerae*.

Protective activities of various antigens such as frimbriae, hemagglutinin, procholeragenoid and lipopolysaccharide of a bacterial pathogen, *Vibrio cholerae*, associated with liposome adjuvant are also studied. It was shown that the oral immunization by the combination of these components provide strong local immunity against the bacterium. Trials of the oral cholera vaccines both against *V. cholerae* O:1 and O:139 infections for tolerability, immunogenicity and protection have been carried out in volunteers.

Studies on *E. histolytica* revealed that its genome organization consisted of at least a circular supercoiled-like and a linear DNA molecules that behaved like the yeast chromosomes. There was no evidence of chromosome rearrangement in association with drug resistance. The mechanism of metronidazole resistance in *E. histolytica* involved a marked increase in superoxide dismutase, whereas pyruvate:ferrodoxin oxidoreductase was not decreased. A monoclonal antibody specific against *E. histolytica* conjugated with red phycoerythrin (R-PE) was used successfully for the detection of the trophozoites in human fecal samples. An immunotoxin (IT) consisting of a monoclonal antibody against pyruvate ferrodoxin oxidoreductase of *E. histolytica* (EhPFORMAb) and the toxic moiety of the plant toxin ricin A (RA) is potent in inhibiting proliferation of the organism, therefore, the IT would be one approach for future immunotherapy for invasive amoebiasis.

Other areas of research activities on bacterial infections include diarrhea caused by *Campylobacter jejuni* and *C. coli*, anaerobic bacterial infections, non-gonococcal urethritis and heparinase detection in facultative and anaerobic bacteria. Development of better diagnostic methods have also been carried out. Short cut for biochemical tests of non-fermenting gram-negative bacteria has been studied for simple and reliable diagnosis of bacterial pathogens found in the patients. Antimicrobial susceptibility test was done by modified Kirby-Bauer’s method to suit the small number of pathogens isolated each day. Surveillance of nosocomial infections for the control of hospital infections is also being investigated.

Resistance to methicillin among the staphylococci and penicillin resistance of the pneumococci are being studied using E-TEST. The test is also used for study of some antifungal susceptibility of yeasts isolated from the patients. This should be useful for the hospital’s patient management in the future.

Parts of these research works are being carried out in collaborations with various international institutions, i.e. the Department of Microbiology, Institute of Basic Medical Science, University of Tsukuba, Tsukuba, Japan; the Department of Microbiology and Immunology, Faculty of Medicine, Monash Australian University, Melbourne, the Department of Microbiology and Immunology, Faculty of Medicine, the University of Adelaide, Adelaide, Australia; Institute for Clinical Research in Tropical Medicine, Hanoi, Vietnam, the Research Institute, International Medical Center of Japan, Tokyo, Queensland Institute of Medical Research, the University of Queensland, Australia, the University of Vienna and the University of Innsbruck, Austria, etc.
DETECTION OF PARAGONIMUS HETEROTREMUS IN EXPERIMENTALLY INFECTED CAT FECES BY ANTIGEN CAPTURE-ELISA AND BY DNA HYBRIDIZATION

Wanchai Maleewong1, Pewpan M Intapan1, Chaisiri Wongkham1, Surakas Wongratanacheewin1, Pramuan Tapchaisri2, Nimit Morakote3, Wanpen Chaicumpa2

1Departments of Parasitology, Biochemistry and Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
2Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
3Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.

An antigen capture enzyme-linked immunosorbent assay (antigen capture-ELISA) and DNA hybridization technique were developed and evaluated for their application in the detection of Paragonimus heterotremus infection in experimentally infected cats. An IgG fraction prepared from serum of a rabbit immunized with P. heterotremus excretory-secretory (ES) products was used as the capture antibody. An IgG1 monoclonal antibody specific to the 22- and 31.5-kDa ES products of P. heterotremus was used as the antigen probe. As little as 0.24 ng of the ES products could be detected by this technique. A specific P. heterotremus DNA probe derived from the P. heterotremus genomic DNA library containing 1,500 base pairs was used in a dot-blot hybridization assay for the detection of parasite DNA. The radioactively labeled probe could detect DNA released from as few as 2 P. heterotremus eggs. Both ELISA and DNA hybridization were found to have 100% specificity, with sensitivities of 73.7% and 100%, respectively.

This study was supported by the National Research Council of Thailand.

Published in: J Parasitol 1997; 83: 1075-8.

ABSTRACTS

A DOT-ELISA TEST USING MONOCLONAL ANTIBODY-PURIFIED ANTIGENS FOR THE DIAGNOSIS OF PARAGONIMIASIS CAUSED BY PARAGONIMUS HETEROTREMUS

Wanchai Maleewong1, Pewpan M Intapan1, Chaisiri Wongkham2, Mongkol Pajongthanasaris3, Nimit Morakote4, Pramuan Tapchaisri5, Wanpen Chaicumpa5

1Department of Parasitology, 2Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
3Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
4Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
5Department of Microbiology and Immunology, Faculty of Tropical Medicine, Bangkok 10400, Thailand

A dot enzyme-linked immunosorbent assay (Dot-ELISA) using antigens purified by monoclonal antibody-affinity chromatography was developed for detecting antibodies to Paragonimus heterotremus in four groups of subjects. They consisted of 30 patients with P. heterotremus infection, 93 patients with other parasite infections, 18 patients with pulmonary tuberculosis and 30 normal, healthy controls. Sensitivity, specificity, as well as positive and negative predictive values of the test were 100, 97, 88, and 100%, respectively.

This study was supported by the National Research Council of Thailand.

Monoclonal antibodies (Mabs) specific to the lung fluke (*Paragonimus heterotremus*) were produced against the soluble metabolic products (excretory-secretory antigen). Three hybrids secreting Mabs specific for *P. heterotremus* antigens were identified by an indirect enzyme-linked immunosorbent assay (ELISA) against a panel of homologous and 24 heterologous parasite antigens and *Mycobacterium tuberculosis*. Of the three specific clones, clone 10F2, which was IgG1 producing and which gave immune complex bands with 31.5-kDa and 22-kDa polypeptides by gel electrophoresis and immunoblotting, was selected for further characterization and evaluation of its possible diagnostic potential. The result obtained from an indirect immunofluorescent antibody test suggested that MAb 10F2 reacted with mucosa and contents of the worm’s intestine. The antibody could be readily used to prepare an affinity-purified antigen for use in an indirect ELISA that was highly sensitive and specific for the detection of circulating antibody in sera of paragonimiasis patients.

This study was supported by the National Research Council of Thailand.

Advantages and disadvantages of several means for diagnosis of parasitic infection are reviewed. Experiences in carrying out a research aiming at the development of a specific immunodiagnostic method are given.

DOT-ELISA was compared with RT-PCR and tissue culture to detect RSV from nasopharyngeal aspirates. DOT-ELISA had diagnostic sensitivity and specificity of 65.62% and 93.92%, respectively. The results indicate that DOT-ELISA can be used for screening detection of RSV from clinical specimens and is suitable for small laboratories in the provincial areas of developing countries.

Two batches of crude antigens extracted from adult *Opisthorchis viverrini* worms were compared. One was derived from adult worms harvested from the livers of laboratory infected hamsters and another was obtained from worms sedimented from the faeces of opisthorchiasis patients following treatment with Praziquantel. SDS-PAGE and Coomassie brilliant blue staining revealed that the two preparations had similar protein components of which the predominant ones were the 17-18 kDa doublet. The antigens were used in an indirect ELISA for the detection of antibodies against *O. viverrini* in the sera of four groups of patients, ie. patients with opisthorchiasis (group 1), patients with mixed infections of *O. viverrini* and other parasites (group 2), patients with other parasitic infections (group 3), and normal-heathy, parasite-free individuals (group 4). The sensitivity of the test was high (91-92%), regardless of the batch of the antigen used. However, its specificity was relatively low (70-80%). Cross-reaction was observed with patients infected with *Paragonimus heterotremus, Schistosoma* spp.; *Taenia* spp.; *Trichinella spiralis; Strongyloides stercoralis*; hookworms; *Plasmodium* spp.; hookworms and *Plasmodium* spp.; *S. stercoralis, Blastocystis hominis* and yeasts; and hookworms, *Ascaris lumbricoides, Trichuris trichiura* and *P. falciparum*. Western blot analysis revealed that sera of patients infected with these heterologous organisms contained antibodies reactive to *O. viverrini* antigenic components ranging from Mr. 15.5 to 144.

An indirect haemagglutination test (IHA) using antigens purified by monoclonal antibody-affinity chromatography was developed for the diagnosis of human paragonimiasis caused by *Paragonimus heterotremus*. Sera from patients with paragonimiasis (n = 30) were evaluated, along with sera from other parasitic infections (n = 92), pulmonary tuberculosis (n = 18) and healthy controls (n = 30). The sensitivity, specificity as well as positive and negative predictive values of the IHA, calculated at the prevalence of disease at 17.6%, were all 100%.

This study was supported by the National Research Council of Thailand.

Hybridomas secreting specific monoclonal antibodies (MAbs) to *Vibrio cholerae* serogroup O139 were produced. Six monoclones (hybridomas) secreting MAbs specific only to lipopolysaccharide of *V. cholerae* O139 strains and which did not cross-react to 137 strains of other enteric microorganisms were obtained. These clones were designated 12F5-G11, 12F5-G2, 15F5-H5, 5B9-F8, 14C9-D2, and 6D2-
D8. The immunoglobulin (Ig) heavy chain isotypes secreted by these clones were IgG2b, IgG2b, IgG2b, IgM, IgG2b, and IgG3, respectively. Clone 12F5-G11 was selected for mass production of MAb, which was used as a detection reagent in the antigen detection assay for diagnosis of cholera caused by *V. cholerae* O139, and this assay was compared to the conventional bacterial isolation method. Five batches of rectal swab cultures in alkaline-peptone water were collected from 6,497 patients with watery diarrhea. These were 6,310 patients admitted to Bamrasnaradura Infectious Diseases Hospital, 16 patients from Krung Thon Hospital, 78 patients from Bangkok Children’s Hospital, 19 patients from Karen refugee camps, and 74 Indian patients from the National Institute of Cholera and Enteric Diseases, Calcutta, India. The *V. cholerae* O139 isolations from the rectal swab cultures and the antigen detection assay (i.e., the MAb-based dot-blot ELISA) were performed by different persons of different laboratories, and the results were revealed after all specimens had been tested. Of the 6,497 samples tested, the dot-blot ELISA correctly identified 42 of 42 *V. cholerae* O139-positive samples and gave a result of positive for three samples which were culture negative for *V. cholerae* O139. The diagnostic sensitivity, specificity, and efficacy of the dot-blot ELISA were 100, 99.95, and 99.26%, respectively. The ELISA is easy to perform and relatively inexpensive. It can test multiple samples at a single time, does not require special equipment, and does not produce great quantities of contaminated waste. Most of all, it reduces the diagnostic time from at least 2 days for the bacterial isolation to less than 90 min. The assay is recommended as a rapid screening test of cholera cases caused by *V. cholerae* O139.

IMMUNOGENICITY OF LIPOSOME-ASSOCIATED AND REFINED ANTIGEN ORAL CHOLERA VACCINES IN THAI VOLUNTEERS

Wanpen Chaicumpa1, Manas Chongsa-nguan1, Thareerat Kalambaheti1, Polrat Wilairatana2, Pottanee Siromano1, Yuwadee Makakunijcharoen1, Sornchai Loaareesuwan2, Yuwaporn Sakolvaree1

1Department of Microbiology, Immunology and 2Department of Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

A mixture of *Vibrio cholerae* antigens made up of crude fimbrial extract, lipopolysaccharide and procholeragenoid was administered orally to Thai volunteers either as free antigen or associated with liposomes. All vaccinees and controls were administered in three doses given at 14 day intervals. Nine volunteers received liposome-associated vaccine and seven received free vaccine. Liposomes without antigens were given to eight volunteers and seven volunteers received 5% NaHCO3 solution alone. Both vaccines had 100% immunogenicity as determined by serum vibriocidal antibody responses. Liposomes were shown by indirect ELISA to localize the immune response against lipopolysaccharide and fimbriae to the intestinal mucosa. Vaccinees given liposome-associated antigens had a higher rate of antigen-specific response than did individuals who had received free antigens. The vaccines induced intestinal antibodies of IgM and/or IgA isotypes, but not IgG antibody.

Published in: *Vaccine* 1998;16:678-84.

PCR DETECTION OF VIBRIO CHOLERAE SEROGROUPS O:1 AND O:139

Anongphan Junkuy1, Ladda Tangbonluekal2, Sakol Panyim1, Mathurose Ponglikitmongkol1, Wanpen Chaicumpa1

1Department of Biochemistry, Faculty of Science, Mahidol University. 2Department of Social and Environmental Medicine. 3Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

Vibrio cholerae strain O1, while *V. cholerae* non-O1 are associated with sporadic cases of diarrhea and extraintestinal infections. Recently, there was an emergence of cholera caused by *V. cholerae* non-O1 strain O139 synonym Bengal which is similar to *V. cholerae* O1 biotype El Tor. The clinical features of cholera produced by both strains are essentially identical. The conventional method for detection of...
V. cholerae is by culture method and further identification with O1 and O139 specific antisera. This method is time consuming, expensive and lacks the necessary sensitivity.

In this study a sensitive and specific method to identify V. cholerae O1 and O139 by using the multiplex polymerase chain reaction was developed. The primers were designed from the cholera toxin and the O-antigen genes of V. cholerae O139. The optimum condition for multiplex PCR was 200 µM of each dNTP, 15 mM MgCl₂ in PCR buffer pH 8.3, 0.05 µM of each primer from rfbQRS, 0.5 µM of each primer from ctxAB, and 1 U of Taq DNA polymerase. The amplification reaction was carried out for 40 cycles, each cycle consisted of denaturation at 90°C for 1 min, annealing at 50°C for 1 min and extension at 72°C for 1 min. The sensitivity of this PCR protocol was 10 pg of purified DNA, 103 bacterial cells from pure culture and 2.5 x 10³ cells from artificially contaminated stool. The specificity of the multiplex PCR was also examined and no cross reaction was found with other 22 gram negative bacteria. However, this method cannot distinguish V. cholerae O1 and O139 in mixed infection. It is suggested that this problem may be solved by designing the third set of primers of the specific gene that encodes O139 LPS or V. cholerae non-O1 capsule.

The multiplex PCR has also been used to detect V. cholerae in watery stool samples in comparison with the conventional culture method. All positive cases by PCR were V. cholerae O1. Comparative study on the detection of V. cholerae by microbiological method and multiplex PCR were performed using neat stools and Chelex R100 treated stools of 115 diarrheic patients as templates. It was found that the diagnostic sensitivity, specificity, efficacy, positive and negative predictive values of detection of the multiplex PCR were 64.28, 99.01, 94.78, 90.0 and 95.24%, respectively. The values were 100, 97.03, 97.39, 82.35 and 100%, respectively when APW enriched stools were used as templates. The study suggests that enriched stool with APW is the best template to detect V. cholerae by multiplex PCR.

Antifungal Susceptibility Testing of Pathogenic Yeast with the E-Test

Teerarat Mookto¹, Usanee Suthisarnsuntorn¹, Siriporn Chetanadee¹

¹Microbiology Unit, Department of Microbiology and Immunology, Faculty of Tropical Medicine.

The E-Test for 5 antifungal agents were used for detecting the minimum inhibitory concentrations (MIC) of pathogenic yeasts isolated from the patients in the Bangkok Hospital for Tropical Medicine. Fifty-five strains of yeasts including 29 Cryptococcus neoformans, 10 Candida albicans and 16 other yeasts were collected during 1995-1998.

All 29 Cryptococcus neoformans were sensitive to Amphotericin (MIC between 0.05-1 microgram/ml), Ketoconazole (MIC < 0.5 microgram/ml) and Itraconazole (MIC < 0.5-2 microgram/ml). Ten strains were resistant to Fluconazole with 2 of them were highly resistant (MIC > 256 microgram/ml) and 8 were resistant with the MIC > 8 - 32 microgram/ml. The susceptible strains were among the 3 strains that were inhibited by the concentration below 0.5 microgram/ml and 6 of which the MIC between 2 and 4 microgram/ml. The rest were 10 strains that the MIC were above 4 but not more than 8 microgram/ml.

No resistant Candida albicans for Amphotericin B but 40% resisted Ketoconazole and 70% resisted Fluconazole as well as Itraconazole.

Other yeasts found to have resistance to Amphotericin B (1/16) and theazole group (Ketoconazole and Itraconazole 3/16, Fluconazole 4/16).

The MIC of Flucytosine for all but one yeast tested were > 32 microgram/ml, possibly because the medium used was not suitable for testing this drug. The control strains were also read > 32 microgram/ml for Flucytosine (while the expected control range was only 0.125-0.5 for C. parapsilosis and > 32 for C. krucei).

This study was supported by a research grant from Mahidol University.
PRODUCTION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES SPECIFIC TO VITELLIN AND VITELLOGENIN OF THE TIGER PRAWN, PENAUS MONODON

Siwaporn Longyant1, Paisarn Sithigorngul2, Nitaya Thammapalerd3, Weerawan Sithigorngul2, Piamsak Menasveta1

1Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330
2Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110
3Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

Monoclonal antibodies (MAbs) specific to vitellin and vitellogenin of Penaeus monodon were produced by immunization of Balb/C mice with a crude extract from the mature ovary. After fusion of the spleen cells from an immunized mouse with P3x myeloma, the hybridomas were selected by indirect immunoperoxidase ELISA against the ovarian extract, followed by dot-blotting against native and denatured proteins from ovarian extract, female haemolymph and male haemolymph. Four hybridoma clones producing antibodies (PMV-11, 15, 22 and 64) were identified. They can bind to the protein in the ovarian extract and in the female haemolymph but not in the male haemolymph. One of them (PMV-64) can bind to both native and denatured proteins. Western blot analysis of ovarian extract separated by PAGE, all four monoclonal antibodies bind to the same lipoglycoprotein band. Western blot analysis of proteins separated by SDS-PAGE, PMV-64 binds to 80 and 83 kDa proteins in ovarian extract and 83 and 170 kDa proteins on the female haemolymph, respectively. All four monoclonal antibodies belong to IgG1 sub-isotype.

ACANTHAMOEBA PLEUROPNEUMONITIS: THE FIRST TWO REPORTED CASES FROM THAILAND

Wudthichai Suttithawil1, Nongluk Chantadisai1, Sombat Leelasupasi2, Saovanee Leelayoova1, Adisorn Wongs1, Nitaya Thammapalerd3, Yongyudh Ploysongsang2

1Division of Pulmonary Medicine
2Division of Infectious Diseases
3Department of Parasitology, Ramongkullao College of Medicine, Bangkok
4Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok
5Pulmonary and Critical Care Medicine [MCU], Bumrungrad Hospital, Bangkok, Thailand.

Acanthamoeba pleuropneumonitis is rare. Early reports of this entity were only as a part of the hematogenous dissemination of granulomatous amoebic encephalitis/meningoencephalitis (GAE/GAM). It is postulated that the portal of entry of the organism is the lung wherefrom the infection spreads to the central nervous system. However, primary lung involvement alone by this organism has never been reported. The purpose of this study is to present two cases of primary Acanthamoeba pleuropneumonitis in previously healthy Thai patients without any other organs involvement. Both patients acquired their infections by aspirating contaminated warm freshwater while intoxicated and fallen into a canal in one and swimming in a pond in the other. Acanthamoeba pleuropneumonitis starts as an acute bilateral lower lobes airspace disease which directly extends to the pleura. The incubation period is approximately 6-8 weeks after contact with the contaminated warm freshwater. It tends to produce pleural effusions bilaterally and rapidly. The pleural fluid is an exudate with a high number of leukocytes, predominantly polymorphonuclear type. It has an elevated protein but normal glucose and a very high LDH5 level. The fluid tends to loculate if left untreated. The organisms trophozoites can be easily identified in the pleural fluid and sputum, making the diagnosis rather simple when the disease is suspected. The response to treatment with intravenous amphotericin B is rather dramatic. Maintenance is not needed like in HIV patients. To our knowledge, this is the first two cases of isolated Acanthamoeba pleuropneumonitis in apparently healthy patients. This makes the hypothesis of the lung being the portal of entry of the organism more credible.

Presented at: the Joint International Tropical Medicine Meeting, 22 August 1998, Faculty of Tropical Medicine, Mahidol University and 29th World Conference of IUATLD/UICTMR Global Congress on Lung Health, 23-26 November 1998, Shangri-La Hotel, Bangkok, Thailand.
During the past few years, Faculty of Tropical Medicine, Mahidol University has been collaborating with the University of Vienna, the University of Innsbruck and Queensland Institute of Medical Research (QIMR) in the fields of immunology and molecular biology of *Entamoeba histolytica* and amoebosis it causes. Collaboration between Mahidol University and the University of Vienna together with QIMR involved cloning and expression of genes encoding for the antigens of *E. histolytica*. A mouse monoclonal antibody, Eh208C2-2 MAb, raised against whole cell antigens of *E. histolytica* trophozoites of the pathogenic strain HM-1:IMSS and polyclonal antisera (PAbs) against membrane antigens of *E. histolytica* trophozoites of strain HTH-56:MUTM were screened against a cDNA library of the pathogenic strain, SFL3. The MAb detected many phage plaques expressing an *E. histolytica* protein. The DNA sequence encoding the protein was approximately 55% identical, over 1,100bp, to other organisms in GenBank such as *Trichomonas vaginalis* pyruvate:ferredoxin oxidoreductase (PFOR) and pyruvate:flavodoxin oxidoreductase from *Klebsiella pneumoniae*, *Anabaena variabilis* and *Enterobacter agglomerans*. Two of seven clones detected by mouse PAbs also encoded this protein. Two others encoded *Entamoeba* Hsp70, another encoded *Entamoeba* alkyl-hydroperoxide reductase and the remaining two were unidentified sequences. There is only minor variation from strain to strain of *E. histolytica* since differences at the DNA level between our sequence (*E. histolytica* PFOR GenBank accession number L46793) and other two known sequences vary by only 2% (U30149) and 7% (Z50193) over approximately 1 kb, respectively. From our previous study of IT consisting of the IgG fraction of Eh208C2-2 MAb and the toxic moiety of the plant toxin ricin, Ricin A (RA), we showed that the heterobifunctionally cross-SPDP-linked IT was potent at inhibiting proliferation of *E. histolytica* trophozoites in vitro. Since Eh208C2-2 MAb recognized an epitope on *E. histolytica* pyruvate:ferrodoxin oxidoreductase (PFOR), therefore, our IT would be one approach for future immunotherapeutic targets for invasive amoebosis.

Research on the role of complement in the pathogenesis of amoebosis was undertaken at the Institute of Hygiene, the University of Innsbruck. It was shown that *E.histolytica* induced marked in vivo activation of complement. Levels of fluid phase of terminal complement component (TCC) were significantly increased in sera from patients with amoebic liver abscesses than those infected with parasites other than *E.histolytica* and normal healthy controls. Collaboration is now extended to Harvard School of Public Health, Harvard University, Boston, USA for studying in the new trend of cell biology of *E.histolytica* by using anti-PFOR monoclonal antibody. More extensive collaboration between universities and/or institutes would contribute to the progress and development for global parasitic diseases control in the future.

Monoclonal antibodies (MAbs) specific to native and denatured vitellin of *Penaeus monodon* were generated by immunization Balb/C mice with a crude extract from mature ovary. After fusion of the spleen cells from an immunized mouse with P3x -63-Ag8 myeloma, the hybridomas were selected by indirect immunoperoxidase ELISA against the ovarian extract.
followed by dot-Blotting against native and denatured proteins from ovarian extract, female haemolymph and male haemolymph. Four hybridoma clones producing antibodies (PMV-11, 15, 22 and 64) were identified. They can bind to the protein in the ovarian extract and in the female haemolymph but not in the male haemolymph. One of them (PMV-64) can bind to both native and denatured proteins. Western Blot analysis of ovarian extract separated by PAGE, all four monoclonal antibodies bind to the same lipoglycoprotein band. Western Blot analysis of proteins separated by SDS-PAGE, PMV-64 binds to 80 and 83 Kd proteins in ovarian extract and 83 and 170 Kd protein on the female haemolymph, respectively. All four monoclonal antibodies belong to IgG1 sub-isotype.

DNA VACCINES AGAINST MALARIA: STRATEGY AND PROGRESS

Srisin Khusmith
Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

The magnitude of the mortality and morbidity produced by malaria and the problems associated with the current methods of malaria control have led to renewed interest in malaria vaccine development. Vaccines are aimed at inducing immune responses that disrupt the complex life cycle of malaria parasite at one or more stages. From previous studies, it is believed that complete protection against malaria requires a multivalent vaccine that induces protective CD4+ T cell-dependent antibody responses and CD8+ cytotoxic T lymphocyte responses. In a variety of experimental systems, DNA vaccines offer one of the promising approaches since DNA vaccines have been shown not only to induce such potent immune responses, but also to offer many advantages in terms of ease of construction, testing, production and providing long term immunity after a single immunization. In malaria, initial studies on the protective efficacy of an anti-malarial DNA vaccine have been demonstrated in the rodent malaria parasite, Plasmodium yoelii. Malaria DNA vaccine against P. falciparum is being designed to induce immune responses against hepatic stage antigens. In parallel, a multi-gene vaccine designed to induce protective antibody and CD4+ T lymphocyte response against the erythrostic stages of the parasite is also under evaluation.

Published in: Mahidol J 1997;4:87-91.

CHARACTERISTICS OF PLASMODIUM FALCIPARUM ISOLATES RESPONSIBLE FOR MALARIA INFECTION IN THAILAND

Boubacar Traore1, Kabongo Muanza1, Frederick Gay1, Suvanee Supavej, Srisin Khusmith2, Parnpen Virijavekul2, Martin Danis1, Sornchai Looareesuwan2

1 Service de Parasitologie-Mycologie, INSERM U313. Groupe Hospitalier Pitie-Salpetriere, Paris, France
2 Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

The sequestration of parasitized red blood cells (PRBC) is on of the pathophysiological mechanisms that accounts for some of the effects of complicated Plasmodium falciparum malaria. Different host molecules such as ICAM-1, VCAM-1, E-selectin, CD36, thrombospondin and chondroitin-4-sulfate (CSA) have been identified as potential receptors of cytoadherence in different organs such as brain, lung, placenta, kidney and heart.

The objective of this study was to identify different characteristics of plasmodial isolates resposible for malaria in Thai patients in order to determine whose could be considered as markers for the severity of malaria infection.

69 Thai isolates (27 complicated and 42 uncomplicated malaria cases) were used. Rosetting, cytoadherence inhibition assays using human lung endothelial cells lines (HLEC) and P. falciparum chemosensitivity tests against 8 antimalarial drugs were performed.

Although the cytoadherence was observed in the two groups, our results show an association between the cytoadherence phenotype and the infection severity (p=0.05). PRBC from complicated malaria patients bound to HLEC via ICAM-1 (88%), CSA (83%), E-selectin (58%), VCAM-1 (40%) and CD36 (17%), suggesting that ICAM-1, CSA and E-selectin are the main receptors of cytoadherence. 70% of isolates showed the rosette
phenotype in two groups and no association was observed between this profile and the malaria severity. The isolates were resistant to chloroquine in two groups and to Halofantrine in the complicated group (p=0.04). Cytodherence inhibition assays using antimalarial drugs show a variable efficiency on PRBC for Artemether >>>Halofantrine>>Quinine, but no significant difference was observed in two groups.

A multivariate analysis is ongoing to determine the interactions between these different profiles and characteristics.

Presented at: The Joint International Tropical Medicine Meeting, 22 August 1998, Faculty of Tropical Medicine, Mahidol University.

IMMUNOGENICITY AND PROTECTIVE ROLE OF THREE FORMULATIONS OF ORAL CHOLERA VACCINE

Thareerat Kalambaheti1, Urai Chisri2, Potjanee Srimanote1, Emsri Pongponratn2, Wanpen Chaicumpa1

1Department of Microbiology and Immunology.
2Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

Three formulations of oral cholera vaccine were compared with respect to their immunogenicity and protective in a rat ileal loop model. Eight-week-old Wistar rats were divided into five groups. The first group received orally vaccine A consisting of liposome-associated *V. cholerae* lipopolysaccharide, fimbriae and procholeragenoid, whereas the rats of groups 2 and 3 received orally vaccines B and C consisting of heat-killed fimbriated and non-fimbriated whole cell *V. cholerae*, respectively. Rats of groups 4 and 5 were controls that received orally liposomes alone and normal saline solution, respectively. It was found that vaccine A elicited stronger immune responses to all three *V. cholerae* antigens. The antibody responses were detected in both serum and intestinal lavage samples. Vaccine B elicited only modest serum and intestinal responses to *V. cholerae* fimbriae (anti-F). No detectable immune response was found in rats of group 3 immunized with vaccine C. Rats immunized with vaccines A and B had a similar order of magnitude of numbers of vibrios adhered to their intestinal mucosa. These numbers were less than those associated with the intestinal tissues of control rats of groups 4 and 5 by about two orders of magnitude. Although without any detectable immune response, rats of group 3 that were immunized with vaccine showed some reduction in numbers of vibrios associated with their intestinal mucosa. The numbers of vibrios recovered from the intestinal segments of rats of all treatment groups were in the order group 1 \(= 2 < 4 = 5 \). Electron micrography also revealed patches of vibrio colonization on the mucosa of rats of groups 3, 4 and 5. These features were not found in the groups vaccinated with vaccines A and B. The inhibition of vibrio colonization afforded by the vaccines was biotype- and serotype non-specific. The results suggest that the heat-killed whole cell fimbriated *V. cholerae* may be an alternative vaccine preparation to the liposome-associated refined antigen vaccine at a lower cost.

Published in: Vaccine 1998;16:201-7.

ANTIGENIC DIVERSITY OF PLASMODIUM VIVAX AND THEIR GEOGRAPHIC DISTRIBUTION IN THAILAND

Srisin Khusmith1, Pramuan Tapchaiisiri1, Savanat Tharavanij1, Danai Bunnag2

1Department of Microbiology and Immunology.
2Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand.

Fifty eight monoclonal antibodies (MAbs) raised against the erythrocytic stages of *Plasmodium vivax* were selected for typing of 501 *P. vivax* isolates from different geographic locations throughout Thailand. Based on their reactivities in the indirect fluorescent antibody test, these MAbs were classified into five groups: group I MAbs showing generalized staining of all blood stages; group II MAbs reacting with merozoites and their organelles; group III MAbs reacting with the surface membrane of merozoites; group V MAbs reacting with the surface membrane...
Relapse infections are an important obstacle to the successful treatment and control of Plasmodium vivax malaria, but little is known about the nature of the relapse. To provide insight into the antigenic disparity of the parasites causing initial clinical symptoms and causing relapse, a panel of 58 monoclonal antibodies (MAbs) against erythrocytic stages of Plasmodium vivax was tested by indirect fluorescent antibody test in five relapse cases.

Initial and relapse strains from three patients (R3, R4, and R5) exhibited similar IFA reactivity with all MAbs tested, whereas the isolates from two relapse cases (R1 and R2) showed different patterns of reactivity and were seen only with 15 MAbs. In case R1, different IFA reactivities were observed with 12 MAbs, nine of which reacted with the initial (RPV261) but not the relapse (RPV393) isolates, whereas the other three MAbs reacted only with the relapse isolates. With regards to the second relapse case (R2) in whom two relapses occurred, different IFA reactivities were demonstrated with seven MAbs that reacted only with the initial isolate (RPV 182) and with the isolate from the first relapse (RPV 240) but not with the isolate from the second relapse (RPV 300). The antibody responses from patients who developed primary clinical symptom and relapse were detected by Western immunoblotting. In cases R3, R4 and R5, there was no difference in the spectrum of antigens from initial and relapse sera recognized by the antibodies. In contrast, in cases R1 and R2, the molecules recognized by antibodies in initial and relapse sera were markedly altered. In case R1, the series of molecules of Plasmodium vivax antigens recognized by initial (RPV 261) and relapse (RPV 393) sera were 21, 25, 31, 39, 42, 61, 95, 115, 200, > 200 kD and 21, 24, 31, 35, 57, 75, 200, > 200 kD, respectively. In case R2, the initial serum (RPV 182) recognized Plasmodium vivax antigens with molecular weight of 23, 30, 52, 57, 68, 75, 85, 95, 115, and 195 kD while the first relapse (RPV 240) and the second relapse sera recognized Plasmodium vivax antigens with molecular weights of 23, 30, 52, 85, 95,115 kD and 30, 57, 68, 75, 85,195 kD, respectively.

