

Nitty-gritties Of Handling NGS Data

Look Before You Leap

Rohit Shukla

Co-Founder & Director

Bionivid Technology Pvt Ltd

Bangalore - India

ABOUT BIONIVID – THE FOUNDING TEAM

Google[™] Custor

Biopreneur

'Believe and take the leap of faith'

What happens when three dynamic trios come together with similar interests and passion coupled with innate entrepreneurial attributes? The result — A hot emerging start-up!

Established in 2011, Bionivid Technology, located in the happening start-up hub of Bangalore, is a genomics and informatics start-up, jointly cofounded by Madavan Vasudevan, Hitesh Goswami and Rohit Nandan Shukla.

ñ	BioPharma	BioAgri	Bio IT	BioIndustrial	CROs	Healthcare	Specials	Top20	Programs
_									

Trending :

D

Home Biopreneur Hot Start-ups: 'Believe and take the leap of faith'

Bangalore | 18 July 2015 | Features | By Raj Gunashekar

Hot Start-ups: 'Believe and take the leap of faith'

	144	6	6	1	179	
o Comment	Share	🈏 Tweet	in Share	G+1	< sharethis	🖂 Email 📇 Print

What happens when three dynamic trios come together with similar interests and passion coupled with innate entrepreneurial attributes? The result -- A hot emerging start-up!

Established in 2011, Bionivid Technology, located in the happening start-up hub of Bangalore, is a genomics and informatics start-up, jointly cofounded by Mr Madavan Vasudevan, Mr Rohit Nandan Shukla and Mr Hitesh Goswami.

Mr Madavan is a qualified microbiologist-turnedbioinformatician; His partner Mr Rohit is also a qualified bioinformatician and a certified programmer; and Mr Hitesh is a neurobiologist with a fine business acumen. All three of them make a perfect ingredient for raising a hot

ABOUT BIONIVID – SERVICE PORTFOLIO & STRENGTH

Diversification

Proven Ability To Craft Specialized Work Force

HOLISTIC SOLUTION

Data Generation – Interpretation – Data Management – Training

EVOLUTION OF DNA SEQUENCING

<u>History</u>

- 1970s: DNA Sequencing Starts
- 1990: The "Human Genome Project" Starts
- 2003: First Human Genome Fully Sequenced
- 2007: NGS Technology (Massively Parallel & Universal Adapters)
- 2012: UK Announces sequencing of 100K Genome
- 2015: USA Announces Sequencing of 1M Genomes

<u>\$\$\$</u>

- \$3B : Human Genome Project Cost
- \$ 250K : Illumina Sequencing Cost (2008)
- \$5K : Complete Genomics (2009), Illumina (2011)
- \$1K : Illumina (2014)

NEXT GENERATION SEQUENCING PLATFORMS

Illumina HiSEQ 2500

Life Tech - Ion Proton

Oxford Nanopore

PacBIO RS

NEXT GENERATION SEQUENCING - APPLICATIONS

SEQUENCING MODULES IN PRACTICE

UNDERSTANDING NGS RAW DATA

FASTQ format is a text-based format for storing a biological sequence and its corresponding quality scores. It has become the standard for storing the output of high throughput sequencing instruments.

IMPACT OF SEQUENCING ERRORS

The costs of poor data quality

Anders Haug, Frederik Zachariassen, Dennis van Liempd University of Southern Denmark (DENMARK)

Received August 2010 Accepted January 2011

Haug, A., Zachariassen, F., & van Liempd, D. (2011). The cost of poor data quality. Journal of Management, 4(2), 168-193. doi:10.3926/jiem.2011.v4n2.p168-193

Rapid evaluation and quality control of next generation sequencing data with FaQCs

Chien-Chi Lo and Patrick S G Chain 🔤

BMC Bioinformatics 2014 15:366 DOI: 10.1186/s12859-014-0366-2 © Lo and Chain; licensee BioMed Central Ltd. 2014 Received: 3 July 2014 Accepted: 29 October 2014 Published: 19 November 2014

Error types and rates in DNA sequencing

Errors of the data acquisition process

ORIGINAL RESEARCH

The Role of Quality Control in Targeted Next-generation Sequencing Library Preparation

Rouven Nietsch^{1, a, #}, Jan Haas^{1, 2, b, #}, Alan Lai^{1, c}, Daniel Oehler^{1, 2, d}, Stefan Mester^{1, 2, e}, Karen S. Frese^{1, 2, f}, Farbod Sedaghat-Hamedani^{1, 2, g}, Elham Kayvanpour^{1, 2, h}, Andreas Keller^{3, i}, Benjamin Meder^{1, 2, h}, j.