Department of Protozoology is one of the eleven departments within Faculty of Tropical Medicine, Mahidol University. It was one of the first five Department created at the beginning of the Faculty of Tropical Medicine since the year 1960. Its responsibilities are teaching, training, research and service in the field of medical protozoa.

1. Study on DNA replication enzymes of *Plasmodium falciparum* as new chemotherapeutic targets against malaria.

2. *In vitro* gametocytogenesis of *Plasmodium falciparum* and gametocytocidal effect of 9-anilinoacridines.

3. Effects of DNA gyrase inhibitors on *Trichomonas vaginalis* in cultures.

4. *Trichomonas vaginalis* isolation and characterization of DNA topoisomerase II from *Trichomonas vaginalis*

5. *Toxoplasma* antibody in healthy Thai population.

6. Serological of *Toxoplasma gondii* antibody in HIV+ve and HIV-ve patients.

7. Inhibition of *Giardia intestinalis* and *Entamoeba histolytica* by medicinal plants.

8. Studies on ultrastructure of *Giardia intestinalis* trophozoites after exposure to drugs.

10. *In vitro* cultivation for cryptosporidium spp.

ISOLATION AND CHARACTERIZATION OF MITOCHONDRIAL DNA POLYMERASE FROM PLASMODIUM FALCIPARUM

Porntip Petmitr1, Srisucha Chawprom1, Prapon Wilairat2
1Department of Protozoology, Faculty of Tropical Medicine, Bangkok, Thailand
2Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

This is the first study on the purification of mitochondrial DNA polymerase from Plasmodium falciparum by using FPLC. The mitochondria of P. falciparum was isolated from mature trophozoite stage by differential centrifugation. Mitochondrial DNA polymerase was partially purified and characterized by using various specific inhibitors. Aphidicolin-resistant and N-ethylmaleimide-sensitive DNA polymerase activity was detected from purified mitochondria of P. falciparum. The characteristics of mitochondrial DNA polymerase γ except for its high resistance to ddTTP (IC50>400 mM). In addition, mitochondrial DNA polymerase γ was also resistant...
SEROLOGICAL STUDY OF T. GONDII ANTIBODY IN HIV+VE AND HIV-VE PATIENTS

Porntip Petmitr1, Ganokwan Pongvilairat1, Saranya Auparakkitanon1, Raymond K. Ralph2, William Denny3, Prapon Wilairat1

1Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
2Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
3Department of Cellular and Molecular Biology, University of Auckland, Auckland, New Zealand

During a period of one year, 312 serum samples were sent to Department of Protozoology, Faculty of Tropical Medicine, Mahidol University for detecting T. gondii antibody. Out of 312, there were 64.6% of HIV infected patients. Nineteen sera were sent from patients of eye diseases, 12 sera from CNS patients, 3 sera from neonate and the rest of sera were sent form asymptomatic patients. There was no statistically significant difference of T. gondii antibody between HIV+ve and HIV-ve patients (28.8% and 21.9%, p-value 0.8). The titer of T. gondii were low which corresponding with reactivation of chronic toxoplasmosis in immunosuppressive patients.

This work was supported by The Thailand Research Fund (RSA/3/2538).

Presented at: Joint International Tropical Medicine Meeting 1998 and The Fourth Chamlong- Tranakchit Harinasuta Lecture, 20 August 1998, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

GAMETOCYTOCIDAL ACTIVITY OF PYRONARIDINE AND DNA TOPOISOMERASE II INHIBITORS AGAINST MULTIDRUG-RESISTANT PLASMODIUM FALCIPARUM IN VITRO

Gametocytocidal activity of pyronaridine and DNA topoisomerase II inhibitors against two isolates of multidrug-resistant Plasmodium falciparum, KT1 and KT3 was determined. After sorbitol treatment, pure gametocyte cultures of Plasmodium falciparum containing mostly young gametocytes (stage II and III) obtained on day 11 were exposed to the drugs for 48 hours. The effect of the drugs on gametocyte development was assessed by counting gametocytes on day 15 of culture. Pyronaridine, a 9-anilino-azaacridine, was the most active gametocytocidal drug against both isolates; it had a 50% inhibitory concentration of 6 and 20 nM, respectively whereas gametocytocidal activity of 9-anilinoacridines was observed in the concentration range of 0.6-82 mM. Moreover, a 50% inhibitory concentration of pyronaridine was lower than that of primaquine which is the only drug used to treat malaria patients harbouring gametocytes. Resistance of both isolates of Plasmodium falciparum to chloroquine, pyrimethamine and cycloguanil did not affect susceptibility of their asexual stages and sexual stages to pyronaridine. Prokaryotic and Eukaryotic DNA topoisomerase II inhibitors such as norfloxacin, etoposide(VP16) and amsacrine (m-AMSA) were effective only on asexual blood stages but not sexual stages of the malaria parasites. Based on the results, pyronaridine may play an important role in the interruption of malaria transmission.

This work was supported by The Thailand Research Fund (RSA/3/2538).

Submitted to Parasitology International.
DEPARTMENT OF SOCIAL AND ENVIRONMENTAL MEDICINE

Head
Assistant Professor Piyarat Butraporn
D.V.M., M.P.H., D.A.P. & E., Dr.P.H.
e-mail : tmpbt@mahidol.ac.th, headtmse@mahidol.ac.th

Associate Professor
Wijitr Fungladda B.Sc. (Med.Sc.), M.D., D.T.M. & H., M.P.H., Dr.P.H.
e-mail : tmvfd@mahidol.ac.th
(Medical Anthropology)
e-mail : tmkok@mahidol.ac.th
Dwip Kitayaporn B.Sc. (Med.Sc.), M.D., D.T.M. & H., M.P.H., Dr.P.H.
e-mail : tmmdk@mahidol.ac.th

Assistant Professor
Chantima Lohachit D.V.M., M.S. (Environmental Studies)
e-mail : tmch@mahidol.ac.th
Wanchai Phaitihatokorn D.V.M., M.P.H.
e-mail : tmwrp@mahidol.ac.th
Ladda Tangbanuluekal B.Sc. (Chem.&Biol.), M.Sc. (Forensic Science), Ph.D. (Toxicology) Cert. Risk Assessment
e-mail : grltb@mahidol.ac.th
Voranuch Wangsuphachart B.Sc., M.Sc. (Trop.Med.), M.S. (Medical Epidemiology), Ph.D. (Medical Epidemiology)
e-mail : tmwvs@mahidol.ac.th

Scientist
Prasart Vorasant B.Sc. (Nutrition)
Pusadee Siraroon B.Sc. (Biology), M.A (Med. & Hlth. Sci.), Cert. Special Malacological Subjects and Techniques
Pongsant Sitaputra B.Sc. (Med. Tech.)
Phunthira Pongwibulsook B.Ed. (Biology)
Suwalee Tantawiwat B.N.S., M.Sc. (Technology of Environmental Management)

Researcher
Prapin Tharnnopoulosiam B.Sc. (Med. Tech.), M.Sc. (Toxicology)
Prissana Prakarnwiwat B.Sc. (Chemistry) M.Sc. (Applied Analytical and Inorganic Chemistry)

Medical Science Associate
Prasasana Charoenjai B.Sc. (Pol.Sci.), Cert. Medical Science Technology
Jaremate Limsomboon Cert. Medical Science Technology
Yupa Kerdpuech B.Ed. (Science-Biology), Cert. Medical Science Technology
Phiraphon Chusongsang Cert. Medical Science Technology

Lecturer
Pongrama Ramasoota D.V.M., M.P.H.
e-mail : tmprt@mahidol.ac.th
Waranyo Wongwit B.Sc. (Biology), M.S. (Biological Sciences), Ph.D. (Biochemistry)
e-mail : tmww@mahidol.ac.th

CURRENT RESEARCH ACTIVITIES

The Department consists of 4 units, namely, Social and Economic Research Unit, Environmental Toxicology Unit, Environmental Medicine Research Unit and Applied Malacology Unit. It has achieved success in all areas within its limit.

Physical development and research, teaching and training, including service activities or functions are as follows: Besides offering courses related to environmental health, environmental toxicology, social medicine and medical malacology for M.Sc. and Ph.D. as well as D.T.M.&H. students enrolled through the Bangkok School of Tropical Medicine, the Department conducts the research in various aspects depending upon the functions of each unit listed above. Its research activities comprise both field research and laboratory investigation. Most of the Department’s efforts are concentrated on disease oriented problems and urgent problem solving. Investigations in the field are mainly restricted to, firstly, operational research to test various disease control models and, secondly, field surveys to collect baseline data or information on health impacts due to water resources and industrial development. Such data could be used for monitoring and surveillance in disease prevention and control programs.
FIELD SURVEYS

The main focus of the survey is largely due to the impact of the water resource and industrial developments on public health, specifically the spread of vector borne viral and parasitic diseases, such as DHF and malaria, and adverse health effects of water pollution as well as the socio-economic study regarding tropical diseases and public health problems. The studies form part of a series, keeping a surveillance of snails intermediate host of schistosomiasis in Pak Mun River basin in Ubon Ratchathani Province. The results of epidemiological studies of adverse health effects, using mainly cross sectional surveys, indicated that the problems related to the physical, social and environmental had the main impact on public health. Additional studies included (1) the environmental health impact study of Kaeng Sue Ten Dam Project, Phrae Province; (2) a surveillance and prevention of schistosomiasis in the area of Pak Mun Dam Project; (3) the impact of water resource development of Rasri-Salai Project; (4) a longitudinal comparative study on insecticide impregnated bednet and DDT spraying to control malaria along the western border; (5) a social and economic impact of dengue haemorrhagic fever (DHF) in Thailand; and (6) liver fluke control model.

CLINICAL RESEARCH

In relations to HIV-1 vaccine trial and baseline data for a possible vaccine efficacy trial, there were several studies of prospective cohort of injecting drug users (IDUS) to determine rates of successful follow-up, HIV-1 incidence, and risk factors for seroconversion and to characterize infecting HIV-1 strains. The related studies containing the following titles.

1) HIV-1 incidence, subtypes, and follow up in a prospective cohort of injecting drug users (IDUS) in Bangkok, Thailand.
2) Genetic characterization of incident HIV-1 subtype B and E strains from injecting drug users (IDUS) in Bangkok, Thailand.
3) Similar risk factors for new infection with HIV-1 subtypes B and E among injecting Drug User (IDUS) in Bangkok, Thailand.
4) Viral load and CD4 cell count in injecting drug users (IDUS) newly infected with HIV-1 subtypes B and E, Bangkok.
5) Incarceration as a continuing HIV risk factor among injecting drug user (IDUS) in Bangkok.
6) AIDSVAX B/B and AIDSVAX B/E likely to protect. But how well and for how long must await results of planned efficacy trials.
7) Willingness to participate in an HIV vaccine efficacy trial among injecting drug users (IDUS) in Bangkok, Thailand.
8) Estimation of vaccine efficacy for prophylactic HIV vaccines from field trials in developing countries.
9) Clinical and immunologic spectrum of disease among 2,261 HIV-1 infected patients at a hospital in Bangkok.
10) Leaving sex work: work history in a cohort of female sex workers in Northern Thailand.

11) Impact of HIV on families of HIV-infected women who have recently given birth, Bangkok, Thailand.

13) Cost and performance of malaria sector: A case study at Malaria Sector 11, Tak Province, Thailand.

15) Efficiency of lambda-cyhalothrin treated nets compared with DDT spraying for malaria control in Northwestern Thailand.

16) Activity costs of Health Substation: A case study in Mae Ramard District, Tak Province, Thailand.

17) Activity costs of Health Station: A case study in Sammeun Subdistrict Health Station, Mae Ramard District, Tak Province, Thailand.

18) Activity costs of Malaria Clinic: A case study in Malaria Sector 11, Mae Ramard District, Tak Province, Thailand.

LABORATORY RESEARCH

The laboratory research comprised (1) mass production of Opisthorchis viverrini material for use in related opisthorchiasis research, such as the production of specific monoclonal antibodies, immuno-diagnostic methods for opisthorchiasis (in collaboration with the Department of Microbiology and Immunology); (2) separation and characterization of adult worm proteins and glycoproteins from the liver fluke Opisthorchis viverrini (in collaboration with the Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada); (3) immunity of Schistosoma mekongi infection: preparation of antigen from cercariae, schistosomulae and adult worms (in collaboration with the Department of Microbiology and Immunology); (4) investigation on the viability and infectivity of metacercariae of Opisthorchis viverrini to various doses of irradiation; (5) detection of Mycobacterium leprae by polymerase chain reaction (PCR) using tissue samples from fresh frozen and paraffin embedded skin biopsies; and (6) maternal lead levels detection in breast milk and cord blood in different location.

TRAINING

From time to time, the Department hosted visitors from all over the world in both visiting and short training courses regarding tropical diseases. One of the events was the short training course on schistosomiasis given to Vietnamese fellows who received the assistantship from Medisch Comite’ of the Netherlands.

We also organized the Readiness Workshop for AIDS Vaccine Trials for Clinicians and Nurses hosted by Bangkok Metropolitan Administration.
HIV-1 incidence, subtypes, and follow up in a prospective cohort of injecting drug users (IDUs) in Bangkok, Thailand

S Vanichseni1, D Kitayaporn2,3, T D Mastro2, K Choopanya1, S Rakham1, S Sujantra1, DC Des Jarlais4, C Wasi1, S Subbarao5, P Mock5, WL Heyward5, J Esparza6

1 Bangkok Metropolitan Administration, Bangkok
2 HIV/AIDS Collaboration, Nonthaburi
3 Mahidol University, Bangkok, Thailand
4 Beth Israel Medical Center, New York, NY
5 CDC, Atlanta, GA, USA
6 UNAIDS, Geneva, Switzerland

Background: Despite various interventions, HIV-1 transmission rates among Bangkok IDUs have remained high since 1988. An effective HIV-1 preventive vaccine may be needed to reduce new infections in this population. To obtain baseline data for a possible vaccine efficacy trial, a prospective cohort of IDUs was established to determine rates of successful follow-up, HIV-1 incidence, and risk factors for seroconversion and to characterize infecting HIV-1 strains.

Methods: From 05/95-12/96, IDUs attending 15 Bangkok Metropolitan Administration drug treatment clinics were screened, and HIV-negative IDUs were offered enrollment, with informed consent, into the cohort. HIV testing and counseling and interviews on demographics, drug use, and sexual behaviors were conducted at enrollment and scheduled every 4 months. Most IDUs were treated with methadone. For HIV-1 seroconversions, infecting HIV-1 subtypes were determined by direct DNA sequencing of the C2-V4 envelope region. Results: Of 3,614 IDUs screened, 30.2% were HIV positive. Of 1,208 HIV-negative IDUs enrolled, 70% were successfully followed-up at 12 months (809 of 1,162 due for follow up through 12/15/97). One-hundred and one IDUs had seroconverted after 1,240 person-years (PYs) of observation (incidence = 8.1/100 PYs; 95% CI = 6.6-9.7). Of 82 HIV-1 specimens available for sequencing, 67 (82%) were subtype E and 15 (18%) were subtype B’ (Thai B). Factors associated with HIV seroconversion in a proportional hazard model were daily heroin injection (RR = 3.6, 95% CI = 1.9-6.9, referent: no injection); being incarcerated and injecting (RR = 4.1, 95% CI = 2.3-7.4, referent: not incarcerated); being incarcerated but not injecting (RR = 1.9, 95% CI = 1.1-3.3, referent: not incarcerated); and being female (RR = 2.0, 95% CI = 1.1-3.6). Conclusion: Bangkok IDUs remain at high risk for HIV despite active interventions. An HIV vaccine efficacy trial seems feasible in this setting and could evaluate protection against HIV-1 subtypes B’ and E.

Genetic characterization of incident HIV-1 subtype B and E strains from injecting drug users (IDUs) in Bangkok, Thailand

S Subbarao1, S Vanichseni1, TD Mastro2, D Kitayaporn4,5, S Rakham1, NL Young3, L Srisuwanvilai2, CC Luo2, C Hartz3

1 Retrovirus Disease Branch NSG-9 CDC, Atlanta, GA
2 Bangkok Metropolitan Administration, Bangkok
3 U.S. CDC & HIV/AIDS Collaboration, Nonthaburi
4 HIV/AIDS Collaboration, Nonthaburi
5 Centers for Disease Control & Prevention, Atlanta, GA, USA
6 Faculty of Tropical Medicine, Mahidol University, Bangkok

Background: The initial 1988 epidemic among IDUs in Bangkok was largely due to envelope (env) subtype B’ (Thai B) strains, but subtype E has increased in prevalence in recent years. Since 1995, HIV-1 seroconverting IDUs have been identified in a prospective cohort study to determine the feasibility of conducting an HIV vaccine efficacy trial in this setting. Genetic characterization of these strains is required for the design of candidate HIV-1 vaccines.

Method: HIV-negative IDUs (n = 1,208) were evaluated by HIV EIA testing every 4 months. Following an HIV-positive test, blood was obtained at time 0 and months 1, 4, 8, 12, etc. Samples from each seroconverter during 1995-97 were characterized for HIV-1 subtype from env region DNA amplified either from lysed PBMCs or reverse-transcribed RNA from plasma. Viral subtypes were determined by phylogenetic analysis of 345 bases in the C2-V4 region of gp-120.

Results: Through December 1997, 101 IDUs became HIV-1 infected. Of 78 samples analyzed to date, 63 (81%) were
subtype E strains and 15 (19%) were subtype B. All subtype B strains clustered with B' (Thai B) strains. The mean intra-subtype nucleotide divergence for subtype E was 6.96% (range, 0.30-13.65) and for subtype B was 15.33% (range, 3.64-29.25). The mean divergence between the two subtypes was 28.90% (range 19.27-45.92). The GPGQ motif at the crown of the V3 loop was present in 58 (92%) of 63 subtype E strains; other motifs were GPGR (2), GPGK (2), and GPGE (1). The V3 crown displayed greater variation among subtype B strains: GPGR (6 of 15), GQGR (4), GPGQ (3), and GLGR (2). Conclusions: HIV-1 subtype E accounted for a majority of new infections among Bangkok IDUs in 1995-97; all subtype B strains were B' (Thai B). Subtype E strains displayed limited genetic diversity in the env region; while subtype B' HIV-1 vaccine evaluated in this population would be challenged by two HIV-1 subtypes.

Background: Bangkok IDUs experienced an epidemic of HIV-1 subtype B' (Thai B) in 1988. Recent cross-sectional surveys have identified an increase in subtype E. Since 05/95, in a prospective cohort of 1,208 IDUs attending 15 methadone treatment clinics of the Bangkok Metropolitan Administration, HIV-1 incidence was 8.1 per 100 person-years. We evaluated demographic and behavioral factors associated with incident infection with these two subtypes. Methods: Data on seroconverters were obtained from enrollment and follow-up questionnaires. Incident HIV-1 strains were characterized by direct DNA sequencing of the C2-V4 envelope region. Results: By 12/15/97, 101 IDUs became HIV-1 infected, and 82 were available for this analysis. Of these, 87% still injected heroin despite treatment, and needle sharing was reported by 28%. However, reported sexual activity in the four months before seroconversion was limited: 59% had no sex, only 2.4% had sex with a non-regular partner, and none had sex with a commercial sex worker. Infection was due to subtype E for 67 (82%) and subtype B' for 15 (18%). IDUs with subtype E tended to be younger than those with B' (mean age: 30 vs. 32 years, p = 0.2). Yet, other demographic and behavioral factors (gender, education, marital status, age of first drug use, incarceration, needle sharing, history of casual sex, and reported STDs) were similar for those with subtypes B' and E (p > 0.1 for any variable). Conclusion: Recently infected Bangkok IDUs with subtype B' or E infection are similar with regard to demographic and behavioral factors. These data suggest a similar parenteral mode of infection for both subtypes B' and E.

months. Following an HIV-positive test, blood was obtained at time 0 and at months 1, 4, 8, 12, etc. Incident HIV-1 strains were characterized by direct DNA sequencing of the C2-V4 envelope region, plasma viral load was determined by Roche Amplicor Monitor v. 1.5 testing, and CD4 cell counts were determined by flow cytometry. Results: By December 1997, 101 IDUs became HIV-1 infected; specimens from 83 were available for analysis: 67 (81%) had subtype E and 16 (19%) had B’. IDUs with E and B’ had similar demographic and ehavioral characteristics. Geometric mean plasma viral levels (copies/mL) within 4 months of seroconversion were higher for subtype E (120,000) than B’ (48,000; P = 0.05); however, mean viral levels were more similar 6-12 months after seroconversion for E (69,000) and B’ (35,000; P = 0.2). Mean CD4 cell counts (cells/mL) 6 months post-seroconversion were similar for E (523) and B’ (568; P = 0.4), as were the rates of CD4 decline during the first year (P = 0.3). Conclusion: The initial post-infection viral peak may be higher for subtype E than for subtype B’, but the vital level set point and CD4 counts within the first year appear to be similar for IDUs infected with these two subtypes. Continued follow-up of this cohort of IDUs will further define the clinical course of infection with HIV-1 subtypes B’ and E.

INCARCERATION AS A CONTINUING HIV RISK FACTOR AMONG INJECTING DRUG USERS IN BANGKOK

K Hiranras1, D Kitayaporn2, S Vanichseni1, K Choopanya1,
DC Des Jarkais3, S Rolkham1, W Subhachaturas1, P Mock2, TD Mastro2

1 Bangkok Metropolitan Administration, Bangkok
2 HIV/AIDS Collaboration, Nonthaburi
3 Beth Israel Medical Center, New York, NY, USA
4 Mahidol University, Bangkok, Thailand

Background: Bangkok experienced very rapid spread of HIV among IDUs in 1988, followed by stable seroprevalence at approximately 40% and continued high incidence. Estimated incidence from a prospective cohort of IDUs attending 15 Bangkok Metropolitan Administration methadone clinics during 1995-1997 was 8.1 per 100 person-years at risk. Previous surveys have shown that having been incarcerated was significantly associated with being HIV seropositive, with odds ratios in the range of 2 to 3. We determine risk factors for incarceration among cohort enrollees. Methods: HIV-negative IDUs were offered enrollment after informed consent; data were obtained from enrollment and follow-up questionnaires. HIV testing and counseling and interviews on demographics, drug use, and sexual behaviors were conducted at enrollment and scheduled every 4 months. Results: Of 1,208 HIV-negative IDUs enrolled, 101 seroconverted as of 15/12/97.

A proportional hazard model demonstrated that, after controlling for gender and heroin injection, being incarcerated and injecting (Relative Rate [RR] = 4.1, 95% CI = 2.3-7.4, referent: not incarcerated), and being incarcerated but not injecting (RR = 1.9, 95% CI = 1.1-3.3, referent: not incarcerated) were risk factors associated with HIV-1 infection. Factors associated with being incarcerated, using logistic regression, included: age less than 25 years old (Odds ratio [OR] = 2.9, 95% CI = 2.1-4.1, referent: 40+ years); having secondary education or less (OR = 1.6, 95% CI = 1.2-2.2, referent: post secondary); any use of heroin since enrollment (OR = 1.7, 95% CI = 1.3-2.2; referent: not used); and number of incarcerations before enrollment (OR = 1.4, 95% CI = 1.2-1.6). Conclusion: Incarceration is a strong risk factor for incident HIV infection in Bangkok IDUs. History of heroin use and previous incarcerations lead to higher probability of being incarcerated. This vicious cycle needs more attention and appropriate interventions to reduce HIV transmission in this high-risk population.

Background: The safety and immunogenicity of AIDSVAX has been evaluated through administration of monovalent subtype B formulations (MN and IIIB) to over 1000 humans. Potential human efficacy is reflected by its ability to protect chimpanzees from high-dose challenge. To maximize the potential efficacy, geography-specific formulations to cover different HIV-1 subtypes need to be produced for efficacy testing. Methods: We reviewed all human and chimpanzee data regarding the safety, immunogenicity, potential efficacy of AIDSVAX. In addition, we examined viruses infecting vaccinated humans (breakthroughs). With this information, a second geography-specific antigen was selected, produced, combined with MN and administered to humans in the United States and in Thailand using bivalent formulations - B/B for the US (120 volunteers) and B/E for Thailand (90 volunteers). To test the efficacy of these bivalent vaccines we designed Phase III trials. Results: Minimal injection site reactions are the only associated adverse reactions observed. Data from the bivalent studies are pending. Monovalent formulations induce humoral immune responses in 99.5% of recipients. These occur after two initial doses given at T-0 and T-1 month but the titers of anti-gp120, anti-V-3, CD4 blocking and neutralizing antibodies are increased with booster doses given at time 6 months and time 12 months. Lymphocyte transformation and positive skin tests to rgp120 are common. Results from testing sera following B/B and B/E vaccination suggest the addition of macrophage-tropic strains with neutralizing sites complementary to MN will increase the likelihood of protection. Plans for US and Thai Phase III trials have been accepted by the US FDA. Conclusion: Indications are that AIDSVAX is safe and will likely protect humans from HIV-1 infection. The addition of complementary macrophage-tropic strains to the monovalent MN vaccine are expected to increase the likelihood of protection - the extent of protection will await the results of planned efficacy trials.

Objectives: To assess willingness to participate in a gp120 bivalent B/E vaccine efficacy trial and to evaluate educational needs and positive motives for and barriers to participation. Methods: Between 5/95 and 12/96, 1,208 IDUs attending 15 drug treatment clinics in Bangkok were enrolled into a prospective cohort to assess the feasibility of conducting an HIV vaccine trial. In 1997, 193 cohort participants at 5 clinics attended group informational sessions describing a potential efficacy trial of a gp120 vaccine product and completed questionnaires assessing comprehension and willingness to participate. About a week later they completed a follow-up questionnaire that again assessed comprehension and willingness to participate, as well as barriers to and positive motives for participation, who (if anyone) they talked to about the information, and whether others thought participation was a good, bad, or neutral idea. Results: At baseline 51% were definitely willing to participate, and at follow-up 54%; only 3% were definitely not willing at either point. Baseline comprehension was high (median score = 11 out of 13) and improved at follow-up (median score = 12). In general, participants tended to rank positive motives as very important and barriers as a small problem. Altruism was the motive most frequently cited as very important (79%), while the hypothetical possibility that the vaccine might cause disease enhancement was the barrier most frequently cited as a major problem (31%).
(84%) of participants talked to others about the information they received; of these, 69% reported that others generally thought participation was a good idea. Conclusions: IDUs in Bangkok are able to comprehend satisfactorily the basic issues surrounding a gp120 vaccine efficacy trial and express a high level of willingness to participate in such a trial.

Background: Prophylactic HIV vaccines could reduce susceptibility to infection or disease, i.e., vaccine efficacy for susceptibility (VES). They also may reduce infectiousness of vaccinees who become infected, i.e., vaccine efficacy for infectiousness (VEI). This latter effect could produce an important indirect reduction in HIV transmission even if the vaccine does not protect well against infection. We propose an augmented design for HIV vaccine trials that allows estimation of both effects. The augmented design includes steady sexual partners of primary participants. Methods: A placebo-controlled phase III HIV vaccine trial is simulated according to the structure of the Bangkok Metropolitan Administration (BMA) cohort of injecting drug users. In the simulation, 1,250 primary participants are recruited per arm. Participants and their steady sexual partners are followed every six months for three years. Primary participants are assumed to be at risk of infection through needle-sharing at various frequencies. In addition, 50% of the primary participants have unprotected sexual contact with a steady partner at various frequencies. A likelihood function based on a Markov model is used to estimate the VES and VEI. Results: In the simulated baseline vaccine trial, cumulative incidence in the placebo arm among primary participants is 12% for the entire trial. There are 119 total infections in the placebo arm. The secondary attack rate (SAR) among sexual partners in the placebo arm is 46%. The VES and VEI were preset to 0.4 and 0.6, respectively. The estimated 95% confidence interval (CI) on VES is [0.22, 0.56] and on VEI is [0.37, 0.74]. The power to reject H0: VES = 0 and H0: VEI = 0 is 1.0 for both. If the HIV incidence rate is reduced so that 92 infections occur among primary participants in the placebo arm and SAR = 32%, then the estimated 95% confidence interval on VES is [0.23, 0.54] and on VEI is [0.31, 0.78]. The power to reject H0: VES = 0 and H0: VEI = 0 is still 1.0 for both. Conclusions: It should be feasible to estimate both VES and VEI for vaccine trials in developing countries that have populations where the primary participants are exposed to infection through injecting drugs or sexual contact, and who have steady sexual partners. Several populations, in addition to the BMA cohort, with this social structure are being considered for HIV vaccine trials.

DEPARTMENT OF TROPICAL HYGIENE

Head
Assistant Professor Pratap Singhasivanon
M.B.B.S., D.T.M.&H., M.P.H., Dr.P.H. (Epidemiology)
Telephone: 680
e-mail: tmpsh@mahidol.ac.th

Deputy Head
Nilarat Premmanisakul
M.B.B.S., D.T.M.&H.
e-mail: tmnp@mahidol.ac.th

Assistant Professor
Kasinee Buchachart
B.Sc. (Microbiology), M.Sc. (Trop. Med.)
e-mail: tmkbc@mahidol.ac.th

Lecturer
Srivicha Krudsood
B.Sc. (Biology), M.D., D.T.M.&H., M.Sc. (C.T.M.),
Diplomat, Thai Board of Internal Medicine
e-mail: tmks@mahidol.ac.th

Sombat Treeprasertsuk
M.D., Thai Board in Internal Medicine
e-mail: tmstr@mahidol.ac.th

Scientist
Supalarp Puangsara-art
B.Sc. (Agriculture), B.A. (Political Science),
M.Sc. (Trop. Med.)

Researcher
Pitak Wuthisen
B.Sc. (Biology), M.Sc. (Trop. Med.)

Surapon Yimsamran
Cert. Medical Science Technology, B.Ed. (Biology),
M.Sc. (Epidemiology)
e-mail: tmuy@mahidol.ac.th

Nipon Thanyavanich
Cert. Medical Science Technology,
B.A. (Political Science)

Medical Science Associate
Wanchai Maneeboonyong
Cert. Medical Science Technology,
B.Sc. (Education)

Natefa Uthaichotiwan
Cert. Medical Science Technology,
B.Sc. (Health Education)

Prasert Rakmanee
Cert. Medical Science Technology,
B.Sc. (Environmental Science)

Muntana Nakmun

Research Officer
Chotima Charusabha
B.Sc. (Computer)
e-mail: tmcc@mahidol.ac.th

Supit Sungnoi
B.Sc. (Computer)
e-mail: tussn@mahidol.ac.th

General Affairs Officer
Kamornwan Chaipakdee
B.Ed. (Social Study)

CURRENT RESEARCH ACTIVITIES

1. Epidemiology and control of malaria in Ratchaburi Province, Thailand.
2. Correlation between malaria incidence in Thailand and changes in vegetation cover using satellite remote sensing techniques.
4. Epidemiology and control of soil-transmitted helminthiasis in a rural community near the Thai-Burmese border.

TEACHING AND TRAINING COURSES

The Department is responsible for the Faculty’s teaching and training courses as well as the international training courses in epidemiology. The Department has its own field work base at the Ratchaburi province known as Suan Phung Research Unit where research work and training in field epidemiology is being conducted both for the local and the foreign students.

1. **Diploma in Tropical Medicine and Hygiene (D.T.M.&H.)**

 Core subjects:

 TMHG 501: Tropical hygiene
 TMHG 502: Medical statistics

Office Telephone: 644-7483; 246-0056 ext. 682, 683

Faculty of Tropical Medicine Annual Report 1998
ELECTIVE SUBJECTS:
- TMHG 508: Epidemiology (elective)
- TMHG 509: Computer utilization (elective)

2. M.Sc. and Ph.D. in Tropical Medicine

CORE SUBJECTS:
- TMID 513: Biostatistics
- TMID 514: Research methodology and design

ELECTIVE SUBJECTS:
- TMHG 511: Advanced statistical analysis in biomedical research
- TMHG 512: Modern methods in epidemiological research
- TMHG 513: Use of advanced statistical softwares in epidemiological analysis
- TMHG 514: Data processing by computer
- TMHG 515: Design and analysis in experimental research

3. Master Degree in Primary Health Care Management

ADPM 606: Epidemiological studies in health system

4. M.Sc. (Medical Epidemiology)

- TMHG 668: Epidemiologic methods
- TMHG 676: Epidemiology of specific health problems

5. Ph.D. (Clinical Epidemiology)

RACE 606: Advanced epidemiologic methods

INTERNATIONAL LINKAGES

1. Research
 1.1. Clinica di Malattie Infetive e Tropicali, Universit· Degli Studi Di Brescia
 1.2. Centre de Formation et de Recherche en Medicin et Santé Tropicales, Hopital Felix Houphouet-Boigny, Marseille, France.
 1.3. Department des Maladies Infectieuses et Tropicales, Hopital de la Salpetriere, Paris, France.
 1.4. Association Santé Sud, Medical Humanitarian French Association, Marseille, France.
 1.5. Freie Universität Berlin

2. International Training Courses
 2.1 SEAMEO-TROPMED Network
 2.2 Tropical Health Program, University of Queensland Medical School, Australia
 2.3 College of Public Health, University of the Phillipines, Manila
 2.4 Faculty of Public Health, University of Indonesia, Indonesia
 2.5 Institute for Medical Research, Malaysia
 2.6 Freie Universität Berlin

SERVICES

1. Short Courses
 Introductory course in epidemiology
 Advanced course in tropical epidemiology (international)
 Computer utilization
 Regional workshop on geographic information system: Disease mapping for tropical infections and vector-borne diseases
2. **Medical Personnel Training Courses**

- Management in malaria control for malaria division personnel (international)
- Health information system for malaria division personnel (international)
- Epidemiology of malaria and malaria control for medical personnel from Nepal, Laos PDR, and Vietnam

3. **Other Services**

- Consultant in research methodology and biostatistics
- Health surveillance for the expressways personnel
- Malaria field research station

ABSTRACTS

FACTORS INFLUENCING MALARIA ENDEMICY IN YUNNAN PROVINCE, P.R. CHINA

Analysis of Spatial Pattern by GIS

Hong Hu1, Pratap Singhasivanon2, Nelia P. Salazar3, Krongthong Thimasarn4, Xuezhong Li1, Youxing Wu1, Huang Yang1, Defu Zhu2, Suvanee Supavej3, Sornchai Looareesuwan2

1Yunnan Provincial Health Bureau, Kunming, P.R. China
2Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
3SEAMEO-TROPMED Network, Bangkok, Thailand
4Malaria Division, Ministry of Public Health, Nonthaburi, Thailand
5Yunnan Provincial Institute for Malaria Control, Simao, P.R. China

This study is an initial attempt to apply disease mapping through Geographical Information System (GIS) with multiple regression analysis to determine the nature and extent of factors influencing malaria transmission in Yunnan Province, P.R. China, particularly in border areas. Secondary county-based data covering the period of 1990 to 1996 were collected and analyzed. The malaria situation in Yunnan Province as a whole is influenced mainly by the combined effects of the physical environment, the presence of efficient vector species, and mobile population along international borders with Myanmar, Lao PDR and Vietnam.

Published in: Southeast Asian J Trop Med Public Health (in press).

DOES G6PD DEFICIENCY TRAIT CONFER RESISTANCE AGAINST MALARIA?

Pratap Singhasivanon1, Surapon Yimsamran1, Suthep Kongrod1, Pranee Srisuriya1, Srivicha Krudsood1, Supatarp Puang-so-art1, Pithak Wuthisen1, Nipon Thanavanchi1, Dwip Kittayaporn1, F.Kawamoto2, Sornchai Looareesuwan1

1Faculty of Tropical Medicine, Mahidol University, Thailand
2Nagoya University School of Medicine, Nagoya, Japan

A one-year prospective cohort study was carried out in rural malaria endemic community near Thai-Burmese border in Western Thailand to determine whether the incidence rates of malaria differ among the G6PD deficient individuals compared to people with normal enzymes. Determination of G6PD was done by improved single-step formazan method and fluorescent screening test among 795 subjects. Data on haemoglobinopathies are pending. Using Poisson regression, after controlling for age, mosquito net use, sleeping time and wake-up time, the G6PD heterozygous trait provided significant protection against malaria with the incidence rate ratio (IRR) = 0.36 (95% confidence limits = 0.13,0.96). However, no difference in incidence rates was observed in hemizygous and homozygous G6PD deficient males and females compared to normal subjects with IRR = 1.17 (95% confidence limits = 0.90,1.53). This study provides strong evidence that there is substantial protective effect against malaria conferred by heterozygous G6PD trait.

Over the past one decade, the number of tourists from temperate countries coming to Thailand had been steadily increased. This study reports the common causes of ailments and injuries among travelers in Thailand. A total of 516 patients seeking our private medical services or advice through insurance claims during the period of 1990-1994 were evaluated. Two hundred and seventy-six (53.5%) were males and 240 (46.5%) were females with a mean age of 42.5 years (7 months to 86 years). The duration of their stay in Thailand before illness was between 1 day to 2 months and most were seen in the month of August. Five of the most frequent cause of morbidity were 1) road accident (18.8%), 2) acute gastroenteritis (13.2%), 3) acute respiratory tracts infections mainly bronchitis and pneumonia (10.9%), 4) other type injuries (10.7%), and 5) cardiovascular diseases (7.4%). Fifty-five percent were treated as in-patients or out-patients were able to continue with their trips, 41% were hospitalized and repatriated and 2.6% needed only advice without medication. Five of them died (1%), of which three died from drowning, one had myocardial infarction and one with unknown cause of death. Since tourism is not only for young and healthy, and because most ailments that occurred were preventable and entailed unforeseen expenses, it is important that proper counseling should be sought before traveling.

Published in: J Travel Med (in press).

The direct agglutination test (DAT) was assessed as a diagnostic tool for the field study in Nepal. By using this method, anti-leishmanial agglutination test was conducted for fifteen visceral leishmaniasis (VL) cases who had been confirmed by bone marrow aspiration. The same test was done for 120 tuberculosis, 58 leprosy, 15 malaria, 26 intestinal parasitic infection cases, 24 healthy controls from adjacent to VL endemic area, and 18 controls from Kathmandu (who had never visited the VL endemic areas). Two of the tuberculosis cases were positive for anti-leishmanial agglutinating antibodies at 1:800. All of the confirmed cases of VL were reactive to anti-leishmanial antibody at 1:3200. Others were negative for serology. These results showed that the sensitivity of the direct agglutination test was 100% and the specificity was 99.2%. The direct agglutination test had positive and negative predictive value of 100% and 99.2% respectively. In conclusion, the DAT was found to be adaptable for the field application in a field laboratory.

Department of Tropical Nutrition and Food Science

Head
Assoc. Prof. Supranee Changbumrung
B.Sc. (Pharmacy), M.Sc. (Tropical Medicine),
Dr. agr. (Nutrition and Food Sciences)
Tel. 246-0321, 246-9100 Ext. 581
248-5749 Fax: 248-5749
E-mail: headtmnu@mahidol.ac.th, tmscb@mahidol.ac.th

Professor
Panata Migasena M.D., D.T.M.&H., Ph.D.(Tropical Medicine)
F.R.C.P. (T)
Phaneet Pongpaoew B.Sc. (Chemistry), M.Sc. (Biochemistry),
M.S. (Nutrition)
E-mail: tmppp@mahidol.ac.th

Associate Professor
Niyomsri Vudhivai B.Sc. (Pharmacy), M.Sc. (Tropical Medicine)
Venus Supawan B.Sc. (Medical Technology), M.T. (ASCP)
E-mail: tmvsp@mahidol.ac.th
Rungsunn Tungtrongchitr B.Sc. (Medical Technology),
M.Sc. (Tropical Medicine), Ph.D. (Tropical Medicine)
E-mail: tmrtg@mahidol.ac.th

Assistant Professor
Talabporn Harnroongroj B.Sc. (Medical Technology),
M.Sc. (Tropical Medicine), Dr. oec. troph. (Nutrition and Food Sciences)
E-mail: tmthr@mahidol.ac.th
Kanjana Hongtong B.Sc. (Health. Ed.), D.A. Nutrition,
M.Sc. (Tropical Medicine)
E-mail: tmkht@mahidol.ac.th
Songsak Petmitr B.Ed. (Secondary School), M.S. (Chemistry Ed.),
Ph.D. (Biochemistry)
E-mail: tmspm@mahidol.ac.th

Lecturer
Karunee Kwanbunjan B.Sc. (Biology), M.Sc. (Tropical Medicine)
Dr. oec. troph. (Nutrition and Food Sciences)
E-mail: tmkkb@mahidol.ac.th

Scientist
Seevika Vorasanta B.Sc. (Nutrition), M.C.H. (Nutrition)
Pornrutsami Jintaridhi B.Sc. (Nursing), M.Sc. (Nutrition)
E-mail: tmjpn@mahidol.ac.th

Researcher
Anong Kitjaroentham B.Sc. (Medical Technology),
M.Sc. (Tropical Medicine)
E-mail: tmakj@mahidol.ac.th

Medical Science Associate
Yaovamarn Chantaranipapong Cert. in Chemical Laboratory
Assistant
Wichien Jomthong Cert. in Medical Laboratory Technician

General Affair Officer
Saijai Paisiri B.A. (General Management)
CURRENT RESEARCH ACTIVITIES

Operational and multidisciplinary research projects:
1. Food and health relationship in Asian population
2. Dietary pattern, lifestyle and nutritional status of health science university students in Bangkok
3. Investigation of nutritional, health and dietary patterns of Thai elderly
4. Serum leptin concentration in obese subjects
5. Micronutrients and oxidative stress in obese subjects

Basic science research projects
1. Identification of gene mutation in lung cancer cells in Thai patients
2. Molecular Biology of carcinogenesis in lung cancer
3. Development of food and medicinal plant

TRAINING COURSES

Second International Short Training Course Food Safety and Food Control 1998
14-25 September 1998
28 Participants

International Workshop on The role of University/Ministry of Public Health/SEAMEO TROPMED/WHO/ICD/etc. in the course structure of Master Degree Program in Food Safety and Food Control
22-23 September 1998
25 Participants
ABSTRACTS

RIBOFLAVIN AND NUTRITIONAL STATUS OF THAI ROAD SWEEPERS IN BANGKOK

Niyomsri Vudhivai1, Praneet Pongpaew1, Rungsunn Tungtrongchitr1, Benjaluck Phonrat1, Vicha Horoswat1, Frank Peter Schelp3

1Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi road, Ratchhevee, Bangkok 10400, Thailand
2Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi road, Ratchhevee, Bangkok 10400, Thailand
3Department of Epidemiology, Institute of Social Medicine, Faculty of Medicine, Free University, Berlin, Germany

Anthropometric measurements, haematological parameters and riboflavin status of Thai road sweepers in Bangkok were determined. According to a physical check-up and X-rays taken, all individuals investigated were apparently healthy. The age of the study group varied between 20 and 59 years. The median for the males was 44 years and for the females 37 years. Over- and undernutrition were found among those investigated. 25.9% (BMI \(\leq 20.1 \)) of the males and 1.8% (BMI \(\leq 18.7 \)) of the females were undernourished. 31.5 % of the males and 43.8 % of the females were overnourished (BMI \(\geq 25.0 \)). 13.0% of the males and 10.7% of the females had \(\alpha \mathrm{EGR} \geq 1.30 \), or vitamin B2 insufficiency.

Published in : Intern Med 1997;13:77-80.

EVALUATION AND MONITORING OF IODINE DEFICIENCY DISORDERS (IDD) IN SCHOOL CHILDREN IN NORTHEAST, THAILAND

Praneet Pongpaew1, Rungsunn Tungtrongchitr1, Venus Supawavan1, Niyomsri Vudhivai1, Pattara Sanchaisiriyaw1, Chalor Intarakhoa1, Udomsak Mahaweeraawat1, Benjaluck Phonrat1, Pisit Jotking3, Wongsa Kongdee1, Frank Peter Schelp5, Sastri Saowakhontha6

1Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University
2Department of Nutrition, Faculty of Public Health, Khon Kaen University
3Department of Community Medicine, Faculty of Medicine, Khon Kaen University
4Department of Public Health Administration, Faculty of Public Health, Khon Kaen University
5Department of Epidemiology, Institute of Social Medicine, Free University, Berlin, Germany.
6Department of Medicine, Faculty of Medicine, Khon Kaen University

In using an operational research approach the possibility of improving iodine deficiency disorder (IDD) in school children at Khon Kaen province was investigated during the period of one year. Four schools in Pupaman and Srichompu districts, namely Ban Khoa Wong, Na Fai Witaya, Ban Pa Num Tieng and Ban Non Khom school were selected for this study. Ban Non Khom school served as control. Different means were used for iodine fortification. Iodinated salt was used for the children of the Ban Khoa Wong school, in Na Fai Witaya school iodinated water and iodinated fish sauce were provided for the children in Ban Pa Num Tieng school. Iodinated salt, water and fish sauce was provided through the help of the school teachers under the supervision and the advice from the team of investigators. Urine iodine excretion, palpation of the thyroid gland and the thyroid hormones T4, T3 and TSH were selected for monitoring and evaluating the outcome of the study.

The proportion of children with low urine iodine excretion, indicated by a cut-off point suggested by the WHO/ICCIDD/UNICEF working group, decreased during the course of the project in all schools receiving iodine supplementation as well as in the control school. However the decrease was less in the control school in comparison with the implementation schools. Also the goitre rate decreased in all schools under investigation. The decrease of the goitre rate for the children of the control school might be due to the activities of a village health volunteer in a nearby village who was using iodinated salt for IDD control according to the presently ongoing national programme initiated by the Ministry of Public Health. No significant difference in the level of thyroid hormones were detected before and at the end of the supplementation for the experimental schools as well as for the control school.

The results from the determination of thyroid hormones serum levels could not be used for assessing the outcome of the project. The measuring of urinary iodine excretion might be helpful in monitoring the iodine intake during the intervention phase. Long term effects of iodine fortification could be seen best by the declining proportion of children with goitre. An observation of one year might not be
enough to clearly see the outcome of the project. The other possible contributing errors in this study is due to intra observer variation of the palpation technique when the sample size is not big enough. Goitrogens in this area might be another risk factor for the high prevalence rate of the goitre. Further study in this field should be encouraged.

The results of the study indicate that iodine fortification of salt and fish sauce is more effective than fortification of drinking water. Due to the local preference to add fish sauce (nam pla) instead of salt to almost all dishes, nam pla proved to be the best vehicle for iodine fortification. The success of the project depended heavily on the understanding and co-operation of the school teachers and the school children.

Major constraints in conducting this project had been the insufficient distribution of iodinated salt and potassium iodide solution for fortifying drinking water and the inconsistency of iodide concentration in salt after fortification.

EFFECTS OF STORAGE CONDITIONS ON THE STABILITY OF IODINE IN IODIZED SALT, FISH SAUCE AND DRINKING WATER

Rungsunn Tungtrongchitr, Praneet Pongpaew, Venus Supawan, Yaowaman Chantaramipapong, Udomsak Mahaweerawat, Benjaluck Phonrat, Chalor Intarakhoa, Sasti Saowakontha, Frank Peter Schelp

1Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi road, Rajthevee, Bangkok 10400, Thailand
2Department of Community Medicine, Faculty of Medicine, Khon Kaen University
3Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi road, Rajthevee, Bangkok 10400, Thailand
4Department of Medicine, Faculty of Medicine, Khon Kaen University
5Department of Epidemiology, Institute of Social Medicine, Free University, Berlin, Germany

Stability of iodine content in iodized salt, iodinated fish sauce, and iodinated drinking water was tested under different storage conditions i.e., room temperature, 25°C and 37°C, light exposure, and duration of storage. Light exposure, temperature and duration of storage showed direct effect on the iodine concentration in fish sauce and drinking water but do not effect the iodine content in salt. However, multiple factor regression analysis revealed that only time and temperature were related to iodine stability in salt and drinking water

Published in: Food 1998;28:31-41.

NUTRITIONAL STATUS OF SCHOOL CHILDREN IN AN ENDEMIC AREA OF IODINE DEFICIENCY DISORDERS (IDD) AFTER ONE YEAR OF IODINE SUPPLEMENTATION

Praneet Pongpaew, Rungsunn Tungtrongchitr, Benjaluck Phonrat, Venus Supawan, Frank Peter Schelp, Chalor Intarakhoa, Udomsak Mahaweerawat, Sasti Saowakontha

1Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok 10400, Thailand
2Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok 10400, Thailand
3Department of Epidemiology, Institute of Social Medicine, Free University, 12203 Berlin, Germany
4Department of Community Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
5Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

To improve the health and nutritional status of school children in an area of iodine deficiency disorders (IDD) by means of different iodine fortifications in salt, fish sauce and drinking water, anthropometric assessment for nutritional measurement, including hematological status, were performed. There was a significant difference in the weight and height of the children from the four schools investigated, before and after supplementation in each school. The prevalence of anemia, (as indicated by hematological measurement) and iodine deficiency (as indicated by urinary iodine concentration in the children from the four schools) were assessed and compared before and after iodine supplementation; a decrease in prevalence was found in all school children. However, serum ferritin did not change before and after supplementation in all school children.

Knowledge, attitude and practices of villagers in relation to AIDS and HIV infection were assessed in 3 districts of Khon Kaen province. By cluster random sampling of 350 villagers (166 males, 15 to 72 years old and 184 females, 15 to 54 years of age) from 10 villages had been selected for this study. The villagers were asked by using a pre-prepared questionnaire by trained interviewers. The majority of them (95% C.I.: 86.9 to 91.7%) did know very well about the route of infection for HIV. However as far as the symptoms of AIDS had been concerned, they were less well informed (34.8%). Over 30% (32.6%) of villagers had the correct attitude towards prevention of HIV infection and almost 43% did not discriminate patients suffering from AIDS. From all villagers questioned only 36% confessed that they abstained from risky behaviors such as visiting prostitutes, having unprotected sex and drug injections. The information gained through this study might be used for further planning of HIV and AIDS control measures.

Published in: Thai Aids J 1998 (in press).

The management of iodine fortifications and iodinated salt distribution on village, subdistrict and districts level in Khon Kaen province, northeast Thailand where the prevalence of iodine deficiency disorders is high, were investigated. 10 villages from 3 districts were selected at random. The information about the production, distribution and use of iodinated salt was collected from villagers, village foodstore, provincial foodstore, subdistrict and district health officers, provincial health officer, health promotion center including producers through a prepared questionnaire. Proper knowledge and attitude towards using iodized salt of villagers was found to be the range of 63.8-81.7%. The price of salt is not the important factors for purchasing. About 48.8-60.0% of all villagers investigated did not use iodized salt. They want to buy salt from village health volunteer and health officers. The major constraints for iodized salt preparation is an inadequate and irregular supply of potassium iodate. The shortage of iodized salt supplied to the village foodstore is also a problem. The middleman preferred to sell rock salt because they can make more profit. At the subdistrict /district level, the supply of potassium iodate from the health promotion center is not enough for producing iodized salt. In addition, support and supervision from central organizations is inefficient, amount other reason because the number of man powers is limited. At the provincial and health promotion center, the revolving fund and the stock of iodized salt are inadequate. Iodized salt produced by large firm are in good quality whereas small salt producer on a cottage scale supplied low quality salt to a rather high price. Production and distribution of iodized salt should be promoted and monitored better than at present in order to reach the population at village level.

Published in: J Public Health 1998 (in press).
SEROLOGICAL AUTOANTIBODIES CHARACTERISTICS IN SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) PATIENTS IN INSTITUTE OF DERMATOLOGY, BANGKOK

Somchai Chanjanakijskul1, Rungsun Tungtrongchitr2, Praneet Pongpaew2

1Section of Immunology, Institute of Dermatology, Ministry of Public Health, 420/7 Rajvithi road, Rajthevee, Bangkok 10400.
2Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi road, Rajthevee, Bangkok 10400

One hundred systemic lupus erythematosus (SLE) patients from Institute of Dermatology, Bangkok were studied for serological autoantibodies characteristics namely antinuclear antibodies (ANA), anti Sm, anti nRNP, anti nDNA, Rheumatoid factor (Rh factor), FTA-Abs and RPR. These patients aged between 10 to 71 years old in both sexes. Positive ANA, anti nDNA and anti Sm, the important markers for SLE were found to be 79, 13 and 13 percent respectively. The others non-specifics antibody for SLE: anti nRNP, Rh factor, FTA-Abs and RPR were found to be positive 21.0, 7.0, 3.0 and 7.0 percent respectively. In cases of SLE patients with positive ANA, the percentage of anti nRNP, anti Sm and anti nDNA were found to be 32.8, 20.3 and 20.3 percent respectively. No other autoantibodies were found in SLE patients with the negative ANA in this study. Therefore, ANA might be the most important autoantibody for screening in SLE patients.

NUTRITIONAL STATUS AND SERUM LIPIDS OF A RURAL POPULATION IN NORTHEAST THAILAND - AN EXAMPLE OF HEALTH TRANSITION

Kamron Chaisir1, Praneet Pongpaew2, Rungsun Tungtrongchitr2, Benjaluck Phoonsat2, Sirikul Kulleap1, Pannavadee Suthiwong1, Udomsak Mahaweerawat2, Wongska Khongdee3, Pattara Sanchaissuriy1, Satrith Saowakonthha1, Alfred Merkle4, Frank Peter Schelp5

1Khon Kaen Provincial Health Office, Thailand
2Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
3Deutsche Gesellschaft fur Technische Zusammenarbeit (GTS), Eschborn, Germany
4Institute of Social Medicine and Medical Psychology, Free University Berlin, Germany

An investigation was undertaken in Northeast Thailand, a country undergoing rapid health transition, to find out whether there is a likelihood that the nutritional and lipid pattern of an adult population in Northeast Thailand is related to coronary heart disease in the same way as in western countries. In a cross-sectional study, the body mass index (BMI) and the waist-hip ratio as well as the important plasma lipids were determined. The nutritional status and the lipid profile of the predominantly middle-aged population is characterised by a generally favourable nutritional status and lipid concentrations, where the distribution, indicated by the medians, of the relevant variables over the total population is concerned. A rather high proportion of individuals was found to be overnourished and to have high triglyceride levels. Individuals with high triglyceride levels run a risk of developing coronary heart disease only when the LDL-HDL fraction is above 5. Only 3% of the total population investigated had a LDL-HDL ratio above that value. Since hypertriglyceridaemia is also linked to the insulin resistant syndrome, it is concluded that, if the mortality of coronary heart disease increases in future, then this must be accounted probably more to the after-effects of the insulin-resistant syndrome than to the direct effect of an atherogenic lipid pattern. This view is supported by a high prevalence of impaired glucose tolerance (IGT) and non-insulin dependent diabetes mellitus (NIDDM) in the population under survey. Preventive measures in the area should concentrate among others on reducing overnutrition, especially among women, and increasing physical activity and screening for NIDDM.

Alpha₁-antitrypsin deficiency (PiZZ) constitutes not only the most common hereditary cause of liver diseases, but also of the most prevalent metabolic diseases in need of liver transplantation. It is a codominantly inherited disorder which predisposes to chronic liver disease, usually beginning in early infancy. The purpose of the present study has been to investigate α₁-antitrypsin phenotype in pediatric patients with various liver diseases. Phenotypic identification of α₁-antitrypsin variants has been carried out in 69 children with various liver diseases and 100 healthy controls using isoelectric focusing on polyacrylamide gel slabs. PiMM represents the most common phenotype detected in both groups (92% in the group with liver diseases and 88% in normal controls). We could detect PiZZ in only one healthy child but in none of those with liver diseases. Consequently α₁-antitrypsin deficiency does not appear to be a common cause for liver disease among children in Thailand. Further studies are necessary to elucidate the frequency of various α₁-antitrypsin variants and the clinical relevance with respect to liver diseases in Thailand.

Genes involved in cancer development include oncogenes and tumor suppressor genes. Ras oncogene and mutation in p53 tumor suppressor gene are commonly found in many types of cancer. In Thai patients with cholangiocarcinoma ras oncogenes occur less frequently than in other ethnic groups and furthermore, p53 mutations also occur with lower incidence when compared with Japanese subjects. It is unclear at this time the basis for these differences.

Paraffin embedded tissues from twenty Thai patients with intrahepatic cholangiocarcinomas were studied for K-ras gene mutations at codon 12, 13 and 61 and for p53 gene mutations in exon 5 to 8 using polymerase chain reaction and thermal cycle sequencing. Results showed that point mutations at these regions in K-ras oncogene were not present in all the samples. One case harboured a p53 gene mutation in codon 282 in exon 8, CGG (arginine) to TGG (tryptophane), but the mutation was not found in other patient’s tissues with similar histological features.

The K-ras gene mutations at codon 12 have been analyzed in DNA extracted from paraffin embedded lung cancer tissue from 50 patients. K-ras gene exon I was amplified by polymerase chain reaction and the point mutation at codon 12 was determined by primer-introduced restriction analysis (PIRA) and by mutant allele specific oligonucleotide (MASO) probe hybridization. Point mutation at codon 12 was detected in 14 cases (28%) by PCR-PIRA and 5 cases (10%) by MASO probe hybridization. The nucleotide change in these PCR products were then identified by direct sequencing. Eleven cases (22%) harboured the following mutations from the normal (GGT, glycine): TGT (cysteine) 5 cases, GTT (valine) 3 cases, GCT (alanine) 2 cases, and GAT (aspartic acid) one case. The mutation in both cancerous and its normal counterpart tissue was found in one positive case (TGT, cysteine). Among the 17 cases, 3 (18%) patients with squamous cell carcinoma and 8 out of 21 (38%) with adenocarcinoma exhibited the point mutation. No such mutations were found in 11 patients with the other histological types (5 cases of giant cell carcinomas, 2 carcinoid tumors, 2 bronchioalveolar, 2 undifferentiated carcinomas and one large cell carcinoma). In addition, point mutations were found in 28% of patients (9 out of 32 cases) who had a past history of tobacco smoking and only in 11% of non-smokers (2 out of 18 cases).

Acknowledgement: This work was supported by China Medical Board of New York, Inc. (USA).

Paraffin embedded tissues from twenty-two Thai patients with non-small cell lung cancer were studied for p53 gene mutations in exon 5 to 8 using polymerase chain reaction and thermal cycle sequencing. Results showed that point mutations in this region of p53 gene were present in 3 cases. One harboured the base change from GAC to AAC at codon 281, changing amino acid from aspartate to asparaginse, whilst the other two cases were transversion of AAA (lysine) to ACA (threonine) at codon 292. All subjects with p53 mutation had a past history of tobacco smoking.

GENETIC INSTABILITY OF MICROSATELLITES IN MOST NON-SMALL CELL LUNG CANCER CAUSED BY TOBACCO SMOKING

Songsak Petmit1, Sairiporn Nuchfaong1, Panthep Suttinont2

1Departments of Tropical Nutrition and Food Science, Faculty of Tropical Medicine
2Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand

Genetic alterations at 12 dinucleotide repeat loci located on human chromosomes 2, 3, 12, and 17 have been analyzed in non-small cell lung cancer from Thai patients by PCR-base assay followed by polyacrylamide gel electrophoresis and autoradiography. Twelve out of 18 cases (67%) harbored the microsatellite alterations. Single locus change was detected in 4 tumors, while eight other tumors present two or more loci changes. Among of the 18 cases, 10 (55%) patients had a past history of tobacco smoking, of whom 9 (90%) were in the group with microsatellite alterations, whereas the non-smokers, 3 (38%) had these alterations. The result indicated that microsatellites DNA may use as biomarker for diagnosis of lung cancer.

Acknowledgement: This work was supported by The Thailand Research Fund.

1. Malaria: Histopathologic and electronmicroscopic studies on various tissues and organs in humans
2. Pathogenic effects of cytokines and nitric oxide in cerebral malaria
3. Liver biopsy; studies of liver diseases in the tropic: Histopathologic and electronmicroscopic studies e.g. scrub typhus, salmonellosis, hepatitis, malaria
4. Liver pathology in AIDS
5. Evaluation of stool samples in HIV infected patients
6. Opportunistic infections in AIDS

ABSTRACTS

ELECTRON-MICROSCOPIC EXAMINATION OF RICKETTSIA TSUTSUGAMUSHI INFECTED HUMAN LIVER

Emsri Pongponratn1, Yaowapa Maneerat1, Urai Chaisri1, Polrat Wilairatanar2, Benjanee Punpoowong1, Parnpen Viriyavejakul1, Mario Riganti

1Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
2Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

A 33-year-old Thai woman was diagnosed with scrub typhus infection according to clinical symptoms, eschar lesions compatible with the disease, and specific antibody to Rickettsia tsutsugamushi detected by indirect immunoperoxidase. Percutaneous transhepatic needle biopsies were taken before and 7 days after treatment with tetracycline to study the pathology of the liver. The liver tissue was evaluated by light microscopy, using H & E and Pinkerton’s stains, and by transmission electron microscopy (TEM). Before treatment it showed reactive hepatitis, Rickettsia organisms within the hepatocytes and sinusoids detected by Pinkerton’s stain appeared as tiny bright-red organisms. By TEM, the rod-shaped...
double-membrane Rickettsiae appeared intact in the cytoplasm of Kupffer’s cells and hepatocytes. After tetracycline treatment, moderate levels of acidophilic and ballooning liver cells were observed. The degree of cytoplasmic organelle damage varied, including fatty metamorphosis, depletion of glycogen granules, loss of the mitochondrial cristae, dilatation of endoplasmic reticulum and cytoplasmic vacuolation. Rickettsia organisms cannot be visualized by Pinkerton’s stain but were detected by TEM, in markedly vacuolated hepatocytes, in congested sinusoids and in Kupffer’s cells. Intranuclear Rickettsia were discovered in the endothelial nucleus, showing various degrees of injury. Some were mildly degenerated, while others exhibited clumping of nucleoprotein at the cytoplasm periphery and large vacuolation centrally. Many indented organisms were found, and binary fission during Rickettsiae multiplication was always affected. Electron-microscopic examination of hepatic injury associated with scrub typhus is rare. This is the first

staining of iNOS. This study indicate proinflammatory cytokines may associate with pathogenesis of cerebral malaria via the induction of NO in the brain.

Cerebral malaria caused by severe Plasmodium falciparum infection in human is still an important health problem in developing countries. The etiology of cerebral malaria is unclear. Role of cytokine induced nitric oxide (NO) in pathogenesis of severe malaria has been controversial due to the dual effects of NO in protective immunity against the malaria parasite or in enhancement of disease pathogenesis. In this study, inducible nitric oxide synthase (iNOS) was detected in the brain tissues of cerebral malaria patients, in neurons, glia cells, and endothelial cells of large and small vessels by immunohistochemical staining. Intensity of the iNOS staining and number of positive cells was associated with the severity of histopathologic changes in the brain tissues. Cerebral tissues from 2 patients, recovered from cerebral malaria but died because of renal failure and pneumonia, 1 dengue haemorrhagic fever patient, and 3 car accident victims showed only weakly or no

staining of iNOS. This study indicate proinflammatory cytokines may associate with pathogenesis of cerebral malaria via the induction of NO in the brain.
We attempted to study the liver pathology in people dying from AIDS. Liver necropsy was performed on 38 cases whose fatality was related to AIDS. Thirty seven cases gave good diagnostic yield while liver tissue was not obtained in one case. Infectious diseases detected were cryptococcosis which had the highest prevalence (27.0%), tuberculosis (13.5%) and penicillosis (2.7%). Among the non-infectious lesions, fatty changes were the most prevalent finding (24.3%). Other interesting findings were: one case of hepatocellular carcinoma, two cases of chronic active hepatitis, one case of reactive hepatitis, one case of severe cirrhosis, one case with increased fibrosis at the portal tract and one case of granuloma of undetermined cause. This preliminary study can be beneficial to clinicians to be aware of the opportunistic infections prevalent in Thailand.

This study was supported by the Ministry of University Affairs 1997-1998.

A retrospective study of stool samples of HIV-infected patients from January 1994 to December 1995 submitted to the Department of Tropical Pathology was analyzed. There were twenty-two cases, all of which presented with chronic diarrhea. Results showed that 50% were infected with protozoa. These include *Microsporidium* (27.27%), *Cryptosporidium* (9.09%), *Isospora belli* (4.54%) and *Giardia intestinalis* cysts (9.09%). Other infections were *Candida* sp., *Stongyloides stercoralis* larva and *Opisthorchis viverrini* ova. The data stress the importance of opportunistic protozoa in the HIV-infected patients. Awareness of their existence of the disease is an important area with increasing number of HIV infected patients for early detection and proper treatment.