Characterizing and measuring bias in sequence data

Michael G Ross 🖾 , Carsten Russ, Maura Costello, Andrew Hollinger, Niall J Lennon, Ryan Hegarty, Chad Nusbaum and David B Jaffe

Genome Biology201314:R51DOI: 10.1186/gb-2013-14-5-r51© Ross et al.; licensee BioMed Central Ltd. 2013Received:11 December 2012Accepted: 29 May 2013Published: 29 May 2013

The DNA sequence gathered through experimental process is gained through an examination of the fluorescent-dye intensity signal that is output by automatic sequencing machines. Even with the newest generation of sequencers, raw sequence data obtained from them is - by all means - everything but trustworthy in its entirety. Inevitable artifacts degrade the quality of the sequences obtained and are caused by experimental as well as systematic factors. Chromatography is a chemical process and thus subject to stochastic and non-stochastic oscillations, which can cause sub-optimal signal quality. Errors in a determined DNA sequence can be caused by flaws in the translation operations of the electrophoresis signal or quirks that arose during the experiment itself. This becomes visible in the wide diversity of data that is obtained even when using a single chemistry type, let alone different ones: under- and over- oscillations of the signals, unseparated curves (compression artefacts), and signal peaks or dropouts are frequent. Incorrect signal analysis raises errors in the base calling process of the signals and constitutes a limiting factor in the sutomation of assembly processes.

MAJOR QUALITY CONTROL MATRICES

Whole Genome Sequencing – POINTS TO CONSIDER

	Re-Sequencing Approach	De-Novo Sequencing Approach
Sequencing Strategy	Paired End Sequencing	Standard Approach: Paired End Hybrid Approach : Paired End, Mate Paired & Long Read
Sequencing Platform	Illumina Hi-Seq (Deep Sequencing)	Illumina HI-Seq & PacBio RS II
Read Length	100 bp or 150 bp	100 bp & 5kb to 20kb Long Reads
Sequencing Depth	~ 30 x	100 x – 150 x
Expected Coverage	90 – 95 %	80 – 85 %
Supported Analysis	Genetic Variations, Structural Variations, Exome CNV	Draft Genome Construction, Repeat Identification / Classification, Major Genomic Elements Characterization, Coding Gene identification & Characterization

Whole RNAome Sequencing – POINTS TO CONSIDER

	Re-Sequencing Approach	De-Novo Sequencing Approach		
Sequencing Strategy	Paired End Sequencing For LongRNA Single End Sequencing For SmallRNA <u>NOTE:</u> Replicates are Mandatory	Paired End Sequencing For LongRNA Single End Sequencing For SmallRNA <u>NOTE:</u> Replicates are Mandatory		
Sequencing Platform	Illumina Hi-Seq	Illumina HI-Seq PacBio Iso-Seq (For Full Length Isoform Sequencing)		
Read Length	100 bp or 150 bp For LongRNA 50 bp For Small RNA	100 bp or 150 bp For Long RNA 50 bp For Small RNA ~1Kb - 3Kb Using PacBio Iso Seq		
Sequencing Depth	~70x 25-30 Million Reads For LongRNA 8-12 Million Reads For SmallRNA	~100x 70-80 Million Reads / Per Tissue For LongRNA 8-12 Million Reads For SmallRNA <u>NOTE:</u> SD between Samples should not be > 20%		
Expected Coverage	90 – 95 %	80 – 85 %		
Supported Analysis	RNAome Profiling, Expression & Differential Expression, Fusion Gene, Significant Biology Analysis, <u>mRNA:miRNA Integrome Analysis</u>	LongRNA Assembly (De-Bruijn Graph & OLC Based), RNAome Profiling, Expression & Differential Expression, Fusion Gene, Significant Biology Analysis, <u>mRNA:miRNA Integrome Analysis</u>		

hio)	
	Divid
JAAGGL. 1001010111101 JAGTGTTTCAAA	
GAATGCACACATCACAAATGGT	IT Complements Research
GTGAAGATATTTCCTTTTTCACCA	

	Re-Sequencing Approach
Sequencing Strategy	Single End Sequencing (Preferred) <u>NOTE:</u> Input / Control is MANDATE for every batch of Ip DNA Very low quantity of Ip DNA is always a challenge
Sequencing Platform	Illumina Hi-Seq
Read Length	50 bp (Preferred)
Sequencing Depth	~30 Million Reads For Large genomes ~15 Million Reads Fly / Worm genomes <u>NOTE:</u> Biological Replicates are mandatory statistical significance <u>NOTE:</u> SD between Input vs Ip DNA Samples should not be > 20%. Reads Input >= Read Ip
Expected Coverage	90 – 95 %
Supported Analysis	Integration with gene expression data, Comparison with other ChIP experiments from ENCODE / MODCODE consortiums etc.

Supported Analysis Microbial Biodiversity analysis, Rarefaction curves, Alpha and Beta Diversity Analysis etc

We are here for you !