CURRENT RESEARCH ACTIVITIES

The Department has undergone considerable development in research, teaching, and services. The Department’s titles of current research activities are as follows.

Intestinal parasites:
(1) *Giardia lamblia* infection in an orphanage: prevalence and reinfection.
(2) Survey of intestinal parasitic infection in Cholapratan School’s pupils.
(3) Efficacy of praziquantel for treatment of *Hymenolepis nana* infection in Thai children.

Dengue virus:
Prospective evaluation of seven dengue assays.

Diarrheal diseases:
Effect of milk-cereal mixtures and rice powder salt solution on acute diarrhea in young children.

Vaccine:
(1) A phase IV, observed-blind, randomized, controlled trial to evaluate safety, tolerability and immunogenicity of the Chiron acellular pertussis vaccine combined with diphtheria and tetanus toxoids (DTP), as compared to a licensed whole-cell pertussis vaccine combined with diphtheria and tetanus toxoids (DTwP), when administered to healthy Thai infants at 2, 4 and 6 months of age.
(2) Safety and immunogenicity of tetravalent dengue vaccine formulations in Thai adult volunteers.

Other infectious diseases:
Incidence and clinical manifestation of influenza in assistant nurse students of Faculty of Tropical Medicine, Mahidol University.
EFFICACY AND PHARMACOKINETICS OF ATOVAQUONE AND PROGUANIL IN CHILDREN WITH MULTIDRUG-RESISTANT PLASMODIUM FALCIPARUM MALARIA

A trial was conducted in 32 Thai children with uncomplicated multidrug-resistant falciparum malaria to assess the efficacy, safety and pharmacokinetics of atovaquone and proguanil; plasma concentrations of atovaquone, proguanil and its metabolite, cycloguanil, were measured in a subset of 9 children. The children received atovaquone (17 mg/kg/d for 3 d) plus proguanil (7 mg/kg/d for 3 d). Twenty-six children who had only *Plasmodium falciparum* infection and remained in hospital for 28 d were assessed for drug efficacy. The combination regimen produced a cure rate of 100%. Parasite and fever clearance times were 47 h (range 8-75) and 50 h (range 7-111), respectively. Atovaquone and proguanil were rapidly absorbed, with median time to peak concentrations of 6 h (range 6-24) and 6 h (range 6-12), respectively. Peak concentrations of cycloguanil were achieved between 6 and 12 h (median 6) after administration of proguanil. Mean peak plasma concentration of atovaquone on day 3 was 5.1 g/mL (SD=2.1). The day 3 mean peak plasma concentration of proguanil was 306 ng/mL (SD=108) compared with 44.3 ng/mL (SD=27.3) for cycloguanil. Mean values for the AUC (area under plasma concentration-time curve) were 161.8 g/mL h (SD=126.9) for atovaquone, 4646 ng/mL h (SD=1226) for proguanil, and 787 ng/mL h (SD=397) for cycloguanil. Terminal elimination half-lives of atovaquone, proguanil and cycloguanil were estimated as 31.8 h (SD=8.9), 14.9 h (SD=3.3) and 14.6 h (SD=2.6), respectively. No major adverse effect was attributable to the study drugs. Atovaquone/proguanil combination is safe and highly effective, and should be especially valuable for treatment of multidrug-resistant falciparum malaria.

The Department has had a considerable number of significant achievements in the development of research, teaching, and services during the past 10 years, particularly in the use of many radioisotopes in tropical diseases and related areas. The Department’s current activities are as follows:

In research, there has been an extensive investigation of nutritional problems and associated diseases, such as the measurement of vitamin B₁₂ and folic acid levels, and vitamin B₁₂ binding proteins or transcobalamin in serum and red blood cells of patients with blood diseases, malaria, G-6-PD deficiency, typhoid fever.

In rheology, changes in blood viscosity have been studied in humans consuming garlic capsules. The investigation includes plasma trapping, ¹³¹I labelling, and filterability for an exquisite prevention of blocking of blood vessels.

In cancer patients, a study of serum glutathione S-transferase PI (GST-P) has been established for changing pattern in progress in patients of lung cancer and cancer of the gastrointestinal tract using ELISA technique.

In Deinococcus radiodurans, endurance of this bacteria to UV, 60 ionizing radiation, and mitomycin C was investigated in the Japan Atomic Energy Research Institute, Takasaki, Japan after it was found to be resistant to the nuclear power plant water cooling system and in radiated cannery food.

In teaching, the staff of the Department have provided knowledge of radioisotopes for basic nuclear technology and research for students and researchers. Furthermore, staff have lectured students in this Faculty and other faculties of Mahidol University as co-lecturers in many subjects including an enterprise with the Department of Radiological Science, Ramathibodi Hospital for Nuclear Medicine in the Tropics. The subjects which are involved in cooperation between the Department and others include Introduction to Research, Special Topics in Tropical Radioisotopes, Protozoology, Clinical Microscopy, Practical Immunology, Microbiology and Immunology, Advanced Helminthology, Basic Research Methodology, the Principles of Scientific Research, Essential Anatomy and Physiology of Tropical Diseases, and Practical Application of Atomic Energy for Peaceful Use in Environmental and Nutritional Research (SIRA609)

In services, the Department has steadily opened services to the public in the measurement of levels of (1) vitamin B₁₂ (2) folic acid (3) transcobalamin. These activities have also been provided for the staff and students of the Faculty of Tropical Medicine including other staff of the University.
The development of vaccines against a number of infectious agents is reaching the point where evaluation of reactogenicity, immunogenicity, and protective efficacy must be evaluated in humans. These critical steps in vaccine development are best done initially in a controlled clinical facility where maximum information can be obtained from each study and where risks to study subjects or to the public can be prevented or limited.

BACKGROUND & RATIONALE OF ESTABLISHMENT

Inspite of advancement in medical technology and therapeutics, infectious diseases including diarrhoeal diseases still cause health problems with high morbidity and mortality, particularly in developing tropical countries. To achieve effective control of the diseases, new and better tools for prevention including vaccines are needed. Vaccine development and implementation has been considered of vital importance.

Recognizing the urgent need of another controlled clinical facility for evaluation of reactogenicity and protective efficacy of newly developed vaccines against infectious agents in human, the World Health Organization Special Programme on Control of Diarrhoeal Diseases supported the establishment of such a facility in the tropics, where diarrhoeal diseases are endemic and the vaccines specifically needed are different from Western countries. With the initiation of Professor Dr. Natth Bhamarapravati, the former Rector of Mahidol University (MU), the Vaccine Trial Centre (VTC) was then set up at the Faculty of Tropical Medicine, Mahidol University, Bangkok in February 1984 with the approval of the Ministry of Public Health, Thailand.

The VTC is a clinical facility in the Faculty of Tropical Medicine (FTM), Mahidol University for testing newly developed vaccines which reach the step where evaluation in human volunteers is needed. Individual scientists at any national or international institution may have their vaccines tested at this Centre. It is a joint responsibility of Mahidol University and the Ministry of Public Health (MOPH) and operated by the Faculty of Tropical Medicine on their behalf. The establishment of the Centre was started in February 1984, however, the full operation was possible around September-October 1986 and the first admission of volunteers into the ward was on the 3rd November 1986. The VTC Bangkok, is the first and the only facility of its kind in Thailand, in the Region and perhaps also in the developing countries. The advantage of conducting vaccine trials at this Centre is that the studies will be on person residing in an area where the vaccines are going to be utilized most. The knowledge gained will benefit vaccine development and thus lead to effective control of infectious diseases in developing countries.
PHYSICAL FACILITIES

The Centre occupies the tenth and eleventh floor of the Chamlong Harinsuta Building of the Faculty of Tropical Medicine with a total area of 648 square meters:

A. Self-contained clinical facilities on the 10th floor are comprised of:
 - twenty bed isolation ward
 - sufficient space for recreational activities
 - nursing section
 - doctor’s room and quarters
 - laboratories

B. Outpatient unit on the 11th floor includes:
 - lecture room
 - recruitment and screening of volunteers
 - follow-up facilities

VACCINE PROJECT

AIDSVAX

A PHASE I/II TRIAL TO EVALUATE THE SAFETY AND IMMUNOGENICITY OF AIDSVAX™ B/E VACCINE IN BANGKOK, THAILAND

To evaluate the safety and immunogenicity of three different doses of AIDSVAX™ B/E Vaccine (100,300 or 600 µg of each antigen at 0,1,6 and 12 months. It is a collaborative study between VTC and Bangkok Metropolitan Administration.

OVERVIEW

This study is an open label trial of the safety and immunogenicity of AIDSVAX™ B/E VACCINE in Thailand. A total of 90 HIV-1 uninfected individuals will receive AIDSVAX™ B/E Vaccine at 0,1,6 and 12 months : 30 subjects each will receive 100 µg, 300 µg and 600 µg of each antigen for each of the four injections. All subjects will be evaluated for safety and immunogenicity at certain timelines.

We, as a part of Bangkok Vaccine Evaluation Group, will conduct the phase III efficacy trial of AIDSVAX™ B/E VACCINE beginning in the fourth quarter of 1998.

THAI E

A PHASE I/II, DOUBLE BLIND, PLACEBO CONTROLLED STUDY OF THE CHIRON HIV THAI E GP120/MF59 VACCINE ADMINISTERED ALONE OR COMBINED WITH THE CHIRON HIV SF2 GP120 ANTIGEN IN HEALTHY HIV SERONEGATIVE THAI ADULTS

As one of the sites in Thai AIDS Vaccine Evaluation Group we are evaluating and comparing the safety and Immunogenicity of the three doses of the Thai E gp120/MF59 vaccine alone or combined with one of two doses of SF2 gp120/MF59 antigen. We are also evaluating the potential interaction between these antigens, the Thai E gp120 antigen dose groups and the SF2 gp120 antigen dose groups.

FUTURE PLANS

A Phase I/II Trial of Pasteur Mérieux Connaught (PMC) Live Recombinant ALVAC-HIV (vCP1521) as a Priming vaccination and to be followed by With VaxGen gp120 B/E (AIDSVAX™B/E) in Thai HIV-Seronegative Adults as one of the four sites of Thai AIDS Vaccine Evaluation Groups (TAVEG.)
AIDSVAX™, a possible vaccine to protect against HIV-1 infection, is slated to begin phase III efficacy studies in 1998. It has been tested for potential efficacy in chimpanzees, tested for safety and immunogenicity in human clinical studies, and is poised to enter Phase III efficacy studies. Four candidate vaccines, each with a different envelope protein antigen or combination of antigens, have been produced in alum formulations. In both design and clinical testing, AIDSVAX™ has an excellent safety profile. Since these highly purified proteins were prepared using recombinant DNA technology, there is no possibility of these vaccines causing HIV infection.

Having been received by over 1200 people, the only side effects attributable to AIDSVAX™ have been local pain and inflammation at the injection site. After immunization, essentially all recipients developed a robust antibody response, including binding and neutralizing antibodies. The neutralizing antibodies peaked after a 12 month boost. Excellent memory is induced. Given the evidence that AIDSVAX™ is likely to protect individuals from the HIV virus, Phase III trials of two bivalent formulations are planned. One trial will use a bivalent subtype B formulation. This trial is slated for North America and will involve 500 men who have sex with men and heterosexual discordant couples. The other study will use a bivalent subtype B/subtype E formulation. This trial is slated for Thailand and will involve intravenous drug users. Both studies will be randomized, double-blinded and placebo controlled. The volunteers will be followed for three years. The endpoints of the studies are infection, as defined by seroconversion to standard diagnostic tests, and viral load, as defined by commercial PCR tests.

ABSTRACTS

CLINICAL RESPONSE TO HIV THAI E / MF59 VACCINE ADMINISTERED OF ALONE OR COMBINED WITH SF2 GP 120 ANTIGEN IN HEALTHY VOLUNTEERS

Pitisuttithum P1, Khamboonruang C2, Suntharasamai P1, Thongsawat S1, Migasena S1, Yutabutr Y1, Phonrat B1

1Vaccine Trial Centre (VTC), Mahidol University, Faculty of Tropical Medicine, Bangkok
2RIHES, Chiang Mai University, Chiang Mai

Objective: To determine the safety of three doses of HIV Thai E gp120/MF59 vaccine alone or combined with SF2 gp 120 antigen in healthy HIV-1 seronegative Thai adults.

Design: Open-labeled, dose escalating study.

Method: Groups of three healthy HIV seronegative volunteers were sequentially blocked enrolled to one of 4 antigen/dose combination: 25 ug of Thai E gp120/MF59 (Group 1), 25 ug of Thai E gp120/MF59+25 ug SF2 gp120/MF59 (Group II), 100 ug of Thai E gp120/MF59 (Group III) and 100 ug of Thai E gp120/MF59 +50 ug SF2 gp120/MF59 (Group IV). Sequential enrollment to each group was separated by 48 hrs and required that the preceding group to be free of serious reactogenic reactions. Immunizations were given at 0, 1, 6 months. All volunteers were evaluated 24-48 hours after vaccination and were required to record daily symptoms for 6 days post immunization. Up to the time of submission to abstract, only two doses of vaccination have been administered.

Results: Reported local and systemic symptoms by vaccine dose and number of vaccinations.

Conclusion: Thai E gp120/MF59 vaccine administered alone or combined with SF2 gp 120 antigen appears to be safe. No serious adverse events have been observed following two immunization.

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Vac</td>
<td>2nd Vac</td>
<td>1st Vac</td>
<td>2nd Vac</td>
</tr>
<tr>
<td>Warmth to injection site</td>
<td>1/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>Malaise</td>
<td>0/3</td>
<td>0/3</td>
<td>1/3</td>
</tr>
<tr>
<td>Fever (> 38 OC)</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
</tbody>
</table>

The Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme was initiated in 1979 to study the pathophysiological mechanisms, prevention and treatment of severe tropical infections including falciparum malaria, rabies and melioidosis.

The clinical work of the unit takes place in three up-country locations;

- in Mae Sot Provincial Hospital (studies of the pathophysiology and treatment of falciparum malaria),
- in the camps for displaced persons of the Karen ethnic minority on the north-western Thailand-Myanmar border (studies of the epidemiology, prevention and treatment of malaria),
- in Sappasitprasong Hospital Ubon Ratchatani (study of melioidosis and fungal infections in patients with AIDS).

The current research activities of the unit on malaria include studies of pathophysiological mechanisms in severe malaria, descriptions of the pharmacokinetic and pharmacodynamic properties of the antimalarial drugs, and studies of the epidemiology, prevention and treatment of malaria in the area of low or unstable transmission of the western border.

This year we conducted studies of retinal capillary blood flow in severe malaria, comparative bioactivities of different artemisinin formulations, and mechanisms of parasite clearance. The Shoklo Malaria Research Unit conducted studies with artesunate-lumefantrine and atovaquone-proguanil and large scale studies of malaria in pregnancy and young children.

Studies of melioidosis include a large prospective clinical description of the disease, and a series of clinical and microbiological investigations to improve diagnosis and management of this important infection. This year we completed studies of antimicrobial maintenance treatment, and began work on phagocytosis and killing.

Studies of fungal infections include a pharmacokinetic-pharmacodynamic evaluation of different treatment strategies in cryptococcal meningitis, and the development of improved methods to diagnose penicilliosis. This year we conducted studies on the pharmacokinetics and pharmacodynamics of different amphotericin B formulations.
FACTORS AFFECTING THE PHARMACOKINETICS OF PARENTERAL CHLORAMPHENICOL IN ENTERIC FEVER

GP Acharya1, TME Davis2,3, M Ho1,4, S Harris1, C Chataut1, S Acharya1, N Tuhladar1, KE Kafle1, B Polhrel1, F Nosten2,3, DAB Dance2,3, A Smith6, A Weber6, NJ White2,3

1Tribhuvan University Teaching Hospital, Kathmandu, Nepal; 2Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Headington, Oxford, U.K.; 3Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 4Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada; 5University of Calgary Health Department Project, Tribhuvan University Teaching Hospital, Kathmandu, Nepal; 6Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, U.S.A.

Chloramphenicol pharmacokinetics were studied in 29 Nepalese adults diagnosed with uncomplicated enteric fever and randomized to receive succinate ester 30 mg/kg i.v. or i.m. Serial plasma concentrations of chloramphenicol, and iothalamate (to estimate glomerular filtration rate), antipyrine (hepatocellular function) and indocyanine Green (liver blood flow) were measured by HPLC and kinetic parameters estimated by non-compartmental analysis. In culture-positive patients (n=16), mean residence times (MRTs) and steady-state volumes of distribution (Vdss) for i.v. chloramphenicol (mean (S.D.; 4.9 (0.9 h and 1.9 (0.8 L/kg; n=7) were less than after i.m. chloramphenicol (12.3 (7.3 h and 3.7 (2.5 L/kg; n=9; P< 0.05), with a higher peak plasma concentration after i.v. administration (16.2 (9.1 versus 7.8 (3.6 mg/L; P < 0.05); plasma clearance (CIp) was similar in the two groups (368 (172 and 310 (224 mL/kg/min after i.v. and i.m. respectively). In 17 patients examined during convalescence, MRT and Vdss were less than in acute illness regardless of the route chloramphenicol administration. There were similar changes in chloramphenicol kinetic parameters in culture-negative patients. Antipyrine CIp and liver blood flow correlated weakly with chloramphenicol CIp in culture-positive patients (P ≤ 0.1) and were higher in convalescence; no such associations were seen for iothalamate CIp. These data indicate that i.v. chloramphenicol produces peak plasma concentrations which are on average twice those after i.m. injection of the same dose, due principally to a smaller Vdss. CIp is uninfluenced by route of administration and is determined more by hepatic metabolism than renal excretion. Intramuscular treatment may result in sub-therapeutic chloramphenicol concentrations initially, but continued regular i.v. dosing is more likely to produce levels at which bone marrow toxicity occurs.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

IN VIVO REMOVAL OF MALARIA PARASITES FROM RED BLOOD CELLS WITHOUT THEIR DESTRUCTION IN ACUTE FALCIPARUM MALARIA

B Angus1,2, K Thanikkul3, R Udomsangpetch1, NJ White1,2

1Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 2Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, U.K.; 3Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand.

During acute falciparum malaria infection, red blood cells (RCB) containing abundant ring-infected erythrocyte surface antigen (Pf 155 or RESA), but no intracellular parasites, are present in the circulation. These RESA-positive parasite negative RBC are not seen in parasite cultures in vitro. This indicates that in acute falciparum malaria there is active removal of intraerythrocytic parasites by a host mechanism in vivo (probably the spleen) without destruction of the parasitized RBC. This may explain the observed disparity between the drop in hematocrit and decrease in parasite count in some hyperparasitaemic patients. The fate of these “once parasitized” RBC in vivo is now being investigated.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

Published in: Blood 1997; 5: 2037-40.

ORAL FLUOROQUINOLONES FOR MAINTENANCE TREATMENT OF MELIOIDOSIS

W Chaowagul1, Y Suputtamongkol2, MD Smith3, NJ White3

1Department of Medicine, Sappasitprasong Hospital, Ubon Ratchathani, Thailand; 2Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 3Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, UK.

Ciprofloxacin (20 mg/kg/d) or ofloxacin (12 mg/kg/d) given for a median of 15 weeks (range 12-40) were used for maintenance treatment of 57 adult patients with melioidosis. The median duration of follow-up in the 45 patients who complied with treatment and were followed for at least 6 months was 28 months (range 6-65). Fluoroquinolone treatment was well tolerated. There were 13 treatment failures (5 failures to respond, 8 relapses), a failure rate of 29% (95% confidence interval 17-43%). The median time to treatment failure was 7 months (range 2-26). These results are inferior to those with courses lasting 20 weeks of amoxycillin/clavulanic acid or the combination of chloramphenicol, doxycycline and trimethoprim/sulphamethoxazole, and suggest that the fluoroquinolones should be reserved as third line agents, and not used for the maintenance treatment of melioidosis unless there is resistance to, or intolerance of, the other available antimicrobial compounds.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

LACK OF A SIGNIFICANT ADVERSE CARDIOVASCULAR EFFECT OF COMBINED QUINE AND MEfloquine THERAPY FOR UNCOMPLICATED MALARIA

W Chaowagul1, Y Suputtamongkol1, TME Davis1,3, S Pukrittayakamee1, P Teja-Isavadharm2, HK Webster2, NJ White1,3

1Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 2Department of Immunology, US Armed Forces Research Institute for Medical Science, Bangkok, Thailand; 3Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, UK.

Quinine dihydrochloride (10 mg salt/kg infused over one hour) and mefloquine (15 mg base/kg) were given simultaneously to 13 adults with uncomplicated falciparum malaria. Supine and standing blood pressures were recorded and the electrocardiogram monitored. Plasma concentrations of the 2 drugs were similar to those reported previously for the 2 compounds given individually to a similar group of patients. Although postural hypotension was common (6 cases before treatment and 7 after) and the electrocardiogram QTc interval was prolonged by a mean of 12% (SD=8) following drug treatment, there was no evidence of a clinically significant cardiovascular pharmacodynamic interaction between these 2 structurally related antimalarial compounds.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

Severe falciparum malaria is associated with microvascular obstruction resulting from sequestration of erythrocytes containing mature stages of the parasite. Since reduced red blood cell deformability (RBC-D) can contribute to impaired microcirculatory flow, RBC-D was measured in 23 patients with severe falciparum malaria (seven of whom subsequently died), 30 patients with uncomplicated malaria, and 17 healthy controls. The RBC-D, measured by ektacytometry, was significantly reduced in severe malaria and was particularly low in all fatal cases. At a low shear stress of 1.7 Pascal (Pa), a red blood cell elongation index less than 0.21 on admission to the hospital predicted fatal outcome with a sensitivity of 100% (confidence interval [CI] = 59-100%) and a specificity of 88% (CI = 61-98%). The reduction in the RBC-D appeared to result mainly from changes in unparasitized erythrocytes. Reduced deformability of unparasitized red blood cells in severe malaria may contribute to impaired microcirculatory flow and a fatal outcome in severe falciparum malaria.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

On the western border of Thailand, in an area endemic for multi-drug resistant Plasmodium falciparum malaria, therapeutic responses were assessed in 1967 patients with uncomplicated falciparum malaria treated with 3 d of artesunate (total dose 12 mg/kg) plus mefloquine (total dose 25 mg/kg). The regimen was well tolerated and resulted in a rapid clinical response; within 48 h, 96% of patients were aparasitaemic and 94% were afebrile. After correcting for reinfections, the cure rate by day 42 was 89% (95% confidence interval [95% CI] 87-91%). Three independent factors were found to predict recrudescence: age <14 years (adjusted hazards ratio [AHR] = 1.6, 95% CI 1.1-2.3), initial parasitaemia greater than 40,000/µL (AHR = 1.6, 95% CI 1.2-2.2), and pure P. falciparum infections (AHR = 1.8, 95% CI 1.3-2.7). These 3 factors combined accounted for 62% of all treatment failures. Patients who received mefloquine on admission with a high admission parasitaemia (>40,000/µL) had a three-fold (95% CI 1.3-7) risk of subsequent recrudescence compared with those who received their mefloquine on the second or third day (P=0.01). There has been no decline in the efficacy of the 3 d artesunate plus mefloquine regimen since it was introduced in 1992. This regimen is safe, well tolerated, and highly effective in the treatment of multi-drug resistant falciparum malaria.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

ARABINOSE ASSIMILATION DEFINES A NONVIRULENT BIOTYPE OF BURKHOLDERIA PSEUDOMALLEI

MD Smith1,2, BJ Angus1,2, V Wuthiekanun1, NJ White1,2

1Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;
2Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford University, UK.

Two distinct types of Burkholderia pseudomallei, differentiated by the ability to assimilate L-arabinose but with similar morphologies and antigenicities, can be isolated from soil in Thailand. Approximately 25% of soil isolates from northeast Thailand were arabinose assimilators (Ara+), but in 1,200 sequentially studied patients, only arabinose “nonassimilators” (Ara-) caused melioidosis (P<0.0001). In a murine model, there was a striking difference in virulence between Ara- and Ara+ B. pseudomallei. The mean (standard deviation) 50% lethal dose (LD50) inoculum for Ara- isolates was 182 (111) CFU/mouse compared with approximately 109 CFU/mouse for Ara+ soil isolates. There was no significant difference between the LD50s for clinical and soil Ara- isolates. All attempts to convert the biochemical phenotype by selective culture failed, which suggests that the biotype is stable.

RIBOTYPE DIFFERENCES BETWEEN CLINICAL AND ENVIRONMENTAL ISOLATES OF BURKHOLDERIA PSEUDOMALLEI

S Trakulsomboon1,2, DAB Dance3, MD Smith4,5, NJ White4,5, TL Pitt1

1Laboratory of Hospital Infection, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT;
2Division of Infectious Disease, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
3Public Health Laboratory, Derriford Hospital, Plymouth PL6 8DH;
4Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;
5Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.

Burkholderia pseudomallei is isolated frequently from the soil in regions where the disease melioidosis occurs. However, recent surveys in Thailand have shown that the frequency of isolation of the organism from soil samples is not directly related to the incidence of melioidosis in an area. To determine whether strain populations of B. pseudomallei prevalent in soil are geographically related to strains causing clinical disease, rRNA BamHI restriction fragment length polymorphisms (RFLP) of 139 soil environmental isolates and 228 human isolates were compared. Two groups of ribotype patterns were found. Group I comprised 37 different ribotype patterns which were characterised by five to eight hybridisation bands of 2.8–> 23 kb. All of these ribotypes were identified among the clinical isolates, and 18 of them were also found in 59 environmental isolates. Group II was represented by 12 ribotypes found only in environmental strains. These ribotype patterns comprised one to five bands in the size range 9–> 23 kb. All but one of the 73 isolates in this group grew on a minimal medium supplemented with L-arabinose. In contrast, only 3% of the 66 isolates from the environment with group I ribotype patterns could utilise this sugar as their sole energy source. These findings suggest that B. pseudomallei strains that utilise arabinose constitute a population that is genetically distinct from other environmental and clinical strains.

POOR EFFICACY OF ANTIMALARIAL BIGUANIDE-DAPSONE COMBINATIONS IN THE TREATMENT OF ACUTE, UNCOMPLICATED, FALCIPARUM MALARIA IN THAILAND

P Wilairatana1, DE Kyle2, S Looareesuwan1, K Chinwongprom1, S Amradee1, NJ White3, WM Watkins4

1Department of Clinical Tropical Medicine and Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 2Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Washington, DC, USA; 3Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 4Wellcome Trust Research Laboratory, P.O. Box 43640, Nairobi, Kenya.

Combinations of dapsone with proguanil or chlorproguanil have proved effective in the treatment of chloroquine-resistant falciparum malaria in Africa and for prophylaxis in Asia. These combination have not been used for treatment in areas with multi-drug-resistant parasites such as in Thailand. Combinations of dapsone (approximately 4 mg/kg) plus either proguanil (approximately 8 mg/kg; DP regimen; N=10) or chlorproguanil (approximately 1.4 mg/kg; DC regimen; N=16) were given once a day for 3 days to adult Thai patients with acute, uncomplicated, falciparum malaria. The two regimens were well tolerated and had no side-effects, but the cure rates, assessed at 28-day follow-up, were only 10% for DP (60% with RI response and 30% with RII) and 14% for DC (29% with RI response and 57% with RII). The mean (S.D.) fever-clearance times in those patients who were cured (S) or whose infections recrudesced (RI response) were 103 (56) h for those given DP and 90 (42) h for those given DC. The corresponding parasite-clearance times were 83 (46) for DP and 53 (21) h for DC. In vitro susceptibility testing of isolates obtained both before treatment and at recrudescence demonstrated marked resistance to cycloguanil, dapsone, chloroquine and mefloquine. The results demonstrate that short-course treatment with dapsone plus either proguanil or chlorproguanil is ineffective for the treatment of falciparum malaria in Thailand.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

ROSETTING CHARACTERISTICS OF UNINFECTED ERYTHROCYTES FROM HEALTHY INDIVIDUALS AND MALARIA PATIENTS

K Chotivanich1, R Udomsangpetch1, B Pipitaporn2, B Angus3,4, Y Suputtamongkol5, S Pukrittayakamee6, NJ White3,4

1Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand; 2Department of Pathology, Faculty of Science, Rangsit University, Bangkok, Thailand; 3Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 4Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, UK; 5Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Rosetting, defined as the binding of two or more uninfected red blood cells (RBC) to an infected RBC, occurs when malarial parasites mature, to trophozoites and schizonts, in the second half of their asexual development. Rosetting is believed to be an important factor in the development of cerebral malaria. In a series of studies to examine the characteristics of the uninfected RBC which contribute to rosetting, the ability of RBC from healthy donors to form rosettes was found to be greater in the cells of group A and B than in those of group O (P=0.05), and to decrease during storage under blood-bank conditions. Normal RBC exposed for (30 min to quinine, artesunate or artemether (each at 0.25 µg/ml) in vitro showed significantly decreased rosetting. This effect could not be reversed by extensive washing followed by cultivation for another 24 h in drug-free medium. Mefloquine and pyrimethamine had no effect. Uninfected RBC from patients with uncomplicated or severe falciparum malaria exhibited a lower rosetting ability than RBC from healthy donors (P=0.01). The rosetting of uninfected RBC of all blood groups from patients with uncomplicated malaria decreased significantly within 2 h of the patients starting treatment with Qinghaosu derivatives (artesunate or artemether) and within 8 h of them starting quinine treatment. Similar effects were observed with uninfected RBC from patients with severe malaria after treatment with artesunate but not after quinine. The mechanisms underlying this potentially beneficial effect on RBC adherence are not known.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

To investigate the rosette formation properties of *Plasmodium vivax*, blood was sampled from 26 adult Thai patients admitted with acute *P. vivax* malaria and a predominance of trophozoite and schizont stages in their peripheral blood smears. In each case, *P. vivax*-infected cells formed spontaneous rosettes with two or more uninfected red blood cells. Rosette formation of *P. vivax* was dependent on the divalent cations (Ca$^{2+}$/Mg$^{2+}$) and was highly sensitive to trypsin and heparin, but, unlike *P. falciparum*, rosettes of *P. vivax* did not reform after removal of heparin. Plasma taken from patients with either acute uncomplicated *P. falciparum* or *P. vivax* malaria reversed rosette formation of all *P. vivax* isolates whereas plasma from uninfected controls had no effect. There was a small but significant increase in rosette-reversing activity in plasma taken during the convalescent period ($P < 0.001$). The increment in reversal activity was significantly greater in plasma taken following recovery from *P. vivax* malaria compared with *P. falciparum* malaria. This suggests that *P. vivax* rosette reversal activity is antibody mediated and has both species-specific and cross-species components.

ESTIMATING *PLASMODIUM VIVAX* PARASITAEMIA

To investigate whether red blood cells infected with *P. vivax* are distributed evenly throughout the thin blood film, stained thin films were examined from 20 patients with acute *P. vivax* infections and >1% parasitaemia. The parasite counts from the tail of the films were significantly higher than those recorded in the head and middle parts of the slide; the median number of infected red blood cells per 5,000 cells ($n=20$) in the head of the slide was 81.5 (range 50-129), in the middle part it was 108 (range 57-146), and in the tail of the film it was 125 (range 67-176) ($P=0.001$). The median overestimation of the total count defined as the tail count divided by (the sum of all 3 counts/3) was 11.4% (interquartile range [IQR] 8.4 to 22.1%, range 4 to 36%), and for the middle of the slide it was 1.2% (IQR -1.0 to 5.5%, range -17 to 11%). The counts from the head of the slide correspondingly underestimated the total by 14% (IQR 8.0 to 22.1%, range 3 to 34%). *P. vivax* counts should be made from the middle of the thin blood film, or corrected if morphology is adequately preserved only in the tail.

ENDOGENOUS INTERLEUKIN-10 MODULATES PROINFLAMMATORY RESPONSE IN *PLASMODIUM FALCIPARUM* MALARIA

Tumor necrosis factor -α (TNF-α), interleukin (IL)-1, and IL-6 are implicated in the pathogenesis of severe *Plasmodium falciparum* malaria. In this study, the effect of IL-10 on their production by peripheral blood mononuclear cells (PBMC) from acutely infected patients was examined. Exogenous IL-10 inhibited malarial antigen-induced cytokine production by reducing mRNA accumulation. Maximal inhibition occurred when IL-10 was added in the first
2 h of stimulation. Conversely, the addition of anti-IL-10 markedly enhanced TNF-α, IL-1β, and IL-6 production. The effect was significantly greater on PBMC from patients with uncomplicated infection than PBMC from patients with severe disease. Kinetics studies showed that TNF-α, IL-6, and IL-1β were produced within 2-4 h of stimulation, while IL-10 was first detectable after 8 h. These findings suggest that IL-10 counter-regulates the proinflammatory response to *P. falciparum*. Severe falciparum malaria may be associated with an inadequate negative feedback response by IL-10.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

Published in *J Infect Dis* 1998; 178: 520-5.

The differentiation of malaria from other causes of fever in the absence of microscopy is notoriously difficult. Clinical predictors of malaria have been studied in an area of low and unstable transmission on the western border of Thailand. In 1527 children aged 2-15 years who were followed prospectively for 7 months, 82% (1254) had at least one febrile episode. Malaria caused 24% (301) of the first febrile episodes (*Plasmodium falciparum* 128, *P. vivax* 151, *P. malariae* 1, mixed infections with *P. falciparum* and *P. vivax* 21). Each malaria case was matched with the next child of similar age presenting to the dispensary with another cause of fever. Clinical symptoms or signs associated with a final diagnosis of malaria were: confirmed fever (>38°C) (odds ratio [OR] 1.6, 95% confidence interval [95% CI] 1.4-1.9), headache (OR 1.5, 95% CI 1.3-1.9), muscle and/or joint pain (OR 2.0, 95% CI 1.6-2.8), nausea (OR 1.7, 95% CI 1.4-2.3), clinical anaemia (OR 1.4, 95% CI 1.3-3.3), palpable spleen (OR 1.3, 95% CI 1.1-1.7), palpable liver (OR 1.4, 95% CI 1.1-2.1), absence of cough (OR 1.6, 95% CI 1.4-2.0), and absence of diarrhoea (OR 1.5, 95% CI 1.2-2.4). None of these signs alone or in combination proved a good predictor of fever. Clinical symptoms or signs associated with a final diagnosis of malaria were: confirmed fever (>38°C) (odds ratio [OR] 1.6, 95% confidence interval [95% CI] 1.4-1.9), headache (OR 1.5, 95% CI 1.3-1.9), muscle and/or joint pain (OR 2.0, 95% CI 1.6-2.8), nausea (OR 1.7, 95% CI 1.4-2.3), clinical anaemia (OR 1.4, 95% CI 1.3-3.3), palpable spleen (OR 1.3, 95% CI 1.1-1.7), palpable liver (OR 1.4, 95% CI 1.1-2.1), absence of cough (OR 1.6, 95% CI 1.4-2.0), and absence of diarrhoea (OR 1.5, 95% CI 1.2-2.4). None of these signs alone or in combination proved a good predictor of malaria. The best diagnostic algorithms (history of fever and headache without cough, and history of fever with an oral temperature >38°C [sensitivity 51% for both, specificity 72 and 71%, respectively]) would result in prescription of antimalarial drugs in 28-29% of the non-malaria febrile episodes, and only 49% of the true malaria cases. Thus half of the potentially life-threatening *P. falciparum* infections would not be treated. Although multivariate analysis identified vomiting, confirmed fever, splenomegaly and hepatomegaly as independent risk factors for a diagnosis of falciparum malaria, use of these signs to differentiate falciparum from vivax malaria, and thus to determine antimalarial treatment, was insufficiently sensitive or specific. Malaria diagnosis should be confirmed by microscopical examination of a blood slide or the use of specific dipstick tests in areas of low transmission where highly drug-resistant *P. falciparum* coexists with *P. vivax*.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

An artemisinin derivative (artesunate or artemether) was used for the treatment of multidrug-resistant *Plasmodium falciparum* malaria in 83 Karen pregnant women in Thailand; 55 women were treated for recrudescent infection following quinine or mefloquine, 12 for uncomplicated hyperparasitaemic episodes, and 16 had not declared their pregnancy when treated. The women were followed weekly until delivery. Artesunate and artemether were well tolerated and there was no drug-related adverse effect. Recrudescence within 42 days occurred in 16% of the treated episodes. Overall 73 pregnancies (88%) resulted in live births, 3 (4%) in abortions and 2 (3%) in still births, and 5 women were lost to follow-up before delivery. There was no congenital abnormality in any of the newborn children, and the 46 children followed for more than one year all developed normally.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

Between 1991 and 1996, 372 pregnant women with uncomplicated multi-drug resistant *P. falciparum* malaria, living on the western border of Thailand were treated with either mefloquine (n=194), quinine (n=93) or both drugs (n=85). Antimalarial treatment was generally well tolerated; the most common side effects following quinine were dizziness (42%) and tinnitus (35%) and following mefloquine were anorexia (23%) and dizziness (36%). In the patients treated for primary infections with mefloquine, 6% failed to clear their parasitaemia by day 7 and 28% failed by day 42. The corresponding figures for quinine were 4% and 23% respectively. The failure rates in the 117 women treated for recrudescent infections were higher. This was significant for quinine (38%, p=0.03) but not for mefloquine (37%). In this study, the percentage of pregnant women who had patent gametocytaemia on presentation ranged from 4 to 19%. Over 50% of the patients were anaemic (Ht<30%) on presentation and 52% of those not anaemic on admission developed anaemia during follow up. Mefloquine and quinine, the only antimalarials currently available for the treatment of highly drug-resistant *P. falciparum* in pregnancy, give unsatisfactory treatment responses when used as single agents. New, safe and effective regimens are needed for the treatment of pregnant women with multi-drug resistant *falciparum* malaria.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

TRANSMISSION INTENSITY AND PLASMODIUM FALCIPARUM DIVERSITY ON THE NORTHWESTERN BORDER OF THAILAND

REL Paul1, I Hackford1, A Brockman2, C Muller-Graf, R Price3, C Luxemburger4, NJ White5, F Nosten1, KP Day1

1The Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, Oxford University, Oxford, UK; 2Shoklo Malaria Research Unit, Mae Sod, Thailand; 3Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Genetic analysis of the number of Plasmodium falciparum genotypes per infected person in regions of holoendemic and hyperendemic malaria suggest that in areas of lower transmission intensity, significantly fewer parasite genotypes per infected person should be found. A predominance of single clone infections in the human population could generate the controversial clonal population structure proposed for P. falciparum by Tibayrenc and others. Characterization of P. falciparum from individuals on the Thai-Burmese border, an area of hypoendemic transmission, revealed a higher number of genotypes per infected person than that predicted. Possible reasons for this observation are discussed, with particular attention paid to human migration and multidrug resistance.

ARTESUNATE AND MEfloQUINE IN THE TREATMENT OF UNCOMPlicated MULTIDRUG-RESistant MULTIPARASITAEMIC FALCIPARUM MALARia

R Price2,3,4, C Luxemburger1,2, M van Vugt1,2,4, F Nosten1,2,5, Am Kham1, J Simpson2,5, S Looareesuwan2, T Chongsuhrpasiddih2, NJ White1,5

1Shoklo Malaria Research Unit, Mae Sod, Thailand; 2Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 3Division of Infectious Diseases, St George’s Hospital Medical School, London, UK; 4Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre, University of Amsterdam, The Netherlands; 5Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, UK.

Oral artesunate is the most effective treatment for uncomplicated hyperparasitaemia in falciparum malaria. To assess the contribution of mefloquine to therapeutic efficacy in an area endemic for mefloquine resistant Plasmodium falciparum, an open randomized comparison of a 5 d course of oral artesunate (total dose 12 mg/kg) with and without a single dose of mefloquine (25 base mg/kg) was conducted in 100 adults and children with uncomplicated hyperparasitaemia (>4% parasitized red blood cells). Both regimens were well tolerated and gave equally rapid clinical responses (84% of patients were aparasitaemic and 96% were afebrile within 48 h), but the recrudescence rate assessed at day 42 was 6% in those receiving artesunate with mefloquine compared to 36% in those receiving artesunate alone (adjusted hazard ratio 7, 95% Confidence interval [95% CI] 2-32; P<0.01). In addition, the efficacy of a 7 d course of artesunate, with and without the addition of mefloquine, was monitored in 178 patients who were not part of the randomized comparison. The failure rate was again lower in those receiving artesunate and mefloquine - 7% (95% CI 2-13) compared with 26% (95% CI 8-44) in patients treated with artesunate alone. An oral regimen of 5 d or more of artesunate, together with mefloquine (25 mg/kg) given on day 2, is an effective treatment for uncomplicated hyperparasitaemic falciparum malaria in this area of high level multidrug resistance.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

RANDOMIZED COMPARISON OF ARTEMETHER-BENFLUMETOL AND ARTESTUNATE-MEFLOQUINE IN TREATMENT OF MULTIDRUG-RESISTANT FALCIPARUM MALARIA

M van Vugt1,2,3, A Brockman1,3, B Gemperli4, C Luxemburger1,3, I Gathmann4, C Royce4, T Slight1, S Looareesuwan3, NJ White1,3,5, F Nosten1,3,5

1Shoklo Malaria Research Unit, Mae Sod, Thailand; 2Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 3Division of Infectious Diseases, St George’s Hospital Medical School, London, UK; 4Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre, University of Amsterdam, The Netherlands; 5Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, UK.

An open, randomized comparison of artemether-benflumetol (CGP 56 697; Novartis) with artesunate-mefloquine was conducted in 617 patients with acute uncomplicated multidrug-resistant falciparum malaria on the western border of Thailand. Both treatments rapidly and reliably cleared fever and parasitemia, and there was no significant difference in the initial therapeutic response parameters. Parasite genotyping was used to distinguish recrudescences from new infections. The 63-day cure rate for artesunate-mefloquine (94%) was significantly higher than the cure rate for artemether-benflumetol (81%) (P <0.001). Both regimens were well tolerated. Nausea, vomiting, dizziness, sleep disorders, and other neurological side effects were between two and four times more common in the artesunate-mefloquine group than in the artemether-benflumetol group (P <0.001). Artemether-benflumetol is effective and very well tolerated in the treatment of multidrug-resistant falciparum malaria. A higher dose than that used in the present study may improve efficacy.

WHY IS IT THAT ANTIMALARIAL DRUG TREATMENTS DO NOT ALWAYS WORK?

The objective of antimalarial drug treatment in severe malaria is to save the patient’s life. In uncomplicated malaria it is to reduce the parasite biomass to zero, or down to a level where host defences can deal with the remainder. Treatment regimens with rapidly eliminated drugs must generally cover four asexual life-cycles (i.e. >6 days for Plasmodium falciparum and P. vivax) to eradicate all the parasites in the blood. For slowly eliminated drugs, blood concentrations must exceed the parasites’ minimum inhibitory concentration (and preferably the minimum parasiticidal concentration) until all parasites have been eradicated. Resistance means that there is a right shift in the concentration-effect relationship. This may be large and abrupt, as with the point mutations that confer pyrimethamine, sulphonamide or atovaquone resistance, or slow and gradual, as with the processes that determine resistance to chloroquine, quinine or mefloquine. Although treatment failure in malaria usually results from poor compliance, inadequate dosing, pharmacokinetic factors or resistance, some infections will recrudesce when none of these factors operates. How parasites persist despite apparently adequate antimalarial treatment remains unresolved.

Throughout the tropical world antimalarial drug resistance is increasing, particularly in the potentially lethal malaria parasite *Plasmodium falciparum*. In some parts of Southeast Asia, parasites which are resistant to chloroquine, pyrimethamine-sulfadoxine, and mefloquine are prevalent. The characteristics of a drug that make it vulnerable to the development of resistance are a long terminal elimination half-life, a shallow concentration-effect relationship, and that one or two base-pair mutations confer a marked reduction in susceptibility. The development of resistance can be delayed or prevented by drug combinations. The artemisinin derivatives are the most potent of all antimalarial drugs. They reduce the infecting parasite biomass by approximately 10,000-fold per asexual life cycle. There are good arguments for combining, de novo, an artemisinin derivative with all newly introduced antimalarial drugs.

Wellcome-Mahidol University, Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

Published in: Drug Resistance Updates 1998; 1: 3-9.
The Bangkok School of Tropical Medicine, Faculty of Tropical Medicine, Mahidol University was established in 1960 to teach Thai medical doctors, especially those who work in rural areas in tropical medicine, parasitology and the preventive aspects of endemic diseases. The course leading to the Diploma in Tropical Medicine and Hygiene (D.T.M. & H., Bangkok) has been organized on an international basis since 1967, with the establishment of the SEAMEO Regional Tropical Medicine and Public Health Project, and the designation of the Faculty as the TROPMED National Centre of Thailand. Lectures are given in English and the courses are open to students from other countries around the world. Since its inception class sizes have steadily increased. The original curriculum was based on the D.T.M.&H. course conducted by the Liverpool School of Tropical Medicine, and has been modified to provide adequate orientation towards preventive medicine, endemic health problems of Thailand, and public health problems in other countries of Southeast Asia. The Bangkok School of Tropical Medicine has been extended to provide continuing education to doctors, research workers, medical personnel and professionals concerned with tropical medical and public health. The degree in Tropical Medicine, instituted internationally, was offered at the M.Sc. level in 1967 and at the Ph.D level in 1975. The basic intent was to provide a multidisciplinary approach to graduate training. Masters and Doctorate degree programmes in Clinical Tropical Medicine were offered to medical doctors in 1982 and 1995, respectively. The curricula of the programmes were revised and offered regularly as follows:

Regular Postgraduate Programmes

1. **Graduate Diploma in Tropical Medicine and Hygiene (D.T.M.&H.)**

 The course provides participating medical doctors with the concepts and principles of the clinical management of tropical diseases, epidemiology, prevention and control of tropical diseases and health problems in Southeast Asia. The students gain experience with case demonstrations and field trips to hospitals in rural areas of Thailand. The duration of the course is six months, running between April and September.

2. **Master of Science in Tropical Medicine (M.Sc.(Trop. Med.))**

 The programme provides appropriate knowledge and skills for competency in research, and the capacity to deliver technical services related to tropical medicine. Length of study is approximately two years, which includes a minimum of 24 credits for coursework and 12 credits for thesis. The programme offers 13 major fields for students to choose from according to their needs and future work as follows: Clinical Tropical Medicine, Clinical
4. Master of Clinical Tropical Medicine (M.C.T.M.)

The M.C.T.M. programme has been established to train medical doctors to be:

a) well-versed and well-informed in tropical and endemic diseases with special reference to Southeast Asia, in relation to their causes, epidemiology, pathogenic mechanisms, prevention and control.

b) able to efficiently examine, diagnose and treat patients suffering from tropical and endemic diseases. In the major field of Clinical Tropical Medicine, students will study abnormalities mainly in adults, while in the major field of Tropical Paediatrics the student will study only the abnormalities in children.

c) able to give consultative advice, disseminate and impart knowledge of Tropical Medicine.

The programme consists of coursework and thesis. Students will conduct clinical research and gain clinical experience at a Regional Hospital of the Ministry of Public Health in a province of Thailand. The duration of the programme is one year, from April to March.

The doctoral programme provides advanced knowledge and skills for competency in research, particularly in Tropical Medicine, which includes the research programme (Plan 1) and the regular programme (course work and research) (Plan 2). Students are able to choose one major field in Tropical Medicine according to their needs and future work, as follows: Clinical Tropical Medicine, Clinical Pharmacology, Epidemiology, Microbiology, Immunology, Biochemical Nutrition, Nutritional Epidemiology, Nutritional Toxicology, Tropical Pathology, Radiological Science, Social Medicine, Social Medicine Environmental Health, Parasitology and Medical Entomology. Length of study is approximately three years. Applicants who are qualified to enrol in this programme are those who have graduated with a M.D. or D.D.S. or D.V.M. or M.Sc. or B.Sc. degree.

3. Doctor of Philosophy in Tropical Medicine (Ph.D. (Trop. Med.))

The doctoral programme provides advanced knowledge and skills for competency in research, particularly in Tropical Medicine, which includes the research programme (Plan 1) and the regular programme (course work and research) (Plan 2). Students are able to choose one major field in Tropical Medicine according to their needs and future work, as follows: Clinical Tropical Medicine, Clinical Pharmacology, Epidemiology, Microbiology, Immunology, Biochemical Nutrition, Nutritional Epidemiology, Nutritional Toxicology, Tropical Pathology, Radiological Science, Social Medicine, Social Medicine Environmental Health, Parasitology and Medical Entomology. Length of study is approximately three years. Applicants who are qualified to enrol in this programme are those who have graduated with a M.D. or D.D.S. or D.V.M. or M.Sc. or B.Sc. degree.
programmes originate from SEAMEO member countries and other countries (Thailand, Indonesia, the Philippines, Malaysia, Laos PDR, Cambodia, Myanmar, Vietnam, Singapore, Bangladesh, India, Japan, Pakistan, Afghanistan, Nepal, Iran, Sri Lanka, Australia, the People’s Republic of China, Papua New Guinea, New Zealand, Germany, Sweden, Switzerland, Norway, Austria, Spain, Denmark, Italy, Finland, France, the Netherlands, the United Kingdom, Somalia, Yemen, Tanzania, Palestine, Croatia and U.S.A.).

1. Master of Clinical Tropical Paediatrics Bangkok/Liverpool Collaboration

The Faculty of Tropical Medicine, Mahidol University and the Liverpool School of Tropical Medicine collaborate in the teaching and training of postgraduates in both institutions registered for Master’s Courses in Tropical Paediatrics, but each university issues its own degree in accordance with its own degree regulations. Candidates registered for the Master’s Course(s) in Liverpool commence their training in Liverpool (3-4 months) and are provided with clinical and field experience in Thailand for a period of 3 months between April and August to gain practical experience of tropical paediatrics which cannot be provided in Liverpool, in parasitic diseases (e.g. malaria, hookworm infection, strongyloidiasis, giardiasis, ascariasis, liver fluke infection, gnathostomiasis, angiostrongyloidiasis, paragonimiasis, cysticercosis etc.) and other infectious diseases (e.g. dengue haemorrhagic fever, Japanese encephalitis, tuberculosis, meningitis, leptospirosis, rabies, etc.). Master’s candidates in Bangkok may be sent to Liverpool for clinical or field experience but this is not a pre-requisite of this agreement.

2. Austrian Diploma in Tropical Medicine

The Austrian Society of Tropical Medicine and Parasitology and the Faculty of Tropical Medicine, Mahidol University have jointly offered an annual programme leading to the Austrian Diploma in Tropical Medicine, since 1992. The 4-month programme, starting in January, focuses on tropical diseases and enables medical doctors to understand the clinical, biological, epidemiological and social dimensions of tropical diseases, particularly in Southeast Asia. After the participants have attended lectures for 3 months in Austria, they continue attending more clinical experience for 1 month in Thailand at the Faculty of Tropical Medicine, Mahidol University. Apart from lectures, participants will also have the opportunity to see many patients suffering from tropical diseases at the Hospital for Tropical Diseases and other hospitals in Bangkok and in the northeast of Thailand. This programme is directed by Professor Franz Ambrosch and the clinical part is organized by Professor Walter Wernsdorfer and Professor Tan Chongsupphajaisiddhi.

The objectives of the course are:

1. To provide participating medical doctors with clinical experience and a better understanding of health problems at the community level in Southeast Asia and to increase their ability to cope with them.

2. To promote a better understanding of the culture and way of life of people in Southeast Asia, leading to closer cooperation in dealing with regional health problems.

3. Master of Science in Clinical Epidemiology

The Faculty of Tropical Medicine, in collaboration with the Faculty of Public Health and the Faculty of Medicine, Ramathibodhi Hospital, Mahidol University, organizes an international programme leading to the Master of Science in Medical Epidemiology. The course focuses on the development of epidemiological skills and competency for doctors, especially in the countries of Southeast Asia, in the field of clinical or community epidemiology and also in health service research. The ultimate objective of this programme is to provide academic and health service leadership, which will facilitate effective performance of public health and medical care programmes at every level in various countries. The length of study is one year, six months for coursework and six months for the Master’s thesis.
D.T.M. & H. 1998

<table>
<thead>
<tr>
<th>Name</th>
<th>Nationality</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Kanyarat Krivichian</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Krisana Pengsaa</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Laddawan Nualchaem</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Pechchau Tohmeena</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Pinn Kolkijkovinda</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Timothy John Moore</td>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>Dr. Sokhon Srey</td>
<td></td>
<td>Cambodia</td>
</tr>
<tr>
<td>Dr. Moniboth Duch</td>
<td></td>
<td>Cambodia</td>
</tr>
<tr>
<td>Dr. Martin Schwazzinn</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Dr. Aung Myat Oo</td>
<td></td>
<td>Myanmar</td>
</tr>
<tr>
<td>Dr. Minn Minn Soe</td>
<td></td>
<td>Myanmar</td>
</tr>
<tr>
<td>Dr. Tin Naing</td>
<td></td>
<td>Myanmar</td>
</tr>
<tr>
<td>Dr. Achuyt Bhattacharai</td>
<td></td>
<td>Nepal</td>
</tr>
<tr>
<td>Dr. Eli Westerlund</td>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Dr. Bounmy Santisouk</td>
<td></td>
<td>Lao PDR.</td>
</tr>
<tr>
<td>Dr. Somboun Bounyadeth</td>
<td></td>
<td>Lao PDR.</td>
</tr>
<tr>
<td>Dr. Chong Tse David Tan</td>
<td></td>
<td>Singapore</td>
</tr>
<tr>
<td>Dr. Yasir Elfath Elsanousi</td>
<td></td>
<td>Sudan</td>
</tr>
</tbody>
</table>

M.C.T.M. 1997-1998

<table>
<thead>
<tr>
<th>Name</th>
<th>Nationality</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Kamol Prinyanusorn</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Lalita Wongpichchedhai</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Veeranoot Nissapatorn</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Dagmara M. Poprawski</td>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>Dr. Tripti Bala</td>
<td></td>
<td>Bangladesh</td>
</tr>
<tr>
<td>Dr. Winn Myint Kyi</td>
<td></td>
<td>Myanmar</td>
</tr>
<tr>
<td>Dr. Thang Quoc Duong</td>
<td></td>
<td>Vietnam</td>
</tr>
<tr>
<td>Dr. Magotra Shyam Kumar</td>
<td></td>
<td>India</td>
</tr>
</tbody>
</table>

M.Sc.(Trop.Med.) 1998

1st year student

<table>
<thead>
<tr>
<th>Name</th>
<th>Nationality</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pol.Lt. Kitiyaporn Chaichana</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Chuthaporoen Toonboonchoo</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Duangkamol Viroonudomphol</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Mrs. Tippayarat Yoonuan</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Bunguorn Sermsart</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Mr. Preecha Liangpunakul</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Mr. Pornchai Kirdsisi</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Yupa Nakkinkun</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Varangkana Visessanee</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Waraporn Chaimchitapanid</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Wacharee Tiyasuttitian</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Suwaporin Anantrakulsin</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Akanitt Jittmitrathap</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Mr. Apichai Supasansatorn</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Umaporn Pinyasirikul</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Mr. Ferdinand V. Satazar</td>
<td></td>
<td>Philippines</td>
</tr>
<tr>
<td>Mrs. Aimmanas Attawish</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Mr. Shishis Kumar Pant</td>
<td></td>
<td>Nepal</td>
</tr>
<tr>
<td>Dr. Tran Do Hung</td>
<td></td>
<td>Vietnam</td>
</tr>
</tbody>
</table>

3rd year student

<table>
<thead>
<tr>
<th>Name</th>
<th>Nationality</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miss Chutamas Koomrungrueng</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Pornthip Laumannwai</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Pearl Angeli C. Palacios</td>
<td></td>
<td>Philippines</td>
</tr>
<tr>
<td>Mr. Wick Banmairuroy</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Usa Boonsathorn</td>
<td></td>
<td>Thailand</td>
</tr>
</tbody>
</table>

4th year student

<table>
<thead>
<tr>
<th>Name</th>
<th>Nationality</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrs. Montakan Vongpakorn</td>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Miss Ruchirat Worasing</td>
<td></td>
<td>Thailand</td>
</tr>
</tbody>
</table>

5th year student

<table>
<thead>
<tr>
<th>Name</th>
<th>Nationality</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Muhaimin Ramdja</td>
<td></td>
<td>Indonesia</td>
</tr>
</tbody>
</table>

1st year student
Miss Surangrat Srisurapanon Thailand
Miss Kriyaporn Songmuang Thailand
Miss Kleebkaew Pitasawad Thailand
Miss Charinthorn Ngamamonpirat Thailand
Mrs Prapin Thanpoophhasiam Thailand
Miss Pungasem Paeporn Thailand
Miss Panee Chaksangchaichat Thailand
Miss Mallika Imwong Thailand
Mr. Mana Vatakul Thailand
Mrs. Yupadee Sirissinsuk Thailand
Miss Wanida Pongstaporn Thailand
Miss Sawanee Tengrungsun Thailand
Miss Nitchakarn Nornate Thailand
Miss Pittayaporn Moungnoi Thailand

2nd year student
Mrs. Kanjana Hongtong Thailand
Mrs. Kamolrat Silamut Thailand
Mrs. Chantima Lohachit Thailand
Mr. Chamnarn Apiwathnasorn Thailand
Mr. Polrat Wilairatana Thailand
Mr. Paron Dekumyoy Thailand
Mr. Apichart Nantprasert Thailand
Miss Urai Chaisri Thailand
Miss Usavadee Thavara Thailand
Mrs. Emsri Pongpanarat Thailand
Mrs. Patcharin Saengjaruk Thailand
Miss Siriwan Chancharoen Thailand
Miss Thitima Wongsarot Thailand
Dr. Mayfong Mayxay Lao PDR.
Miss Wannaporn Ittiprasert Thailand

3rd year student
Mr. Ruangyuth Chaiworaporn Thailand
Dr. Le Thi diem Thuy Vietnam

4th year student
Miss Roongrasamee Soisangwan Thailand

5th year student
Miss Pongsri Tippawangosol Thailand

1st year student
Dr. Yoshinari Moriyama Japan

5th year student
Dr. Yupaporn Watanakoon Thailand
THESIS TITLES

M.C.T.M. 1998

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>TITLE OF THESIS</th>
<th>NAME</th>
<th>ADVISOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Scrub typhus and/or leptospirosis as the causes of sepsis in Maharat Nakhon Ratchasima Regional Hospital</td>
<td>Dr. Kamol Pinyanusorn</td>
<td>Prof. Juntra Loathavorn</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Clinical manifestations and outcomes in tuberculosis in HIV positive patients in Bamrasnaradura Hospital, Nonthaburi</td>
<td>Dr. Lalita Wongpichedchai</td>
<td>Prof. Sasithorn Pukrittayakamee</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Seroprevalence of toxoplasmosis in HIV infected patients in Chonburi Regional Hospital, 1997</td>
<td>Dr. Veeranoot Nissapatorn</td>
<td>Assist. Prof. Yupaporn Wattanagoon</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Clinical manifestations and outcomes in tuberculosis in HIV positive patients in Bamrasnaradura Hospital, Nonthaburi</td>
<td>Dr. Dagmara M. Popzrawski</td>
<td>Assoc. Prof. Punnee Pitisuttithum</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Clinical manifestations and outcomes in tuberculosis in HIV positive patients in Bamrasnaradura Hospital, Nonthaburi</td>
<td>Dr. Tripti Bala</td>
<td>Prof. Pravan Suntharasamai</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Contribution of scrub typhus in sepsis at Maharat Nakhon Ratchasima Hospital</td>
<td>Dr. Winn Myint Kyi</td>
<td>Assoc. Prof. Polrat Wilairatana</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Seroprevalence of toxoplasmosis in HIV infected patients in Chonburi Regional Hospital, 1997</td>
<td>Dr. Thang Zuoc Duong</td>
<td>Assoc. Prof. Wichai Supanaranond</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Seroprevalence of toxoplasmosis in HIV infected patients in Chonburi Regional Hospital</td>
<td>Dr. Shyam Kumar Magotra</td>
<td>Prof. Swangjai Pungpak</td>
</tr>
<tr>
<td>DEPARTMENT</td>
<td>TITLE OF THESIS</td>
<td>NAME</td>
<td>ADVISOR</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>In vitro sensitivity of Plasmodium vivax to chloroquine</td>
<td>Miss Oumaporn Trasanor</td>
<td>Prof. Juntra Laothavorn</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Bioequivalency of mefloquine when given as Mepha in combination with dihydroartemisinin</td>
<td>Dr. Pearl Angeli C. Palacios</td>
<td>Prof. Juntra Laothavorn</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Pharmacokinetics of mycophenotic ACID in Thai recipients of kidney transplantation</td>
<td>Mr. Wick Banmairuroy</td>
<td>Prof. Juntra Laothavorn</td>
</tr>
<tr>
<td>Helminthology</td>
<td>Evaluation of immune - reaction between excretory- secretory and partially purified somatic antigens of Fasciola gigantica</td>
<td>Mrs. Montakan Vongpakorn</td>
<td>Assoc. Prof. Jitra Waikagul</td>
</tr>
<tr>
<td>Medical Entomology</td>
<td>Pyrethroid resistance in association with the use of insecticides impregnated bednets</td>
<td>Mr. Shishir Kumar Pant</td>
<td>Assist. Prof. Narumon Komalamisra</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Prevalence of cytomegalovirus in Thai blood donors by monoclonal antibody staining of blood leukocytes</td>
<td>Miss Pornsrawan Amarapal</td>
<td>Assoc. Prof. Surang Tantivanich</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>DND amplification for Vibrio cholerae O:139 detection</td>
<td>Miss Watcharee Saisongkorh</td>
<td>Assoc. Prof. Pramuan Tapchaisri</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Simple and rapid detection of scrub typhus</td>
<td>Miss Sunthareeya Waicharaen</td>
<td>Dr. Varee Wongchotigul</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>A rapid direct-agent detection system for Orientia tseutsuyamushi</td>
<td>Miss Searmsap Riengrod</td>
<td>Dr. Varee Wongchotigul</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Diagnosis of pertussis using MAb-based dot-blot ELISA, indirect ELISA and DNA amplification</td>
<td>Miss Saowaluk Julnimi</td>
<td>Assoc. Prof. Manas Chongsanguan</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Development of dual detection of Vibrio cholerae O:1 and O: 139 in immunomagnetic enriched samples by MAb-based dot blot ELISA</td>
<td>Miss Sriprai yenymay</td>
<td>Dr. Yuvadee Mahakunkijcharoen</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Epidemiology study of B Hemolytic Streptococcus Group A in the pharynx of school children in Cantho Province, Vietnam</td>
<td>Dr. Tran Do Hung</td>
<td>Assist. Prof. Usane Suthisarunsuntorn</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Gene cloning and expression on hepatitis B core antigen in yeast cells</td>
<td>Miss Usa Boonsathorn</td>
<td>Assoc. Prof. Surang Tantivanich</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Genitic analysis of Trichinella spiralis, Thailand isolates</td>
<td>Miss Pornthip Laummaunwai</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
</tbody>
</table>
M.Sc.(Trop.Med.)

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>TITLE OF THESIS</th>
<th>NAME</th>
<th>ADVISOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology and Immunology</td>
<td>Monoclonal antibodies based detection of dengue virus infected cells</td>
<td>Miss Areerat Srijuggravatvong</td>
<td>Prof. Srisin Khusmith</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>The multistage character of immunity to P. falciparum, naturally occurred by endemic Thai population</td>
<td>Miss Kesaree Chewachatrekasem</td>
<td>Prof. Srisin Khusmith</td>
</tr>
<tr>
<td>Protozoology</td>
<td>Isolation and characterization of DNA topoisomerase II from Plasmodium falciparum</td>
<td>Miss Ruchirat Worasing</td>
<td>Assist.Prof.Porntip Petmitr</td>
</tr>
<tr>
<td>Protozoology</td>
<td>In vitro sensitivity of Plasmodium falciparum gametocytes to AT-specific minor groove binding drugs</td>
<td>Mr. Muhaimin Ramdja</td>
<td>Assist.Prof.Porntip Petmitr</td>
</tr>
<tr>
<td>Protozoology</td>
<td>The correlation of in-vivo and in vitro sensitivity of antimalarial drugs</td>
<td>Miss Chutamas Koomrungrueng</td>
<td>Assist.Porntip Petmitr</td>
</tr>
<tr>
<td>Tropical Nutrition and Food Science</td>
<td>Cytotoxic and mutagenic tests of medicinal plants</td>
<td>Mrs. Aimmanas Attavish</td>
<td>Assoc.Prof.Supranee Changbumrung</td>
</tr>
<tr>
<td>Tropical Nutrition and Food Science</td>
<td>Serum leptin concentration in human obese subjects</td>
<td>Miss Siriwan Tribanyatkul</td>
<td>Assoc.Prof. Rungsunn Tungtrongchitr</td>
</tr>
<tr>
<td>Tropical Nutrition and Food Science</td>
<td>Application of polymerase chain reaction for identification of rotavirus serotypes in field study</td>
<td>Miss Napa Onvimala</td>
<td>Assoc.Prof.Supranee Changbumrung</td>
</tr>
</tbody>
</table>

Ph.D.(Trop.Med.)

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>TITLE OF THESIS</th>
<th>NAME</th>
<th>ADVISOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Tropical Medicine</td>
<td>The relationship between the morphology of Plasmodium falciparum parasites, antimalarial treatment and pathology in falciparum malaria</td>
<td>Mrs. Kamolrat Silamut</td>
<td>Prof. Sasithon Pukrittayakamee</td>
</tr>
<tr>
<td>Social and Environmental Medicine</td>
<td>Ecological studies of Bithynia goniomphalos a snail intermediate host of Opisthorchis viverrini in Northeast Thailand</td>
<td>Mrs. Chantima Lohachit</td>
<td>Assoc.Prof. Viroj Kitikoon</td>
</tr>
<tr>
<td>Tropical Nutrition and Food Science</td>
<td>Platelet fatty acids and serum lipoprotein A in hyperlipid anemia and related heart disease patients and healthy individuals</td>
<td>Mrs. Kanjana Hongtong</td>
<td>Assoc.Prof.Supranee Changbumrung</td>
</tr>
<tr>
<td>DEPARTMENT</td>
<td>TITLE OF THESIS</td>
<td>NAME</td>
<td>ADVISOR</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Isolation and characterization of mitochondrial DNA polymerase from Plasmodium falciparum</td>
<td>Mr. Polrat Wilairatana</td>
<td>Prof. Sornchai Looareesuwan</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Neurotoxicity of antimalarial drugs in animal model</td>
<td>Mr. Apichart Nontprasert</td>
<td>Prof. Sasithon Pukritayakamee</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Ultrastructural studies of Plasmodium falciparum in human organs: the interactions between the parasitized erythrocytes and the host cells</td>
<td>Mrs. Emsri Pongpanarat</td>
<td>Prof. Sornchai Looareesuwan</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>Clinical pharmacology of the combination of artether and proquinal</td>
<td>Dr. Le Thi Diem Thuy</td>
<td>Prof. Juntra Laothavorn</td>
</tr>
<tr>
<td>Clinical tropical Medicine</td>
<td>Pharmacokinetics and pharmacodynamics of artemisinin derivative combination in uncomplicated malaria</td>
<td>Miss Pongsri Tippawangosal</td>
<td>Assoc. Prof. Kesara Na Bangcham</td>
</tr>
<tr>
<td>Clinical Tropical Medicine</td>
<td>The role of clinical pharmacology in the treatment of tropical diseases</td>
<td>Dr. Yupaporn Wattanakoon</td>
<td>Prof. Juntra Laothavorn</td>
</tr>
<tr>
<td>Helminthology</td>
<td>Cloning of antigenic gene from female Angiostrongylus cantonensis adult worms</td>
<td>Mr. Paron Dekumyoy</td>
<td>Assoc. Prof. Jitra Waikagul</td>
</tr>
<tr>
<td>Medical Entomology</td>
<td>Some promising phytochemical plants for control of mosquito vectors</td>
<td>Mr. Chamnarn Apiwathnasorn</td>
<td>Assist. Prof. Achara Asavanich</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Rapid diagnosis of shigellosis</td>
<td>Miss Roongrasamee Soisangwan</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>Characterization of B cell epitope of HIV-1 subtype E</td>
<td>Miss Surangrat Srisurapannon</td>
<td>Prof. Srisin Khusmith</td>
</tr>
<tr>
<td>Social and Environmental Medicine</td>
<td>Studies on Schistosoma spindale Montgomery, 1906: The effects of antiparasitic drugs on Schistosoma spindale in mice and the resistance to reinfeciton after treatment</td>
<td>Mr. Ruangyuth Chaiworaporn</td>
<td>Assoc. Prof. Viroj Kitikoon</td>
</tr>
</tbody>
</table>
The Southeast Asian Ministers of Education Organization (SEAMEO), founded in 1965, is a chartered international organization for the promotion of regional cooperation in education, science, technology and culture.

Member countries are Brunei Darussalam, Cambodia, Indonesia, Lao People’s Democratic Republic, Malaysia, the Philippines, Singapore, Thailand, and Viet Nam.

Associate Member Countries are Australia, Canada, France, Germany, New Zealand, and The Netherlands.

The Council of Ministers representing the aforementioned countries is called SEAMEC. SEAMEO’s executory functions are performed by the Secretariat (SEAMES) located in Bangkok, Thailand.

SEAMEO TROP MED operates as a Network in Tropical Medicine and Public Health through four TROP MED Regional Centres in Indonesia, Malaysia, the Philippines, and Thailand, with a coordinating unit, the TROP MED Central Office in Bangkok, Thailand.

SEAMEO TROP MED serves to facilitate the strengthening of national and institutional capabilities in research and training through postgraduate academic programmes; workshops, seminars, and technical meetings; multisectoral and multidisciplinary linkages; personnel exchanges; technical consultant services; publications and information dissemination.

The SEAMEO TROP MED Network is one of 11 administrative units under SEAMEO, known as SEAMEO Centres with specialties in tropical biology (BIOTROP in Indonesia); Educational Innovation and Technology (INNOTECH in the Philippines); Science and Mathematics (RECSAM in Malaysia); Language (RELC in Singapore); Higher Education (RIHED in Thailand); Regional Training Centre in Viet Nam (RETRAC); Open learning and Distance Education in Indonesia (SEAMOLEC); Graduate Study and Research in Agriculture (SEARCA in the Philippines); Archeology and Fine Arts (SPAFA in Thailand); and Vocational and Technical Education (VOCTECH in Brunei Darussalam).

The SEAMEO TROP MED Network and SEAMEO Centres each has a Governing Board consisting of representatives from Member Countries and which is responsible for operational policies, programme quality and evaluation of the unit.

In line with the overall mission of SEAMEO, the primary role of SEAMEO TROP MED is to promote health and to prevent and control disease thereby improving the quality of life of people in South and Southeast Asia.
Functions of SEAMEO TROP MED Network

- Coordinates regional programmes and activities of the SEAMEO TROP MED Network
- Promotes linkages and networking with national, regional and international organizations and institutions
- Organizes conferences, seminars and training courses in tropical medicine and public health
- Facilitates personnel exchanges between partner institutions
- Undertakes publication of The Southeast Asian Journal of Tropical Medicine and Public Health and proceedings of technical meetings and scientific fora
- Manages special projects under various programmes of cooperation in health research and human resources development

SEAMEO TROP MED Regional Centre for Tropical Medicine (TROP MED/Thailand)

TROP MED/Thailand is hosted by the Faculty of Tropical Medicine, Mahidol University under the Ministry of University Affairs Thailand. The Faculty was established in 1960, with specialties in tropical medicine and tropical paediatrics. Courses are conducted at the Bangkok School of Tropical Medicine.

Objectives:

- Teaching endemic tropical diseases, parasitology, community and preventive medicine, with special reference to Thailand and other countries in Southeast Asia.
- Research in the field and laboratory on tropical diseases and public health leading to innovation on alternative control measures of diseases, and promotion of health of people in Southeast Asia.
- Clinical care of patients suffering from endemic tropical diseases, and clinical research into medical problems of Thailand and neighbouring countries, including trials of new chemotherapeutic compounds and new vaccines.
In the FY 1997/1998, the Strategic Plan of SEAMEO for the 1990s has been implemented and monitored according to the five Key Result Areas (KRAs). The accomplishments reported in accordance with the 5 KRAs are as follows:

KRA1. ENHANCED PROGRAMME QUALITY AND RELEVANCE

1.1 **Post-graduate Regular Courses.** TROPMED/Thailand offers 5 post-graduate courses at the Diploma, Master and PhD levels with a total of 95 students from 15 countries (Afghanistan, Australia, Austria, Cambodia, India, Indonesia, Japan, Lao PDR, Myanmar, Nepal, PR China, the Philippines, Sri Lanka, Thailand and Vietnam).

Table 1. Number of students and number of graduates in 1997/1998.

<table>
<thead>
<tr>
<th>Course</th>
<th>No. of students</th>
<th>No. of nationalities</th>
<th>No. of graduates</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTM & H</td>
<td>23</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>MSc (CTM)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MSc (Trop.Med.)</td>
<td>40</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>PhD (Trop.Med.)</td>
<td>27</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PhD (CTM)</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>95</td>
<td>15</td>
<td>37</td>
</tr>
</tbody>
</table>

There is a steady increase in the percentage of fee-paying students in the courses leading to MSc (CTM) and MSc (Tropmed) while the high percentage is maintained in the DTM & H course. The number of PhD students has remarkably increased since the FY 1996/97 especially those attending the off-campus PhD programme.

Table 2. Number and percentage of fee-paying students attended regular courses during 1993-1998.

<table>
<thead>
<tr>
<th>Course</th>
<th>Number and percentage of fee-paying students in FY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTM & H</td>
<td>43/56</td>
</tr>
<tr>
<td></td>
<td>77%</td>
</tr>
<tr>
<td>MSc (CTM)</td>
<td>2/14</td>
</tr>
<tr>
<td></td>
<td>14%</td>
</tr>
<tr>
<td>MSc (Trop.Med.)</td>
<td>1/15</td>
</tr>
<tr>
<td></td>
<td>6%</td>
</tr>
<tr>
<td>PhD (Trop.Med.)</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>80%</td>
</tr>
</tbody>
</table>

1.2 **Joint regular courses.** TROPMED/Thailand conducted 3 joint courses in collaboration with other institutions within and outside Thailand.
1.3 Elective programme in tropical medicine. The international elective programme in tropical medicine for last year medical students has been first offered in 1994/95 with 15 attendants. The programme continues with 15-20 students from Africa, Australia, Europe and USA as shown in Table 4.

Table 4. Number of students attended elective programme in tropical medicine.

<table>
<thead>
<tr>
<th>Academic year</th>
<th>No. of students</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994/95</td>
<td>15</td>
<td>Australia (1), Austria (2), Canada (2), Germany (2), Japan (5), the Netherlands (2), USA (1)</td>
</tr>
<tr>
<td>1995/96</td>
<td>15</td>
<td>Australia (1), Austria (2), Canada (2), Japan (5), South Africa (5)</td>
</tr>
<tr>
<td>1996/97</td>
<td>20</td>
<td>Australia (1), Austria (4), Canada (1), Germany (1), Japan (6), Sweden (2), USA (1), South Africa (4)</td>
</tr>
<tr>
<td>1997/98</td>
<td>19</td>
<td>Austria (4), Canada (1), Germany (1), UK (1), Japan (12)</td>
</tr>
<tr>
<td>1998/99</td>
<td>17</td>
<td>Australia (1), Austria (8), USA (7), UK (1)</td>
</tr>
</tbody>
</table>

1.4 Research attachment programme. TROPIMED/Thailand accepted 9 researchers to conduct joint research studies in tropical medicine for a period of 3 months to 2 years from the following countries : France (4), Germany (1), Norway (1), Sweden (1), Switzerland (1), UK (1)

1.5 Training. Two workshops, 2 training courses and 3 meetings at the regional and international levels were convened with the total number of 446 participants.

1.6 Special training programmes. Special training programmes were individually arranged for 18 researchers from 8 countries : Bangladesh (2), India (3), Myanmar (1), PR China (1), Romania (2), the Republic of Maldives (1) and Viet Nam (3) These trainees were supported by WHO and the Netherlands-Viet Nam Medical Committee.

KRA2. INCREASED ACCESS TO MARKET

2.1 Marketing workshop participation. Two staff form TROPIMED/Thailand participated in the Marketing Workshop organized by SEAMES held at RECSAM, Penang, Malaysia in November 1997.

2.2 Marketing through Mahidol Homepage. TROPIMED/Thailand homepage can be accessed at http://www.mahidol.ac.th/tm. Requests for training programmes through internet have been received since the launching of the homepage.
2.3 Production of new brochures. New brochures of the regular courses were produced.

2.4 Active marketing. A marketing team has been set up to launch an active marketing by holding meetings with last year science students in various universities in Bangkok. As a result, the number of students enrolled in the Master and PhD programmes were notably increased in the FY 1997/98 and FY 1998/99.

KRA3. INCREASED LINKAGES

3.1 One more MOU was signed in FY 1997/1998 between SEAMEO Network, TROPMED/Thailand and the Swiss Tropical Institute, Switzerland.

3.2 The Institutional Linkage through SEAMEO-CIDA. The linkage with the University of Calgary has been renewed and a workshop on Laboratory Diagnosis of Diarrhoeal Diseases with 15 participants from Cambodia (5) and Lao PDR (10) was held at Mahosot Hospital, Vientiane, Lao PDR during 9-20 March 1998.

3.3 Visitors. In FY 1997/98, there were 72 visitors from 15 countries who paid a visit to TROPMED/Thailand: (Australia (6), Bangladesh (1), Canada (2), Indonesia (1), Ireland (1), Japan (34), Lao PDR (2), Netherlands (1), PR China (8), Singapore (1), Switzerland (1), Thailand (2), Taiwan (1), UK (8), USA (3).

KRA4. IMPROVED FINANCIAL STATUS THROUGH COST CONTROL AND INCREASED REVENUE

4.1 Cost control measures. Measures were implemented to reduce shortfalls with the target of 10% reduction in electricity, water, telephone and facsimile.

4.2 Increase in grants from local funding agencies. There were 140 research projects with total grants of 44.7 million Bahts (19.2 millions from local funding agencies and 25.5 millions from international agencies). It is noted that grants from local sources have been steadily increased during the past 5 years.

Table 5. Number and amount of research grants since FY 1993/94.

<table>
<thead>
<tr>
<th>Fiscal year</th>
<th>Total no of research projects</th>
<th>Total grants in million Baht</th>
<th>Grants supported by local agencies</th>
<th>Grants supported by international agencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No of projects</td>
<td>Total amount</td>
</tr>
<tr>
<td>1993/94</td>
<td>109</td>
<td>7.1</td>
<td>NA*</td>
<td>3.1</td>
</tr>
<tr>
<td>1994/95</td>
<td>135</td>
<td>33.2</td>
<td>62</td>
<td>7.1</td>
</tr>
<tr>
<td>1995/96</td>
<td>133</td>
<td>31.9</td>
<td>58</td>
<td>8.3</td>
</tr>
<tr>
<td>1996/97</td>
<td>145</td>
<td>26.6</td>
<td>49</td>
<td>11.5</td>
</tr>
<tr>
<td>1997/98</td>
<td>140</td>
<td>47.7</td>
<td>62</td>
<td>19.2</td>
</tr>
</tbody>
</table>

*NA = Not available

KRA5. ENHANCED QUALITY OF SEAMEO MANAGEMENT

5.1 Woman in managed or supervisory positions. TROPMED/Thailand has equitable representation of women and professional staff in managed or supervisory positions.

Table 6. Representation of female in management positions.

<table>
<thead>
<tr>
<th>Position</th>
<th>F</th>
<th>M</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deputy Deans</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Heads of Departments</td>
<td>6</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Assistant Deans</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Deputy Directors of the Hospital</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>12</td>
<td>25</td>
</tr>
</tbody>
</table>
5.2 Number of promotion per year.

Table 7. Number of staff promoted.

<table>
<thead>
<tr>
<th>Academic post</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td>7</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>3</td>
</tr>
<tr>
<td>P.C.promotion</td>
<td>53</td>
</tr>
<tr>
<td>Higher degree</td>
<td>11</td>
</tr>
<tr>
<td>Study tour</td>
<td>28 (7.5%)</td>
</tr>
<tr>
<td>Attending conference/seminar</td>
<td>262 (71.8%)</td>
</tr>
</tbody>
</table>

5.3 Infrastructure development. The Centre is equipped with 150 computer terminals which are connected via fibreoptic system to the Computer Centre of Mahidol University. The intranet for in-house administration has been completed. The Clinical Data Analysis Unit is being established.

5.4 Achievements.
1. Awards. Some staff were awarded.

<table>
<thead>
<tr>
<th>Recipients</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Dushdi Mala Medal. A Royal Decoration from HM The King on 16 September 1997</td>
</tr>
<tr>
<td></td>
<td>Distinguished research in the treatment of malaria from the Pharmaceutical Organization of Thailand, 1997</td>
</tr>
<tr>
<td>2. Prof. Supat Sucharit Assist. Prof. (Specialist) Kamhaeng Surathinth Assist. Prof. Narumon Komalamisra Assoc. Prof. Chamnarn Apiwathnasorn</td>
<td>Best research in medical science from the National Research Council of Thailand for the study on species complex of An. minimus, 1997</td>
</tr>
<tr>
<td>3. Assoc. Prof. Polrat Wilairatana</td>
<td>Fellowship in the American College of Gastroenterology</td>
</tr>
</tbody>
</table>

2. Published research studies. Fifty-six research studies were published in local and international journals.
Support services continue to play an important role in the smooth running of the Faculty- and Schoolrelated activities. These include the Hospital for Tropical Diseases, the research and diagnostic laboratory facilities of the eleven departments, the Central Equipment Unit, the Research and Academic Affairs Unit, the Library, the Information and Computer Unit, the Educational Technology Unit, and the International Relations Unit.

Special Laboratory Services

The Faculty of Tropical Medicine, Mahidol University, offers the following laboratory services and reagents which are not readily available anywhere else.

Immunodiagnostics of various tropical infections

The following table summarizes the diseases/infections for which diagnoses are provided, the serological tests used, the specimen(s) required, the turn around time for each test, the cost per test and the place where specimens should be sent.

<table>
<thead>
<tr>
<th>Disease/Infection</th>
<th>Serological test used</th>
<th>Specimen required</th>
<th>Time required (hour)</th>
<th>Cost per test (Baht)</th>
<th>Place where specimen should be sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnathostomiasis</td>
<td>1. Indirect ELISA (uses purified specific antigen) 2. Western blot analysis (uses crude extract of the infective larvae)</td>
<td>1. 5 ml of clot blood or 2. 1-2 ml of serum</td>
<td>3</td>
<td>300 (Thai) 2,000 (Foreigner)</td>
<td>Dept. Microbiology and Immunology via OPD Dept. Helminthology (Western blot only) via OPD</td>
</tr>
<tr>
<td>Paragonimiasis</td>
<td>1. Indirect ELISA 2. Western blot analysis (both assays use partially purified adult worm antigens) 3. Both (crude extract of adult worms)</td>
<td>1. 5 ml of clot blood or 2. 1-2 ml of serum 3. same</td>
<td>3 1 same same</td>
<td>300 (Thai) 2,000 (Foreigner)</td>
<td>Dept. Microbiology and Immunology via OPD Dept. Helminthology</td>
</tr>
<tr>
<td>Trichinellosis</td>
<td>1. Indirect ELISA 2. Western blot analysis (both assays use E-S and crude somatic antigens of the infective larvae)</td>
<td>1. 5 ml of clot blood or 2. 1-2 ml of serum</td>
<td>3 1 same same</td>
<td>300 (Thai) 2,000 (Foreigner)</td>
<td>Dept. Microbiology and Immunology via OPD</td>
</tr>
<tr>
<td>Strongyloidiasis</td>
<td>1. Indirect ELISA 2. Western blot analysis (uses partially purified antigens from rhabditiform larvae) 3. Indirect ELISA (crude extract of filariiform larvae)</td>
<td>1. 5 ml of clot blood or 2. 1-2 ml of serum 3. same</td>
<td>3 1 same same</td>
<td>300 (Thai) 2,000 (Foreigner)</td>
<td>Dept. Microbiology and Immunology via OPD Dept. Helminthology via OPD</td>
</tr>
<tr>
<td>Toxocariasis</td>
<td>Indirect ELISA (crude extract of adult worms)</td>
<td>same same same</td>
<td>same same same</td>
<td>same</td>
<td>Dept. Helminthology via OPD</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>Microagglutination method and dark-field microscopy using living leptospires</td>
<td>1. 5 ml of clot blood or 2. 1-2 ml of serum 3. Blood absorbed onto filter paper</td>
<td>3 60</td>
<td>same</td>
<td>Dept. Microbiology and Immunology via OPD or directly to Leptospirosis unit, Dept. Microbiology and Immunology</td>
</tr>
</tbody>
</table>
Academic Services

<table>
<thead>
<tr>
<th>Disease/Infection</th>
<th>Serological test used</th>
<th>Specimen required</th>
<th>Time required (hour)</th>
<th>Cost per test (Baht)</th>
<th>Place where specimen should be sent</th>
</tr>
</thead>
</table>
| **Salmonella septicaemia or Salmonellosis and Typhoid** | Monoclonal antibody-based dot-blot ELISA using monoclonal antibodies specific to Salmonella core polysaccharide and antigen 9 (antigen detection) | 1. Three urine samples collected at 1 hour intervals (5 ml each)
2. Rectal swab, Food/water samples in buffered peptone solution | 1-2 | 300 | Dept. Microbiology and Immunology via OPD |
| **Cholera caused by serogroup O:1** | 1. Monoclonal antibody-based dot-blot ELISA using specific monoclonal antibodies to antigen A of V. cholerae serogroup O:1 (antigen detection) (diagnostic kits are also available) | 1. Rectal swab in 1% alkaline peptone solution
2. Watery stool
3. Food sample in 2% alkaline peptone solution
4. Water sample in 10% alkaline peptone solution | 1-2 | 150 | Dept. Microbiology and Immunology via OPD |
| **Cholera caused by serogroup O:139** | 1. Monoclonal antibody-based dot-blot ELISA using specific monoclonal antibodies (antigen detection) | 1. Rectal swab in alkaline peptone solution
2. Watery stool | 3-1 | 150 | Dept. Microbiology and Immunology via OPD |

Other tests

<table>
<thead>
<tr>
<th>Disease/Infection</th>
<th>Serological test used</th>
<th>Specimen required</th>
<th>Time required (hour)</th>
<th>Cost per test (Baht)</th>
<th>Place where specimen should be sent</th>
</tr>
</thead>
</table>
| Serum folate | Microbiological test using *Lactobacillus casei* | 1. 5 ml of clot blood
2. 1-2 ml of serum | 7 | 150 | Dept. Tropical Radioisotopes |
| Red cell folate | Microbiological test using *Lactobacillus casei* | Heparinized blood (2 ml) | 7 | 150 | Dept. Tropical Radioisotopes |
| Vitamin B12 quantitation | Radiodilution assay | 1. 5 ml of clot blood
2. 1-2 ml of serum | 5 | 150 | Dept. Tropical Radioisotopes |
Academic Services

Dept. Microbiology & Immunology

<table>
<thead>
<tr>
<th>Disease/Infection</th>
<th>Serological test used</th>
<th>Specimen required</th>
<th>Time required (hour)</th>
<th>Cost per test (Baht)</th>
<th>Place where specimen should be sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrogen free testing</td>
<td>Rabbit test by intravenous infection of the fluid to be tested and determination of body temperatures at intervals</td>
<td>Fluid to be tested</td>
<td>7 days</td>
<td>2000</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Detection of heavy metals in blood</td>
<td>Atomic absorption</td>
<td>1. Heparinized whole blood (1 ml)</td>
<td>2</td>
<td>100</td>
<td>Central Equipment Unit or OPD</td>
</tr>
<tr>
<td>(lead, arsenic, cadmium, copper, selenium, chromium, aluminium)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection of lead in air and waste water</td>
<td>Atomic absorption</td>
<td>1. Air sample</td>
<td>2</td>
<td>100</td>
<td>Central Equipment Unit</td>
</tr>
<tr>
<td>Detection of toluene and xylene in air</td>
<td>Gas chromatography mass spectrophotometre</td>
<td>1. Air sample</td>
<td>has not yet been set</td>
<td></td>
<td>Central Equipment Unit</td>
</tr>
</tbody>
</table>

Special reagents available

Reagents available at The Faculty of Tropical Medicine*

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quality</th>
<th>Cost (Baht/ml)</th>
<th>Place where the reagent is available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoclonal antibodies to V. cholerae O:1</td>
<td>Monospecificity to antigen A of V. cholerae O:1</td>
<td>150</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Monoclonal antibodies to V. cholerae O:139</td>
<td>Monospecificity to V. cholerae O:139 LPS</td>
<td>150</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Monoclonal antibodies to Salmonella core-polysaccharide</td>
<td>Core-polysaccharide of the genus Salmonella (react to all salmonellae)</td>
<td>150</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Monoclonal antibodies to group D Salmonella</td>
<td>Specific to Salmonella antigen 9</td>
<td>150</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Monoclonal antibodies to Pertussis toxin</td>
<td>Specific to S1 component (active, toxic part) of pertussis toxin</td>
<td>150</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Monoclonal antibodies to Verotoxins I and II of enterohaemorrhagic Escherichia coli</td>
<td></td>
<td>150</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Monoclonal antibodies to E. coli O157:H7</td>
<td></td>
<td>150</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Monoclonal antibodies to the genus Leptospira</td>
<td></td>
<td>150</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Monoclonal antibodies to E-S antigen of Trichinella spiralis</td>
<td></td>
<td></td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Polyclonal antibodies specific to V. cholerae O:1 or O:139</td>
<td>Specific to O antigens of serogroup O:1 or O:139, respectively by extensive absorption with heterologous antigens</td>
<td>1,000</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
<tr>
<td>Endotoxin of Gram negative bacteria (V. cholerae, Salmonella spp., Escherichia coli, and others)</td>
<td>Protein free endotoxin (lipopolysaccharide) from repeated extraction with phenol-water method</td>
<td>200</td>
<td>Dept. Microbiology & Immunology</td>
</tr>
</tbody>
</table>

Order should be made in advance
The Central Equipment Unit

Head
Yupa Chantachum M.Eng. (Nuclear Tech.)

Scientist
Hathairad Hananantachai M.Sc. (Environment)

Medical Science Associate
Somchai Poodung Cert. Medical Science Technology

General Affairs Officer
Tuenjai Ketanon Dip. Business Administration (Computer, Secretary)

Functions of the Unit
1. To provide scientific instrumentation and laboratory supplies for research and study within the Faculty
2. To offer assistance and guidance in the operation of on-site equipment to the Faculty's staff
3. To provide a general scientific consultancy service for members of the Faculty

The Educational Affairs Unit

Head
Wanpen Puttitanun B.A.

Educational Affairs Officer
Pramool Sarapantha Ph.D.
Ghosit Chumswat B.A.(Edn.), M.A.(Hist. & Phil.)

Scientist
Chutamas Koomrungruang B.Sc.(Biology)

Medical Scientist
Wannaporn Ittiprasert B.Sc.(Med. Tech.)

General Affairs Associate
Rangson Pravevanit Cert.Commercial
Nutjanat Taivarob Cert.Commercial
Chiraporn Pravevanit Voc.Cert.Commercial
Chutarat Pradabprach B.Ed.
Aree Buaprue
Nujiun Pochana Cert.Commercial

Staff
Anurat Kalasen Cert.Commercial
Srisuchart Monchonnu Cert.Commercial

The Research and Academic Affairs Unit

Head
Pornpimon Adams B.Sc.(Biology), M.Sc.(Trop.Med.)

General Affairs Officer
Warissara Chaiyabhandhu B.A.(General Management)
Sivaporn Sangpan B.A.(Lib.Inf.Sc.)

Illustration Officer
Ronnachai Rarerng B.Ed.(Ed.Tech.Inn.)

The Unit provides publishing facilities such as the Annual Report, the Mosquito-Borne Diseases Bulletin, prospectus, brochures and other printed materials. The unit also maintains a research and abstract database for the Faculty. Other academic services include distribution of research funding information, and organization of the Faculty's annual Seminar and the Chamlong-Tranakchit Harinasuta Lecture, and secretariat service for ethical committee of Faculty of Tropical Medicine, Mahidol University.
The Educational Technology Unit

Head
Sompoch Thanuvathana

Illustration Officer
Pluem Kidkian

Saranya Vongngernyuang
B.Sc. (Med. Illus. & A.V. Tech.)

Staff
Tawan Wathanakul
Voc. Cert.

Sanchai Meeprom

The Unit is comprised of 3 divisions:
1. Audio-Visual Division
2. Museum of Tropical Medicine
3. Computer-Assisted Instruction (CAI) Division

Functions of the Unit
1. Produce and service educational media (such as slides, videos, medical illustration, multimedia of tropical diseases) for staff of the Faculty and Hospital for Tropical Diseases, and Assistant Nurses of the Hospital School
2. Prepare and control audio-visual equipment for teaching, seminars and workshops
3. Provide instruction in making educational media to staff and others, both inside and outside the Faculty

The Information Technology Unit

Head
Duangjai Sahassananda
B.Sc.(Med.Tech.)

Programmer
Samchai Pichaiyongvongdee
B.Sc.(Public Health)

General Affairs Associate
Pramot Ketsuk
B.Sc. (Computer Science)

Jetsadaporn Chantachorn
B.A.(General Management)

Electronic Associate
Pongnatee Kingsawat
(Electronic)

The Information Technology Unit provides information and computer services through the year 1998 for the faculty’s staff, students and participants in the short training courses as:

I. Lecture
Special lecture in information technology
6 times

II. IT visiting
IT visiting other institutes
6 times

III. Training
Computer software training
12 times
for 226 participants and 38 observers
(20 terminals each time)

IV. General services
- Computer room 3,115 times
- UTP installations 26 stations
- Consulting/Program installation/Virus scan
292 times
 (Not include emergency call and telephone consult)
- Computer upgrade 18 machines
- Slide making 4,869 frames
- Laser print 1,113 pages
- Color print 446 pages
- Making Certificates 500 copies
- Computer scan image and OCR 862 pages
V. Database projects

The unit has 3 projects for the information technology as:

1. AHEAD project
 This project collaborates with the IDRC to make the CD-ROM on Asian Health, Environmental, and Allied Databases. The function of the Unit is to collect the information on mosquito-borne diseases and prepare it in an electronic form.

2. HEED-Net project
 This project will collaborate with the Ministry of Public Health, Faculty of Economics, Chulalongkorn University and Faculty of Tropical Medicine, Mahidol University to make the health and economic information in the GIS form.

3. SEAMEO-TROPMED (Virtual Library, Homepage).

VI. Application development

The unit has to develop the computer system and programming for 3 topics as:

- Hospital Database Development on a Client/Server Environment, Case study on the Hospital for Tropical Diseases.
- Database development for the service of the Information Technology Unit.
- Stock Database system for the Central Equipment Unit.
- Faculty Homepage on http://www.mahidol.ac.th/mahidol/tm/h-tromed.htm
- Intranet for Administrator Section.
Short Training Courses

From time to time the Faculty, in conjunction with other National Centres for Tropical Medicine and Public Health in Southeast Asia and some international organizations, organizes training courses and workshops on special subjects in a range of medical, public health and biomedical science areas, aiming to combine training in the methods of research with work which contributes to the advancement of knowledge. The courses that are held regularly each year are:

1. **Regional Training Courses on the Control of Intestinal Helminthic Infections with Special Emphasis on Soil-transmitted Helminthiasis, Family Planning Practice and Integrated Programmes**, a two-week course organized by the Department of Helminthology each year in October/November with support from the Japanese Organization for International Co-operation in Family Planning (JOICFP), the Asian Parasite Control Organization (APCO) and Japan Association for Parasite Control (JAPC).

2. **Asian Course in Tropical Epidemiology**, a three-week course in tropical epidemiology in collaboration with the Asian and European Tropical Epidemiology Group (GTZ), SEAMEO TROPMED and WHO-TDR conducted each year in November.

3. **Workshop on Clinical Tropical Pharmacology in the Chemotherapy of Malaria**, a two-week to one-month international short course in clinical tropical pharmacology. The workshop is held annually from July to August, with financial support from WHO, SEAMEO TROPMED Network, and the Natural Science and Technology Development Agency of Thailand. Participants are medical doctors and research scientists who are working or plan to work in this field. The objectives of the course are to upgrade and strengthen research and training capability in the field of clinical pharmacology, with special reference to the chemotherapy of malaria, and disseminate information on proper management of infections.

4. **Workshop in Practical Clinical Parasitology**, this two-week course organized by Department of Helminthology, Department of Protozoology and Clinical Pharmacology Unit, Faculty of Tropical Medicine, Mahidol University. The course offered in October, consists of a series of lectures on the parasites, diagnosis, clinical manifestation and treatment. Hands-on laboratory sessions covering the diagnosis of parasitic infections are included.

5. **Travel Medicine for Danish General Practitioners**, this course is specially arranged by the collaboration of Department of Infectious Diseases Aarhus University Hospital, University of Aarhus, Denmark and the Department of Clinical Tropical Medicine and Department of Tropical Paediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok. The Faculty has jointly offered this special short course for Danish General Practitioners' since 1996. This short course aims to enrich the Danish general practitioners understanding of the clinical, epidemiological and prevention of tropical diseases particularly Southeast Asia.

Workshops and Training Courses

1 October 1997 - 30 September 1998

1. **Workshop on Cost-Effectiveness Analysis of Disease Vector Control**
 - 29 September - 3 October 1997
 - Participants from:
 - Bangladesh 2
 - Indonesia 2
 - Myanmar 2
 - Sri Lanka 2
 - Thailand 4
 - Bhutan 1
 - Maldives 2
 - Nepal 2
 - Switzerland 2
 - Total 19
2. The APCO Training Course for Senior Administrators and Leaders of Parasitic Control Project
10 - 19 November 1997
Participants from:
- Bangladesh 2
- Cambodia 2
- Lao PDR 2
- Myanmar 2
- Philippines 2
- Vietnam 2
- Bhutan 2
- Indonesia 2
- Malaysia 2
- Nepal 2
- Sri Lanka 2
- Thailand 6
Total 28

3. Regional Workshop on Geographic Information Systems: Disease Mapping for Tropical Infections & Vector-Borne Diseases
15 - 19 December 1997
Participants from:
- Cambodia 2
- Indonesia 2
- Lao PDR 2
- Philippines 4
- Vietnam 2
- PR China 1
- Republic of Maldives 1
Total 18

4. Austrian Course Diploma for Tropical Medicine
5 - 30 January 1998
Participants from: Austria 9
Total 9

5. Workshop on Clinical & Laboratory Diagnostic Parasitology: A Practical Approach for Better Health Services
19 - 30 January 1998
Participants from:
- Cambodia 2
- Lao PDR 2
- Vietnam 3
- Indonesia 1
- Myanmar 2
- Thailand 16
Total 26

6. Regional Workshop on Development of Research Protocols
16 - 18 March 1998
Participants from:
- Cambodia
- PR China
- Myanmar
- Lao PDR
- Vietnam
Total 7

7. Workshop on the Design, Conduct and Reporting of Clinical Trial
3 - 11 August 1998
Participants from:
- Bangladesh 1
- Lao PDR 2
- Myanmar 1
- Thailand 10
- Hong Kong 2
- Malaysia 2
- Vietnam 2
Total 20
8. Workshop on Diagnostic Microbiology
 9-20 March 1998 at Mahosot Hospital, Lao PDR
 Participants from: Cambodia 5
 Lao PDR 15
 Total 20

9. Postgraduate Training in Epidemiology for one WHO fellow from Maldives,
 14 July 1997 - 14 May 1998

10. Training on Investigation of Causative Agents of Acute Respiratory Infections for one WHO fellow from Lao PDR
 6 October - 28 November 1997

11. Training on Clinical and Laboratory Diagnostic Parasitology for one WHO fellow from Sri Lanka,
 20 October - 7 November 1997

12. Training on Bacteriology of Diarrhoeal Diseases for one WHO fellow from Sri Lanka
 3 - 28 November 1997

13. Training on Research Methodology for one WHO fellow from Bangladesh
 3 November 1997 - 23 January 1998

14. Training on Vector Borne Diseases for 2 USAID fellows from Nepal
 15 June - 10 September 1998

15. Training on Medical Parasitology for one WHO fellow from Sri Lanka
 28 September - 16 October 1998

 20 - 21 August 1998

Participants: 350
The Faculty of Tropical Medicine has ongoing collaborative activities on research and training with the following:

1. WHO/TDR programme
2. Freie University of Berlin, Germany, under the assistance of German Agency for Technical Cooperation
3. Liverpool School of Tropical Medicine, UK
4. Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Russian Federation
5. The University of Calgary, Canada
6. Nuffield Department of Medicine, University of Oxford, UK
7. Asian Parasite Control Organization (APCO), Japan
8. The Wellcome Trust, UK
9. International Development Research Centre (IDRC), Canada
10. Japanese Organization for International Cooperation in Family Planning (JOICFP), Japan
11. SEAMEO TROPMED Regional Centres in Indonesia, Philippines and Malaysia
12. University of Innsbruck, Austria
13. Queensland Institute of Medical Research, Australia
14. James Cook University of North Queensland, Australia
15. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Germany
16. Department des Maladies Infecteuse et Médicin Tropicale, Groupe Hospitalier Pitie Salpetrière, France
17. Pasteur Institute, France
18. Chinese Academy of Preventive Medicine, PR China
19. Airlungga University, Surabaya, Indonesia
20. Naval Medical Research Institute, Bethesda, Maryland, USA
21. Agreement for Academic Exchange and Cooperation between University of Tsukuba, Japan and Mahidol University, Kingdom of Thailand.
22. Memorandum of Understanding, Collaboration between the Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, the SEAMEO TROPMED Network and the Swiss Tropical Institute, Basel, Switzerland.
23. Agreement of Co-operation between the Tropical Medicine and Public Health Network of the Southeast Asian Ministers of Education Organization (SEAMEO TROPMED) and the Australian Centre for International and Tropical Health and Nutrition (ACTTHN) of the Queensland Institute of Medical Research and the University of Queensland.
24. Memorandum of Understanding between the Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand and the Health of Animals Laboratory, Canadian Food Inspection Agency, Government of Canada, Saskatoon, Canada.

The nature of these activities are: collaborative research works; consultative services; personnel, specimen and information exchanges, joint training courses, seminars and conferences.
During October 1997 - September 1998

<table>
<thead>
<tr>
<th>Name</th>
<th>Country/Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prof. Wernsdorfer</td>
<td>Austria</td>
</tr>
<tr>
<td>2. Wolfram Brunger</td>
<td>Belgium</td>
</tr>
<tr>
<td>3. Dr. Nigel</td>
<td>Belgium</td>
</tr>
<tr>
<td>4. Dr. Mohammad</td>
<td>Brunei Darussalam</td>
</tr>
<tr>
<td>5. Dr. Claire Mathewson</td>
<td>Canada</td>
</tr>
<tr>
<td>6. Dr. Clarence A. Guenter</td>
<td>Canada</td>
</tr>
<tr>
<td>7. Mrs. Guenter</td>
<td></td>
</tr>
<tr>
<td>8. Dr. Amar Kureishi</td>
<td>Canada</td>
</tr>
<tr>
<td>9. Dr. May Ho</td>
<td>Canada</td>
</tr>
<tr>
<td>10. Dr. Alessio Panza</td>
<td>EU/Thailand</td>
</tr>
<tr>
<td>11. Dr. Frederick Gay</td>
<td>France</td>
</tr>
<tr>
<td>12. Dr. Adrien Six</td>
<td>France</td>
</tr>
<tr>
<td>13. Dr. Jean Paul Gonzalez</td>
<td>France</td>
</tr>
<tr>
<td>14. Dr. Sylvester</td>
<td></td>
</tr>
<tr>
<td>15. Dr. Radiger Kluge</td>
<td>Germany</td>
</tr>
<tr>
<td>16. Dr. Rital Agoes</td>
<td>Indonesia</td>
</tr>
<tr>
<td>17. Dr. Rainer Gross</td>
<td></td>
</tr>
<tr>
<td>18. Prof. Hagai Ginsburg</td>
<td>Israel</td>
</tr>
<tr>
<td>19. Moshe Hoshen</td>
<td>Israel</td>
</tr>
<tr>
<td>20. Wilfred Stein</td>
<td></td>
</tr>
<tr>
<td>21. Dr. Pandu Wijayaratne</td>
<td>ISTI, USA</td>
</tr>
<tr>
<td>22. Dr. Maj. Koki Kaku</td>
<td>Japan</td>
</tr>
<tr>
<td>23. Prof. Yoshio Nakabayashi</td>
<td>Japan</td>
</tr>
<tr>
<td>24. Prof. Hiroshi Ohtomo</td>
<td>Japan</td>
</tr>
<tr>
<td>25. Dr. Hisao Kurazono</td>
<td>Japan</td>
</tr>
<tr>
<td>26. Dr. Masamichi Aikawa</td>
<td>Japan</td>
</tr>
<tr>
<td>27. Prof. Kiyoshi Kita</td>
<td>Japan</td>
</tr>
<tr>
<td>28. Mr. Norio Mogi</td>
<td></td>
</tr>
<tr>
<td>29. Mr. Yasuharu Matsumoto</td>
<td>Japan</td>
</tr>
<tr>
<td>30. Mr. Makoto Kanie</td>
<td>Japan</td>
</tr>
<tr>
<td>31. Mr. Makoto Iwaki</td>
<td>Japan</td>
</tr>
<tr>
<td>32. Prof. Akihiko Yano</td>
<td>Japan</td>
</tr>
<tr>
<td>33. Mr. Masaharu Yoshida</td>
<td>Japan</td>
</tr>
<tr>
<td>34. Mr. Kenichi Kimiya</td>
<td>Japan</td>
</tr>
<tr>
<td>35. Mr. Kazumi Igami</td>
<td>Japan</td>
</tr>
<tr>
<td>36. Mr. Shigeki Fujikawa</td>
<td>Japan</td>
</tr>
<tr>
<td>37. Dr. Masaru Umeda</td>
<td>Japan</td>
</tr>
<tr>
<td>38. Dr. Takaaki Hara</td>
<td>Japan</td>
</tr>
<tr>
<td>39. Mr. Ryuii Matsunaga</td>
<td>Japan</td>
</tr>
<tr>
<td>40. Dr. Masato Kawabata</td>
<td>Japan</td>
</tr>
<tr>
<td>41. Ms. Yukak Morimatsu</td>
<td>Japan</td>
</tr>
<tr>
<td>42. Mr. Taro Honiyou</td>
<td>Japan</td>
</tr>
<tr>
<td>43. Ms. Youko Iwasaki</td>
<td>Japan</td>
</tr>
<tr>
<td>44. Ms. Satsuki Shimabukuro</td>
<td>Japan</td>
</tr>
<tr>
<td>45. Mr. Hirotaka Shiratori</td>
<td>Japan</td>
</tr>
<tr>
<td>46. Ms. Eriko Tomita</td>
<td>Japan</td>
</tr>
<tr>
<td>47. Dr. Hiroyuki Wakiyama</td>
<td>Japan</td>
</tr>
<tr>
<td>48. Mr. Manabu Saito</td>
<td>Japan</td>
</tr>
<tr>
<td>49. Mr. Tomonori Aoyama</td>
<td>Japan</td>
</tr>
<tr>
<td>50. Mr. Kouta Imasimizu</td>
<td>Japan</td>
</tr>
<tr>
<td>51. Mr. Shogo Ehata</td>
<td>Japan</td>
</tr>
<tr>
<td>52. Mr. Takashi Doi</td>
<td>Japan</td>
</tr>
<tr>
<td>53. Mr. Mitsuoyoshi Suzuki</td>
<td>Japan</td>
</tr>
<tr>
<td>54. Mr. Takamori Yajima</td>
<td>Japan</td>
</tr>
<tr>
<td>55. Ms. Seiko Suzuki</td>
<td>Japan</td>
</tr>
<tr>
<td>56. Prof. Ushijima</td>
<td>Japan</td>
</tr>
<tr>
<td>57. Dr. Khamphong</td>
<td>Lao PDR</td>
</tr>
<tr>
<td>58. Dr. Chansy</td>
<td>Lao PDR</td>
</tr>
<tr>
<td>59. Dr. Supachai</td>
<td>Lao PDR</td>
</tr>
<tr>
<td>60. Dr. Wolf Wagner</td>
<td>Mongolia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Country/Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>61. Dr. Alicia P. Magos</td>
<td>Philippines</td>
</tr>
<tr>
<td>62. Dr. Francisco Felizar, Jr.</td>
<td>Philippines</td>
</tr>
<tr>
<td>63. Chancellor Cristina Padolina</td>
<td>Philippines</td>
</tr>
<tr>
<td>64. Dr. Art Pesigan</td>
<td>Philippines</td>
</tr>
<tr>
<td>65. Dr. Roderick Ofirn</td>
<td>Philippines</td>
</tr>
<tr>
<td>66. Dr. Yang Huang</td>
<td>PR China</td>
</tr>
<tr>
<td>67. Dr. Cheng Hong</td>
<td>PR China</td>
</tr>
<tr>
<td>68. Dr. Li Xue-Zhong</td>
<td>PR China</td>
</tr>
<tr>
<td>69. Dr. Duo Lin</td>
<td>PR China</td>
</tr>
<tr>
<td>70. Zuo Jiayzheng</td>
<td>PR China</td>
</tr>
<tr>
<td>71. Hu Junsheng</td>
<td>PR China</td>
</tr>
<tr>
<td>72. Duan Xinwen</td>
<td>PR China</td>
</tr>
<tr>
<td>73. Zhang Yanhe</td>
<td>PR China</td>
</tr>
<tr>
<td>74. Song Shunyou</td>
<td>PR China</td>
</tr>
<tr>
<td>75. He Xiaojun</td>
<td>PR China</td>
</tr>
<tr>
<td>76. Wu Xiaoqun</td>
<td>PR China</td>
</tr>
<tr>
<td>77. Zheng Ying</td>
<td>PR China</td>
</tr>
<tr>
<td>78. Liao Yongxiang</td>
<td>PR China</td>
</tr>
<tr>
<td>79. Luo Yaoju</td>
<td>PR China</td>
</tr>
<tr>
<td>80. Du Ying</td>
<td>PR China</td>
</tr>
<tr>
<td>81. Jin Kuan</td>
<td>PR China</td>
</tr>
<tr>
<td>82. Jiang Qingwu</td>
<td>PR China</td>
</tr>
<tr>
<td>83. Zhang Hongru</td>
<td>PR China</td>
</tr>
<tr>
<td>84. Qu Yanglin</td>
<td>PR China</td>
</tr>
<tr>
<td>85. Zhao Ruqin</td>
<td>PR China</td>
</tr>
<tr>
<td>86. Li Dong</td>
<td>PR China</td>
</tr>
<tr>
<td>87. Deng Tianwan</td>
<td>PR China</td>
</tr>
<tr>
<td>88. Liu Aiting</td>
<td>PR China</td>
</tr>
<tr>
<td>89. Hu Chengfa</td>
<td>PR China</td>
</tr>
<tr>
<td>90. Pan Yuhua</td>
<td>PR China</td>
</tr>
<tr>
<td>91. Shen Wenlong</td>
<td>PR China</td>
</tr>
<tr>
<td>92. Luo Liangul</td>
<td>PR China</td>
</tr>
<tr>
<td>93. Lihe</td>
<td>PR China</td>
</tr>
<tr>
<td>94. Ma Shaoliang</td>
<td>PR China</td>
</tr>
<tr>
<td>95. Yang Yiqing</td>
<td>PR China</td>
</tr>
<tr>
<td>96. Yang Changgui</td>
<td>PR China</td>
</tr>
<tr>
<td>97. Zhao Ruixiang</td>
<td>PR China</td>
</tr>
<tr>
<td>98. Dong Yingkuan</td>
<td>PR China</td>
</tr>
<tr>
<td>99. Li Fuan</td>
<td>PR China</td>
</tr>
<tr>
<td>100. Fan Youde</td>
<td>PR China</td>
</tr>
<tr>
<td>101. Wen Qi</td>
<td>PR China</td>
</tr>
<tr>
<td>102. Dou Lin</td>
<td>PR China</td>
</tr>
<tr>
<td>103. Dr. Lugt</td>
<td>Switzerland</td>
</tr>
<tr>
<td>104. Dr. Peter</td>
<td>Switzerland</td>
</tr>
<tr>
<td>105. Dr. Rossi Sasuni</td>
<td>Switzerland</td>
</tr>
<tr>
<td>106. Dr. Ali</td>
<td>Switzerland</td>
</tr>
<tr>
<td>107. Dr. Hocard Eengers</td>
<td>Switzerland</td>
</tr>
<tr>
<td>108. Dr. Farrokh Modabber</td>
<td>Switzerland</td>
</tr>
<tr>
<td>109. Dr. Marie Lin</td>
<td>Taiwan</td>
</tr>
<tr>
<td>110. Mrs. Ngampisa Aksornprai</td>
<td>Thailand</td>
</tr>
<tr>
<td>111. Dr. Cathy Walton</td>
<td>UK</td>
</tr>
<tr>
<td>112. Dr. Charmaine Philips</td>
<td>UK</td>
</tr>
<tr>
<td>113. Prof. Michael Dexter</td>
<td>UK</td>
</tr>
<tr>
<td>114. Dr. Bob Howells</td>
<td>UK</td>
</tr>
<tr>
<td>115. Prof. H.M. Gilles</td>
<td>UK</td>
</tr>
<tr>
<td>116. Dr. Leopoldo Villegas</td>
<td>UK</td>
</tr>
<tr>
<td>117. Dr. Valerie Goodrich</td>
<td>USA</td>
</tr>
<tr>
<td>118. Dr. Chris Geohas</td>
<td>USA</td>
</tr>
<tr>
<td>119. Dr. Gary Brittenham</td>
<td>USA</td>
</tr>
<tr>
<td>120. Dr. Patricia L. Rosenfield</td>
<td>USA</td>
</tr>
<tr>
<td>Name</td>
<td>Country/Organization</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>121. Dr. Donald Francis</td>
<td>USA</td>
</tr>
<tr>
<td>122. Ms. Marlene</td>
<td>USA</td>
</tr>
<tr>
<td>123. Ms. Diana Lee</td>
<td>USA</td>
</tr>
<tr>
<td>124. Dr. Nguyen Van Bien</td>
<td>Vietnam</td>
</tr>
<tr>
<td>125. Dr. Nguyen Van Thinh</td>
<td>Vietnam</td>
</tr>
<tr>
<td>126. Dr. Nguyen Van Toan</td>
<td>Vietnam</td>
</tr>
<tr>
<td>127. Mr. Nguyen Van De</td>
<td>Vietnam</td>
</tr>
<tr>
<td>128. Mr. Doanh Baccam</td>
<td>Vietnam</td>
</tr>
<tr>
<td>129. Mr. Bui Duc Thang</td>
<td>Vietnam</td>
</tr>
<tr>
<td>130. Mr. Le Xuan Hao</td>
<td>Vietnam</td>
</tr>
<tr>
<td>131. Mr. Le Tung</td>
<td>Vietnam</td>
</tr>
<tr>
<td>132. Ms. Bui Thi Binh</td>
<td>Vietnam</td>
</tr>
<tr>
<td>133. Mr. Nguyen Thanh Cong</td>
<td>Vietnam</td>
</tr>
<tr>
<td>134. Mr. Hoang Hong</td>
<td>Vietnam</td>
</tr>
<tr>
<td>135. Mr. Le Huu Van</td>
<td>Vietnam</td>
</tr>
<tr>
<td>136. Mr. Tran Trong Hien</td>
<td>Vietnam</td>
</tr>
<tr>
<td>137. Mr. Nguyen Phu Dong</td>
<td>Vietnam</td>
</tr>
<tr>
<td>138. Mr. Pham Thanh Toan</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>

STUDENT AND RESEARCHERS

STUDENTS FROM OVERSEA ATTENDING ELECTIVE PROGRAMME OR TROPMED RESEARCH IN 1998

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Institute</th>
<th>Subject</th>
<th>During</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mr. Sven-Erik Lehm</td>
<td>UK</td>
<td>Faculty of Medicine, University of Liverpool</td>
<td>PhD Sandwich programme in Entomology</td>
<td>2-23 Jan.1998</td>
</tr>
<tr>
<td>2. Ms. Charmaine Phillips</td>
<td>UK</td>
<td>Faculty of Medicine, University of Liverpool</td>
<td>Elective Programme in Tropical Medicine</td>
<td>9-15 June 1998</td>
</tr>
<tr>
<td>3. Ms. Louise Scovell</td>
<td>UK</td>
<td>Faculty of Medicine, University of Liverpool</td>
<td>Elective Programme in Tropical Medicine</td>
<td>9-15 June 1998</td>
</tr>
<tr>
<td>4. Ms. Martina Enk</td>
<td>Austria</td>
<td>Faculty of Medicine, University of Innsbruck</td>
<td>Elective Programme in Tropical Medicine</td>
<td>6-31 July 1998</td>
</tr>
<tr>
<td>5. Ms. Ines Derflinger</td>
<td>Austria</td>
<td>Faculty of Medicine, University of Innsbruck</td>
<td>Elective Programme in Tropical Medicine</td>
<td>6-31 July 1998</td>
</tr>
<tr>
<td>6. Ms. Simone Holl</td>
<td>Austria</td>
<td>Faculty of Medicine, University of Innsbruck</td>
<td>Elective Programme in Tropical Medicine</td>
<td>3-31 Aug.1998</td>
</tr>
<tr>
<td>7. Mr. Eugen Sleiter</td>
<td>Austria</td>
<td>Faculty of Medicine, University of Innsbruck</td>
<td>Elective Programme in Tropical Medicine</td>
<td>3-31 Aug.1998</td>
</tr>
<tr>
<td>8. Mr. Burger Dietmar</td>
<td>Austria</td>
<td>Faculty of Medicine, University of Innsbruck</td>
<td>Elective Programme in Tropical Medicine</td>
<td>3-31 Aug.1998</td>
</tr>
<tr>
<td>9. Mr. Rainer Gattringer</td>
<td>Austria</td>
<td>Faculty of Medicine, University of Vienna</td>
<td>Elective Programme in Tropical Medicine</td>
<td>20 July-11 Sept.1998</td>
</tr>
<tr>
<td>10. Mr. Michael Ramhartr</td>
<td>Austria</td>
<td>Faculty of Medicine, University of Vienna</td>
<td>Elective Programme in Tropical Medicine</td>
<td>20 July-11 Sept.1998</td>
</tr>
<tr>
<td>11. Mr. Gerhard Poppl</td>
<td>Austria</td>
<td>Faculty of Medicine, University of Vienna</td>
<td>Elective Programme in Tropical Medicine</td>
<td>20 July-11 Sept.1998</td>
</tr>
<tr>
<td>12. Dr. Soe Win</td>
<td>Myanmar</td>
<td></td>
<td>Research on Malaria</td>
<td>15 July 1998-14 July 1999</td>
</tr>
<tr>
<td>Lecturer</td>
<td>E-mail Address</td>
<td>Field of Specialization/Expertise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achara Asavanich</td>
<td>tmaas@mahidol.ac.th</td>
<td>Malaria vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arunee Sabchareon</td>
<td>tmac@mahidol.ac.th</td>
<td>Malaria in children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhistsavat Pongpanluk</td>
<td>-</td>
<td>Fundamental of nursing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalit Komalamisra</td>
<td>tmckm@mahidol.ac.th</td>
<td>Helminthology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamnarn Apiwathnasorn</td>
<td>tmca@mahidol.ac.th</td>
<td>Mosquito taxonomist/Ecologist/Field Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channarong Sanghirun</td>
<td>rd123@mahidol.ac.th headtmpd@mahidol.ac.th</td>
<td>Radiosotopes in medical science and biology/ Monoclonal antibody for diagnosis of parasites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chantima Lohachit</td>
<td>tmclh@mahidol.ac.th</td>
<td>Medical and freshwater malacology/Limnology/Ecology/Spermatogenesis (TEM)/Environmental Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chotechuang Panasoponkul</td>
<td>tmcpn@mahidol.ac.th</td>
<td>Vector borne diseases eg. Filariasis, Malara and Field work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chukiat Sirivichayakul</td>
<td>tmcsW@mahidol.ac.th</td>
<td>General pediatrics/ Chemotherapy of childhood malaria/Parasite infection in children/Childhood diarrhea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chutatip Siripanth</td>
<td>tmcsr@mahidol.ac.th</td>
<td>Cultivation of Giardia and E. histolytica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dwip Kitayaporn</td>
<td>tmdkt@mahidol.ac.th</td>
<td>Epidemiology of HIV/AIDS/Research methodology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emsri Pongponratn</td>
<td>tmep@mahidol.ac.th</td>
<td>Electronmicroscopy; pathology of malaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jintana Paratarapotikul</td>
<td>tmjpt@mahidol.ac.th</td>
<td>Immunology and molecular biology of malaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitra Waikagul</td>
<td>tmjwk@mahidol.ac.th</td>
<td>Taxonomy/Biology of helminths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasinee Buchachart</td>
<td>tmkb@mahidol.ac.th</td>
<td>Statistical analysis & data processing of epidemiological research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kesara Na-Bangchang</td>
<td>tkmnb@mahidol.ac.th</td>
<td>Pharmacokinetics/Drug Metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krisana Pengsaa</td>
<td>tmkps@mahidol.ac.th</td>
<td>General pediatrics/ Chemotherapy of parasitic diseases/Immunization in children/Neonatal infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladda Tangbanlukeletal</td>
<td>grltb@mahidol.ac.th</td>
<td>Environmental and industrial toxicology/Health risk assessment from toxicants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malinee Thairungroj</td>
<td>-</td>
<td>Medical helminthology/Immunodiagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manas Chongsa-nguan</td>
<td>tmmcs@mahidol.ac.th</td>
<td>Immunology of tropical infections/Bacterial identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mario Riganti</td>
<td>-</td>
<td>Anatomical pathology/Gnathostomiasis/Chemotherapy of gnathostomias/ Tropical pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narumon Komalamisra</td>
<td>tmkn@mahidol.ac.th</td>
<td>Isoenzyme of vectors/Vector genetics/Molecular entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilarat Premmanisakul</td>
<td>tmnps@mahidol.ac.th</td>
<td>Medical epidemiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitaya Thammapalerd</td>
<td>tmntm@mahidol.ac.th</td>
<td>Immunology and molecular biology of amoebias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niyomsri Vudhivai</td>
<td>tmnv@mahidol.ac.th</td>
<td>Biochemical nutrition/Community nutrition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panyawut Hiranyachattada</td>
<td>tmphr@mahidol.ac.th</td>
<td>Helminthology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parnpen Viriyavejakul</td>
<td>tmprv@mahidol.ac.th</td>
<td>Anatomical pathology / Opportunistic infections in AIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paron Dekumyoy</td>
<td>tmpdk@mahidol.ac.th</td>
<td>Immunodiagnosis of helminthiasites</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LECTURERS AND THEIR AREAS OF EXPERTISE

Faculty of Tropical Medicine Annual Report 1998
<table>
<thead>
<tr>
<th>Lecturer</th>
<th>E-mail Address</th>
<th>Field of Specialization/Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petcharin Yamarat</td>
<td>tmpym@mahidol.ac.th</td>
<td>Rheology of malarial blood, blood of subjects digested garlic, cord blood</td>
</tr>
<tr>
<td>Phanorsri Attanath</td>
<td>tmpat@mahidol.ac.th</td>
<td>In vitro sensitivity test to antimalarials Pharmacokinetics of antimalarials</td>
</tr>
<tr>
<td>Piyarat Butraporn</td>
<td>tmpbr@mahidol.ac.th headtmse@mahidol.ac.th</td>
<td>Social epidemiology in tropical diseases Health impacts of water resource development</td>
</tr>
<tr>
<td>Polrat Wilairatana</td>
<td>tmpwl@mahidol.ac.th</td>
<td>Tropical gastroenterology Pathophysiology of severe malaria</td>
</tr>
<tr>
<td>Ponganant Nontasut</td>
<td>tmpnd@mahidol.ac.th</td>
<td>Chemotherapy in intestinal parasites</td>
</tr>
<tr>
<td>Pornthep Chanthavanich</td>
<td>tmpct@mahidol.ac.th</td>
<td>Chemotherapy of parasitic diseases Chemotherapy of malaria in children Vaccination in children</td>
</tr>
<tr>
<td>Porntip Petmitr</td>
<td>tmppm@mahidol.ac.th</td>
<td>Biochemistry of malaria parasites, cultivation of P. falciparum gametocytes and T. vaginalis</td>
</tr>
<tr>
<td>Pramuan Tapchaisri</td>
<td>tmpct@mahidol.ac.th</td>
<td>Immunology, molecular biology of tropical infections</td>
</tr>
<tr>
<td>Praneet Pongpaew</td>
<td>tmppp@mahidol.ac.th</td>
<td>Nutritional epidemiology/Community nutrition</td>
</tr>
<tr>
<td>Pratap Singhasivanon</td>
<td>tmpsh@mahidol.ac.th</td>
<td>Epidemiology of tropical diseases / Research methodology</td>
</tr>
<tr>
<td>Pravan Suntharasamai</td>
<td>tmpst@mahidol.ac.th</td>
<td>Clinical tropical medicine Vaccinology/Clinical epidemiology</td>
</tr>
<tr>
<td>Punnee Pitisuttithum</td>
<td>tmppt@mahidol.ac.th</td>
<td>Tropical diseases vaccine trial especially Phase I, II vaccine trial eg. Cholera vaccine, Rotavirus vaccine, AIDS vaccine, etc., Clinical studies of tropical diseases eg. cryptococal meningitis in AIDS; chronic diarrhea in AIDS, etc. Drug trial in AIDS with opportunistic infection</td>
</tr>
<tr>
<td>Ratanaporn Kasemsuth</td>
<td>tmrks@mahidol.ac.th</td>
<td>Radioisotopes in medical science and biology RIA. (Radio Immunoassay)</td>
</tr>
<tr>
<td>Rungsunn Tungtrongchitr</td>
<td>tmrtg@mahidol.ac.th</td>
<td>Community nutrition/Nutritional epidemiology</td>
</tr>
<tr>
<td>Sasithon Pukrittayakamee</td>
<td>tmpsk@mahidol.ac.th</td>
<td>Tropical medicine</td>
</tr>
<tr>
<td>Sirivan Vanijanonta</td>
<td>tmpsvn@mahidol.ac.th</td>
<td>Clinical tropical medicine Parasitic lung infectious diseases CNS parasitic diseases Tropical geriatrics Amoebiasis</td>
</tr>
<tr>
<td>Somjai Leemingsawat</td>
<td>tmspm@mahidol.ac.th</td>
<td>Tick and mite-borne diseases Filarial parasites & vectors</td>
</tr>
<tr>
<td>Songsak Petmitr</td>
<td>tmspm@mahidol.ac.th</td>
<td>Molecular biology/Cancer</td>
</tr>
<tr>
<td>Sornchai Loosaresuwan</td>
<td>tmslr@mahidol.ac.th</td>
<td>Pathophysiology of severe malaria Chemotherapy of malaria</td>
</tr>
<tr>
<td>Srisin Khusmith</td>
<td>tmskm@mahidol.ac.th</td>
<td>Immunology/Molecular biology/Malaria</td>
</tr>
<tr>
<td>Srivicha Krudsood</td>
<td>tmsks@mahidol.ac.th</td>
<td>Internal medicine</td>
</tr>
<tr>
<td>Supatra Thongrungkiat</td>
<td>tmstr@mahidol.ac.th</td>
<td>Mosquito colonization/Malaria parasite & vector Dengue virus and vector/Mosquito inoculation</td>
</tr>
<tr>
<td>Supranee Changbumrung</td>
<td>tmscb@mahidol.ac.th headtmnu@mahidol.ac.th</td>
<td>Biochemical nutrition Nutritional epidemiology Nutritional toxicology</td>
</tr>
<tr>
<td>Lecturer</td>
<td>E-mail Address</td>
<td>Field of Specialization/Expertise</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Surang Tantivanich</td>
<td>tmstt@mahidol.ac.th</td>
<td>Medical virology</td>
</tr>
<tr>
<td>Talabporn Harnroongroj</td>
<td>tmthr@mahidol.ac.th</td>
<td>Community nutrition/Biochemical nutritional</td>
</tr>
<tr>
<td>Thaiyooth Chintana</td>
<td>tmct@mahidol.ac.th</td>
<td>Amoeba, Toxoplasma gondii</td>
</tr>
<tr>
<td>Thongchai Deesin</td>
<td>-</td>
<td>Ecologist / Vectors borne diseases/Field study</td>
</tr>
<tr>
<td>Udomsak Silachamroon</td>
<td>-</td>
<td>Internal medicine/Pulmonary Medicine/TB</td>
</tr>
<tr>
<td>Usanee Suthisarnsuntorn</td>
<td>-</td>
<td>Clinical microbiology/Bacteriology Infections diseases pediatrics</td>
</tr>
<tr>
<td>Valai Bussaratid</td>
<td>tmvbs@mahidol.ac.th</td>
<td>Dermatology/Internal medicine</td>
</tr>
<tr>
<td>Vanida Deesin</td>
<td>tmvdi@mahidol.ac.th</td>
<td>Vector control/Vector borne diseases</td>
</tr>
<tr>
<td>Varaporn Suphadtanaphongs</td>
<td>tmwsp@mahidol.ac.th</td>
<td>Cultivation and drug sensitivity test of P. falciparum</td>
</tr>
<tr>
<td>Varee Wonghotigul</td>
<td>tmvwc@mahidol.ac.th</td>
<td>Rickettsiology (Scrub typhus)</td>
</tr>
<tr>
<td>Varunee Desakorn</td>
<td>tmvds@mahidol.ac.th</td>
<td>Immunodiagnosis/Biostatistics</td>
</tr>
<tr>
<td>Venus Supawan</td>
<td>tmvsp@mahidol.ac.th</td>
<td>Biochemical nutrition/Community nutrition</td>
</tr>
<tr>
<td>Vichitra Pornkulpratis</td>
<td>tmvpk@mahidol.ac.th</td>
<td>Radiology</td>
</tr>
<tr>
<td>Voranuch Wangsuphachart</td>
<td>tmvws@mahidol.ac.th</td>
<td>Environmental epidemiology Comparative risk assessment Epidemiology of internet</td>
</tr>
<tr>
<td>Wanchai Phatihatakorn</td>
<td>tmwpk@mahidol.ac.th</td>
<td>Environmental health impact assessment GRD Monitoring, evaluate and servillance of parasitic disease</td>
</tr>
<tr>
<td>Wanpen Chaicumpa</td>
<td>tmwcc@mahidol.ac.th</td>
<td>Immunology of tropical infections</td>
</tr>
<tr>
<td>Waranya Wongwit</td>
<td>tmwog@mahidol.ac.th</td>
<td>Biochemistry of parasites (gene therapy)</td>
</tr>
<tr>
<td>Watcharee Chokejindachai</td>
<td>tmwar@mahidol.ac.th</td>
<td>Chemotherapy of malaria in children Chemotherapy of parasitic diseases Vaccine/General pediatrics</td>
</tr>
<tr>
<td>Weerapong Phumratanaprapin</td>
<td>tmwpr@mahidol.ac.th</td>
<td>Internal medicine</td>
</tr>
<tr>
<td>Wichai Supanaranond</td>
<td>tmwsp@mahidol.ac.th</td>
<td>Dermatology / Sexual transmitted diseases</td>
</tr>
<tr>
<td>Wichit Rojekittikhun</td>
<td>tmwrij@mahidol.ac.th</td>
<td>Helminthology (esp. Gnathostoma & immunodiagnosis)</td>
</tr>
<tr>
<td>Wijitr Fungladda</td>
<td>tmvfd@mahidol.ac.th</td>
<td>Social epidemiology of tropical diseases (malaria, opisthorchiasis)</td>
</tr>
<tr>
<td>Wipawee Usawattanakul</td>
<td>tmwus@mahidol.ac.th</td>
<td>Immunology of parasitic infections</td>
</tr>
<tr>
<td>Yaowalark Sukthana</td>
<td>tmymv@mahidol.ac.th</td>
<td>Oto-Rhino-Laryngology/Private parasitic infections</td>
</tr>
<tr>
<td>Yaowapa Maneerat</td>
<td>tmymn@mahidol.ac.th</td>
<td>Pathology of malaria (Cytokines & nitric oxide involvement)</td>
</tr>
<tr>
<td>Yupaporn Wattanagoon</td>
<td>tmwyt@mahidol.ac.th</td>
<td>Internal medicine</td>
</tr>
<tr>
<td>Yuvadee Mahakunkijcharoen</td>
<td>tmymnh@mahidol.ac.th</td>
<td>Immunology of parasitic infections and bacterial infections</td>
</tr>
</tbody>
</table>
Ongoing Research Projects of Faculty of Tropical Medicine in 1998

Department of Clinical Tropical Medicine

<table>
<thead>
<tr>
<th>No.</th>
<th>On going Research Projects in 1998</th>
<th>Grants</th>
<th>Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pharmacokinetics and pharmacodynamics of the combination dihydroartemisinin-mefloquine in healthy subjects with uncomplicated falciparum malaria</td>
<td>The Thailand Research Fund (TRF)</td>
<td>Assoc.Prof. Kesara Na-Bangchang</td>
</tr>
<tr>
<td>2</td>
<td>Immunogenetic analysis of uncomplicated and severe malaria defined clinically and pharmacologically</td>
<td>Japan Association for Tropical Medicine</td>
<td>Prof. Juntra Laothavorn</td>
</tr>
<tr>
<td>3</td>
<td>Gastric emptying in patients with acute falciparum malaria</td>
<td>Faculty of Tropical Medicine</td>
<td>Assoc.Prof. Polrat Wilairatana</td>
</tr>
<tr>
<td>4</td>
<td>Pharmacokinetics and pharmacodynamics of AZT and AZT-triphosphate in healthy subjects, asymptomatic HIV-positive, and symptomatic AIDS patients</td>
<td>SEAMEO - TROP MED and University of Liverpool, UK.</td>
<td>Assoc.Prof. Yupaporn Wattanagoon</td>
</tr>
<tr>
<td>5</td>
<td>Study on stage development of Plasmodium falciparum in vitro</td>
<td>Wellcome Unit</td>
<td>Mr. Apichart Nontprasert</td>
</tr>
<tr>
<td>6</td>
<td>Pharmacokinetics and dose-finding studies of the combination artemether/proguanil in healthy subjects and patients with uncomplicated falciparum malaria</td>
<td>Ph.D. Grant</td>
<td>Prof. Juntra Laothavorn</td>
</tr>
<tr>
<td>7</td>
<td>Clinical study to fine effective regimen for the treatment of uncomplicated falciparum malaria in rural area</td>
<td>Government Budget</td>
<td>Assoc.Prof. Polrat Wilairatana</td>
</tr>
<tr>
<td>8</td>
<td>Assessment of the neurotoxicity of parenteral artemisinin derivatives in mice</td>
<td>Wellcome Trust of Great Britain</td>
<td>Mr. Apichart Nontprasert</td>
</tr>
</tbody>
</table>

Department of Helminthology

<table>
<thead>
<tr>
<th>No.</th>
<th>On going Research Projects in 1998</th>
<th>Grants</th>
<th>Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>The IFAT for human gnathostomiasis</td>
<td>Mahidol University</td>
<td>Miss Wattana Pahuchon</td>
</tr>
<tr>
<td>10</td>
<td>Monoclonal antibody-based competitive ELISA and indirect ELISA for immunodiagnosis of trichinosis</td>
<td>Mahidol University</td>
<td>Mrs. SupapornNuamtanong</td>
</tr>
<tr>
<td>11</td>
<td>Comparison of biochemical extract preparations of Cysticercus cellulosae by SDS - polyacrylamide gel electrophoresis and immunoblot technique</td>
<td>Mahidol University</td>
<td>Assist.Prof. Paron Dekumyoy</td>
</tr>
<tr>
<td>12</td>
<td>Experimental infection of freshwater fish in Thailand with infective stage of Angiostrongylus</td>
<td>Mahidol University</td>
<td>Assist.Prof. Chalit Komalamisra</td>
</tr>
<tr>
<td>13</td>
<td>Toxocara canis larval antigens for serodiagnosis of human toxocariasis</td>
<td>Mahidol University</td>
<td>Assist.Prof. Wanna Maipanich</td>
</tr>
</tbody>
</table>
Department of Helminthology

<table>
<thead>
<tr>
<th>No.</th>
<th>On going Research Projects in 1998</th>
<th>Grants</th>
<th>Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Efficacy of high dose mebendazole against trichuriosis in adult patients</td>
<td>Mahidol University</td>
<td>Assoc.Prof. Jitra Waikagul</td>
</tr>
<tr>
<td>15</td>
<td>The effects of Trichinella spiralis infection on renal functions in rat</td>
<td>APCO, Japan</td>
<td>Mr. Panyawut Hiranyachattada</td>
</tr>
</tbody>
</table>

Department of Medical Entomology

<table>
<thead>
<tr>
<th>No.</th>
<th>On going Research Projects in 1998</th>
<th>Grants</th>
<th>Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Evaluation of some certain chemical stimuli as attractants for sound trapping of Culex tritaeniorhynchus</td>
<td>Faculty of Tropical Medicine</td>
<td>Assoc.Prof. Vanida Deesin</td>
</tr>
<tr>
<td>17</td>
<td>Medicinal plants for control of mosquitoes and flies</td>
<td></td>
<td>Assoc.Prof. Yupha Rongsriyam</td>
</tr>
<tr>
<td>18</td>
<td>Combination effects of Bacillus sphaericus 2362 and the insect growth regulator for the control of Anopheline vector in small scale field trial</td>
<td>Faculty of Tropical Medicine</td>
<td>Assoc.Prof. Yupha Rongsriyam</td>
</tr>
<tr>
<td>19</td>
<td>Critical biology and disease transmission indices in dengue</td>
<td>Government Budget</td>
<td>Assoc.Prof. Yupha Rongsriyam</td>
</tr>
<tr>
<td>20</td>
<td>Enzyme study in Aedes aegypti vector of dengue fever, dengue haemorrhagic fever and dengue shock syndrome</td>
<td>National Research Council of Thailand (NRCT)</td>
<td>Prof. Supat Sucharit</td>
</tr>
<tr>
<td>21</td>
<td>Comparative susceptibility to oral infection with dengue virus among local strain of Aedes aegypti collected at different seasons of the year</td>
<td>National Research Council of Thailand (NRCT)</td>
<td>Assist.Prof. Supat Thongrungkiat</td>
</tr>
<tr>
<td>22</td>
<td>Computer aided management and service of biological museum Faculty of Tropical Medicine</td>
<td>NECTEC</td>
<td>Assoc.Prof. Chamnarn Apiwathnasorn</td>
</tr>
<tr>
<td>23</td>
<td>Contamination and accumulation of some heavy metals, lead and cadmium in Culex quinquefasciatus and Musca domestica</td>
<td>Mahidol University</td>
<td>Assoc.Prof. Chamnarn Apiwathnasorn</td>
</tr>
<tr>
<td>24</td>
<td>Pyrethroid resistance and its significance in malaria control</td>
<td></td>
<td>Assoc.Prof. Yupha Rongsriyam</td>
</tr>
<tr>
<td>25</td>
<td>Specificity of the synthetic primers from sequencing DNA fragments of Anopheles minimus</td>
<td>Faculty of Tropical Medicine</td>
<td>Assoc.Prof. Narumon Komalamisra</td>
</tr>
<tr>
<td>26</td>
<td>Impacts of permethrin impregnated bednets on Anopheles dirus</td>
<td>National Research Council of Thailand (NRCT)</td>
<td>Assoc.Prof. Vanida Deesin</td>
</tr>
</tbody>
</table>

Department of Microbiology and Immunology

<table>
<thead>
<tr>
<th>No.</th>
<th>On going Research Projects in 1998</th>
<th>Grants</th>
<th>Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Anaerobic bacteria intraabdominal infection</td>
<td>Mahidol University</td>
<td>Assoc.Prof. Suvanee Supavej</td>
</tr>
</tbody>
</table>
Ongoing Research Projects of Faculty of Tropical Medicine in 1998

<table>
<thead>
<tr>
<th>No.</th>
<th>On going Research Projects in 1998</th>
<th>Grants</th>
<th>Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Production of monoclonal antibodies for use in the diagnosis of scrub typhus</td>
<td>Faculty of Tropical Medicine</td>
<td>Mrs. Varee Wongchotigul</td>
</tr>
<tr>
<td>29</td>
<td>Production of monoclonal antibodies against cyst specific antigens of Entamoeba histolytica</td>
<td>Faculty of Tropical Medicine and National Research Council of Thailand (NRCT)</td>
<td>Assoc. Prof. Nitaya Thammapalerd</td>
</tr>
<tr>
<td>30</td>
<td>Detection of dengue virus in mosquitoes (Aedes aegypti) by Polymerase Chain Reaction virus-cultivation</td>
<td>Mahidol University</td>
<td>Assoc. Prof. Wipawee Usawattanakul</td>
</tr>
<tr>
<td>31</td>
<td>Development of Polymerase Chain Reaction for the diagnosis of vivax malaria</td>
<td>Mahidol University</td>
<td>Assoc. Prof. Pramuan Tapchaisri</td>
</tr>
<tr>
<td>32</td>
<td>Diagnostic mycology lab set-up for deep mycoses (Antimycotic testing for yeasts)</td>
<td>Mahidol University</td>
<td>Assist. Prof. Usanee Suthisarnsuntorn</td>
</tr>
<tr>
<td>33</td>
<td>Identification and characterization of T cell epitopes on P. falciparum sporozoite surface protein 2 recognized by human</td>
<td>Mahidol University</td>
<td>Prof. Srisin Khusmith</td>
</tr>
<tr>
<td>34</td>
<td>Role of CD8+ cytotoxic T lymphocytes in HIV/AIDS</td>
<td>Mahidol University</td>
<td>Prof. Srisin Khusmith</td>
</tr>
<tr>
<td>35</td>
<td>Cloning of Salmonella enterotoxin gene</td>
<td>Tsukuba University, Japan</td>
<td>Assoc. Prof. Manas Chongsan-guan</td>
</tr>
<tr>
<td>36</td>
<td>Genetic and biologic variations of T. spiralis (Thai isolates)</td>
<td>Mahidol University</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>37</td>
<td>Hybridoma technology for specific monoclonal antibodies to Shigella spp.</td>
<td>Mahidol University</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>38</td>
<td>Penicillin E-test for Streptococcus pneumoniae</td>
<td>Mahidol University</td>
<td>Assist. Prof. Usanee Suthisarnsuntorn</td>
</tr>
<tr>
<td>39</td>
<td>MRSA detection by E-test</td>
<td>Mahidol University</td>
<td>Assist. Prof. Usanee Suthisarnsuntorn</td>
</tr>
<tr>
<td>40</td>
<td>Rapid diagnosis of Shigellosis</td>
<td>NSTDA</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>41</td>
<td>Preparation of monoclonal antibodies to Shiga-like toxin of enterohaemorrhagic E. coli</td>
<td>NSTDA</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>42</td>
<td>The use of recombinant Entamoeba histolytica pyruvate : ferredoxin oxidoreductase (γ PFOR) as a candidate vaccine against invasive amoebiasis</td>
<td>NSTDA</td>
<td>Assoc. Prof. Nitaya Thammapalerd</td>
</tr>
<tr>
<td>43</td>
<td>Production of recombinant pyruvate : ferredoxin oxidoreductase of Entamoeba histolytica (Ehy PFOR) and its application for diagnosis of invasive amoebiasis</td>
<td>NSTDA</td>
<td>Assoc. Prof. Nitaya Thammapalerd</td>
</tr>
<tr>
<td>44</td>
<td>Development of leptospirosis diagnosis</td>
<td>NSTDA</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>No.</td>
<td>On going Research Projects in 1998</td>
<td>Grants</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Department of Microbiology and Immunology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Pathology of enterohaemorrhagic Escherichia coli infection</td>
<td>The Thailand Research Fund (TRF)</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>46</td>
<td>Monoclonal antibodies to Shiga-like toxins of enterohaemorrhagic E. coli</td>
<td>NSTDA</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>47</td>
<td>Development of schistosomiasis diagnosis</td>
<td>NSTDA</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>48</td>
<td>Development of an antigen detection assay for diagnosis of leptospirosis</td>
<td>BIOTEC</td>
<td>Prof. Wanpen Chaicumpa</td>
</tr>
<tr>
<td>49</td>
<td>Rapid detection of Salmonella in contaminated foods by immunomagnetic enrichment and enzyme immunoassay</td>
<td>The Thailand Research Fund (TRF)</td>
<td>Miss Yuvadee Mahakunkijcharoen</td>
</tr>
<tr>
<td>50</td>
<td>A simplify and diagnosis of cytomegalovirus</td>
<td>Mahidol University</td>
<td>Assoc.Prof. Surang Tantivanich</td>
</tr>
<tr>
<td></td>
<td>Department of Protozoology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Isolation and characterization of DNA topoisomerase II from Trichomonas vaginalis</td>
<td>The Thailand Research Fund (TRF)</td>
<td>Assist.Prof. Porntip Petmitr</td>
</tr>
<tr>
<td>52</td>
<td>Prevalence of Toxoplasma gondii in Thai healthy population</td>
<td></td>
<td>Dr. Yaowalark Sukthana</td>
</tr>
<tr>
<td></td>
<td>Department of Social and Environmental Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>A participatory action research on development of a school model to control liverfluke infection in Northern Thailand</td>
<td>Faculty of Tropical Medicine</td>
<td>Mr. Prasart Vorasanta</td>
</tr>
<tr>
<td>54</td>
<td>Early detection of Rifampicin resistant of M. leprae among Thai leprosy patient</td>
<td>National Research Council of Thailand (NRCT)</td>
<td>Dr. Pongrama Ramasoota</td>
</tr>
<tr>
<td>55</td>
<td>Tuberculosis vaccine design using T7 phage display techniques</td>
<td>STINT Foundation, Sweden</td>
<td>Dr. Pongrama Ramasoota</td>
</tr>
<tr>
<td>56</td>
<td>Opisthorchiasis risk foods assessment</td>
<td>National Council of Women of Thailand (NCWT)</td>
<td>Assist.Prof. Wanchai Phatihatakorn</td>
</tr>
<tr>
<td>57</td>
<td>Hazardous substance management and development of computerized database inventory list on major hazardous substances used at Faculty of Tropical Medicine, Mahidol University</td>
<td>Mahidol University</td>
<td>Assist.Prof. Voranuch Wangsupphachart</td>
</tr>
<tr>
<td>No.</td>
<td>On going Research Projects in 1998</td>
<td>Grants</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>58</td>
<td>Search for a model to prevent alcohol consumption among Thai students</td>
<td>Mahidol University</td>
<td>Mr. Rungwit Mas-ngammueng</td>
</tr>
<tr>
<td>59</td>
<td>Epidemiological study of nutritional deficiency among Karen preschool children</td>
<td>Faculty of Tropical Medicine</td>
<td>Mr. Surapon Yimsamran</td>
</tr>
<tr>
<td>60</td>
<td>Effects of health education intervention on malaria prevention and treatment behaviors, Ratchaburi, Thailand</td>
<td>Government Budget</td>
<td>Dr. Pranee Srisuriya</td>
</tr>
<tr>
<td>61</td>
<td>Malaria in Thai-Burmese border : Interaction between host, agent, and environment</td>
<td>Government Budget</td>
<td>Assoc.Prof. Pratap Singhasivanon</td>
</tr>
<tr>
<td>62</td>
<td>Association between parasite species and density with disability days among Thai malarious cases in Suanpung District, Ratchaburi Province, Thailand.</td>
<td></td>
<td>Assoc.Prof. Pratap Singhasivanon</td>
</tr>
<tr>
<td>63</td>
<td>Identification of genes mutation in lung cancer cells in Thai patients</td>
<td>Mahidol University China Medical Board</td>
<td>Assoc.Prof. Songsak Petmitr</td>
</tr>
<tr>
<td>64</td>
<td>Food and health relationship in Asian population</td>
<td>Palm oil Research Institute of Malaysia</td>
<td>Assoc.Prof. Supranee Changbumrung</td>
</tr>
<tr>
<td>65</td>
<td>Dietary pattern, lifestyle and nutritional status of health science university students in Bangkok</td>
<td>Faculty of Tropical Medicine</td>
<td>Assoc.Prof. Niyomsri Vudhivai</td>
</tr>
<tr>
<td>66</td>
<td>Molecular biology of carcinogenesis in lung cancer</td>
<td>The Thailand Research Fund (TRF)</td>
<td>Assoc.Prof. Supranee Changbumrung</td>
</tr>
<tr>
<td>67</td>
<td>Development of food and medicinal plants</td>
<td>Government Budget</td>
<td>Assoc.Prof. Supranee Changbumrung</td>
</tr>
<tr>
<td>68</td>
<td>Investigation of nutritional, health and dietary patterns of Thai elderly</td>
<td></td>
<td>Prof. Praneet Pongpaew</td>
</tr>
<tr>
<td>69</td>
<td>Serum leptin concentration in obese subjects</td>
<td>Free University, Berlin, Germany</td>
<td>Assoc.Prof. Rungsun Tungtrongchitr</td>
</tr>
<tr>
<td>70</td>
<td>Micronutrients and oxidative stress in obese subjects</td>
<td>Freie University, Berlin, Germany</td>
<td>Assoc.Prof. Rungsun Tungtrongchitr</td>
</tr>
<tr>
<td>No.</td>
<td>On going Research Projects in 1998</td>
<td>Grants</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>71</td>
<td>Pathogenic effect of nitric oxide in sera and cerebrospinal fluid on cerebral malaria</td>
<td>The Thailand Research Fund (TRF) and Mahidol University</td>
<td>Assist.Prof. Yaowapa Maneerat</td>
</tr>
<tr>
<td>72</td>
<td>Liver pathology in AIDS</td>
<td>Ministry of University Affairs</td>
<td>Assist.Prof. Parnpen Viriyavejakul</td>
</tr>
<tr>
<td>73</td>
<td>Study of opportunistic infections in AIDS by needle biopsy</td>
<td>Mahidol University</td>
<td>Assist.Prof. Parnpen Viriyavejakul</td>
</tr>
<tr>
<td>74</td>
<td>Comparison of the effects of milk-cereal mixtures and rice powder salt solution compare with milk-cereal mixtures and ORS and with milk and ORS on acute watery diarrhea in young children</td>
<td>National Research Council of Thailand (NRCT)</td>
<td>Prof. Arunee Sabchareon</td>
</tr>
<tr>
<td>75</td>
<td>A phase IV, observed-blind, randomized, controlled, trial to evaluate safety, tolerability and immunogenicity of the Chiron acellular pertussis vaccine combined with diphtheria and tetanus toxoids (DTaP), as compared to licensed whole-cell pertussis vaccine combined with diphtheria and tetanus toxoids (DTaP), when administered to healthy Thai infants at 2, 4 and 6 months of age</td>
<td>Pasteur Merieux Serum and Vaccines, Lyon, France</td>
<td>Prof. Arunee Subchareon</td>
</tr>
<tr>
<td>76</td>
<td>Safety and immunogenicity of tetravalent dengue vaccine formulations in Thai adult volunteers (DEN 04198)</td>
<td>Pasteur Merieux Serum and Vaccines, Lyon, France</td>
<td>Assoc.Prof. Pornthep Chanthavanich</td>
</tr>
<tr>
<td>77</td>
<td>Study of four Thai medicinal herbs as individuals and combinations for anti-snake venoms.</td>
<td>Mahidol University</td>
<td>Assist.Prof. Channarong Sanghirun</td>
</tr>
<tr>
<td>78</td>
<td>Viscosity of red cell ghosts and hemoglobin of red cells from patients with Plasmodium falciparum malaria</td>
<td>Mahidol University</td>
<td>Assist.Prof. Petcharin Yamarat</td>
</tr>
<tr>
<td>79</td>
<td>Effect of garlic on blood rheology and prevention of thrombolism</td>
<td>National Research Council of Thailand (NRCT)</td>
<td>Assist.Prof. Petcharin Yamarat</td>
</tr>
<tr>
<td>No.</td>
<td>On-going Research Projects in 1998</td>
<td>Grants</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>80</td>
<td>Development of new vaccines against cholera due to Vibrio cholerae O139</td>
<td>WHO</td>
<td>Prof. Sricharoen Migasena</td>
</tr>
<tr>
<td>81</td>
<td>A phase I/II, double-blind, placebo-controlled study of the Chiron biocine HIV Thai E gp 120/MF59 vaccine administered alone or combined with the Chiron biocine HIV SF2 gp120 antigen in healthy HIV-seronegative Thai adults</td>
<td>WRAIR, USA</td>
<td>Prof. Sricharoen Migasena / Assoc.Prof. Punnee Pitisuttithum</td>
</tr>
<tr>
<td>82</td>
<td>A phase I/II trial to evaluation the safety and immunogenicity of AIDSVAX™ B/E vaccine in Bangkok, Thailand</td>
<td>VAXGEN Co., Ltd.</td>
<td>Assoc.Prof. Punnee Pitisuttithum</td>
</tr>
<tr>
<td>83</td>
<td>A multicenter, randomized, double-blind, phase II study to evaluate the safety, tolerance and efficacy of multiple doses of SCH 56592 versus fluconazole in the treatment of oropharyngeal candidiasis (OPC) in HIV-positive patients</td>
<td>Schering Pough Co., Ltd.</td>
<td>Assoc.Prof. Punnee Pitisuttithum</td>
</tr>
<tr>
<td>84</td>
<td>A phase III trial to determine the efficacy of AIDSVAXTM B/E Vaccine in intravenous drug users in Bangkok, Thailand</td>
<td>VAXGEN Co., Ltd.</td>
<td>Bangkok AIDS Vaccine Evaluation Group</td>
</tr>
</tbody>
</table>

1. **Atlas of Medical Parasitology** by Prayong Radomyos, Anchalee Tungtrongchitr, Sornchai Looareesuwan, Tan Chongsuphajaisuddhi
 (400 Baht)

2. **Human Worms in Southeast Asia** by Jitra Waikagul, Malinee Thairungroj
 (500 Baht)

3. **Soil-transmitted Helminths** by Jitra Waikagul, Malinee Thairungroj, Pong-anant Nontasut, Wanna Maipanich
 (150 Baht)

4. **Medical Helminthology** by Jitra Waikagul
 (200 Baht)

5. **Practical Entomology Malaria and Filariasis** Edited by Supat Sucharit, Suvanee Supavej
 (150 Baht)

6. **Community Nutrition in Society of Rapid Socio-economic Changes** by Praneet Pongpaew
 (360 Baht)

7. **Clinical Tropical Medicine I** Edited by Sornchai Looareesuwan, Polrat Wilairatana
 (400 Baht)

8. **Common Parasitic Diseases** by Juntra Karbwang, John H. Cross
 (200 Baht)

9. **Clinical Pharmacology of Antimalarials** by Juntra Karbwang, Walther Wernsdorfer
 (350 Baht)

10. **Chemotherapy of Malaria in Southeast Asia** by Juntra Karbwang, Tranakchit Harinsuta
 (150 Baht)

11. **Handbook of Antiparasitic Drugs** by Juntra Karbwang, Tranakchit Harinsuta
 (150 Baht)

12. **Clinical Pharmacology in Parasitic Diseases** by Juntra Karbwang, D.J. Back, A.M. Breckenridge
 (150 Baht)

13. **The Journal of Tropical Medicine and Parasitology** by Juntra Laothavorn

14. **Atlas of Tropical Histopathology** by Mario Riganti, Emsri Pongponratn
 (100 Baht)

15. **Development of Early Diagnosis and Management of Cholangiocarcinoma Associated with Opisthorchiasis**
 Edited by Santasiri Sornmani, Thanongsak Bunnag
 (200 Baht)

16. **Improvement of Community Health through the Control of Liver Fluke Infection by Means of Primary Health Care Approach in Thailand** Edited by Santasiri Sornmani
 (200 Baht)

17. **Water Resources Development and Its Impact on Socio-economic and Health with Reference to Thailand**
 Edited by Santasiri Sornmani, Chamlong Harinasuta
 (200 Baht)

18. **The Impact of Water Resource Development on the Health of the Communities and Preventive Measures for Adverse Effects** Edited by Thanongsak Bunnag, Santasiri Sornmani
 (100 Baht)

19. **Social and Economic Aspect of Malaria Control** by Santasiri Sornmani, Wijitr Fungladda
 (200 Baht)

20. **Handbook of Antimalarial Drugs**
 (คู่มือการรักษาแมลงอันตราย) by Juntra Laothavorn, Tranakchit Harinsuta

21. **Folic Acid and Vitamin B12**
 (โฟเลตและวิตามินบี12) by Suvit Areekul
 (200 Baht)
22. Textbook of Clinical Parasitology (การประศาสตร์อาการและการแพทย์) by Prayong Radomyos, Suvanee Supavej, Sornchai Looareesuwan (450 Baht)

23. Drug Resistant Malaria (การต้านทานของเชื้อมาเรีย) Edited by Juntra Laothavorn

24. Medical Entomology (การวิเคราะห์อาการแพทย์) by Supat Sucharit (200 Baht)

25. Liver Fluke Diseases in Man (โรคพยาธิในมนุษย์) by Swangjai Pungpak (200 Baht)

26. The Textbook of Tropical Medicine (การประศาสตร์อาการและการแพทย์) Edited by Sornchai Looareesuwan, Danai Bunnag, Tranakchit Harinasuta (400 Baht)

27. Helminthology (การประศาสตร์แพทย์) by Department of Helminthology (150 Baht)

28. Basic Bacteriology (เทคนิคการเข้าสู่ระบบ) Edited by Suvanee Supavej, Malai Vorachit (200 Baht)

29. หน้าต่างโครงสร้างโรค โรคพยาธิที่พบอยู่ กรมการพยาธิ หน.พ. ดร.สุทธิ์ อารีย์ (ราคา 80 บาท)

30. มัลตีโรบัส โรคมะเร็ง กรมการพยาธิ หน.พ. ดร.สุทธิ์ อารีย์ (ราคา 500 บาท)

31. ยาที่ไม่ปลอดภัย ยา สารสิ่ง วิทยา โรคพยาธิ ด.กร. แป้น แสนพุฒิ (ราคา 40 บาท)

32. ประชุมเสี่ยงภาพจากอาการแพทย์ : กลุ่มผู้และการปฏิบัติโดย ประกวด ระดับเปา, โรคพยาธิ ปิริดน์, ภูมิคุ้มกัน, โรคพยาธิ (ราคา 60 บาท)

33. วันแนวโน้มทางการสืบได้ โดย ทันที กรมการพยาธิ (ราคา 70 บาท)

34. การควบคุมโรคพยาธิป่าที่ในภูมิภาค : พฤติกรรมกับแนวคิด และการดูแลโรคพยาธิการและสุขภาพ (เดือนพฤศจิกายน ค.ศ. 2549) กรมการพยาธิ กรมการพยาธิ (ราคา 400 บาท)

35. โรคพยาธิไปในหมู่บ้าน โรคพยาธิในประเทศ โรคพยาธิพื้นที่ ประเทศพยาธิในพื้นที่ (ราคา 500 บาท)

36. โรคพยาธิไปในประเทศ โรคพยาธิในประเทศ โรคพยาธิพื้นที่ ประเทศพยาธิในพื้นที่ (ราคา 500 บาท)

37. โรคพยาธิไปในพื้นที่ โรคพยาธิในประเทศ โรคพยาธิพื้นที่ ประเทศพยาธิในพื้นที่ (ราคา 500 บาท)

38. โรคพยาธิไปในพื้นที่ โรคพยาธิในประเทศ โรคพยาธิพื้นที่ ประเทศพยาธิในพื้นที่ (ราคา 500 บาท)

39. โรคพยาธิไปในพื้นที่ โรคพยาธิในประเทศ โรคพยาธิพื้นที่ ประเทศพยาธิในพื้นที่ (ราคา 500 บาท)

40. โรคพยาธิไปในพื้นที่ โรคพยาธิในประเทศ โรคพยาธิพื้นที่ ประเทศพยาธิในพื้นที่ (ราคา 500 บาท)