

Zika virus and laboratory diagnosis

พิไลพันธ์ พุธวัฒนะ

ศูนย์วิจัยพัฒนานวัตกรรม คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล

3<mark>0 มกราคม</mark> 2560

Trop Med 30 Jan 2017

Discovery of Zika virus

- Apr 1947: The virus was isolated from sentinel rhesus monkey in Zika forest, Uganda through monitoring of yellow fever.
- Jan 1948: The virus was isolated from

Aedes africanus mosquito in Uganda

1952: Human infections were found in Uganda and Tanzania.

Zika virus outbreaks

- From its discovery until 2007, Zika virus infection were rare in Africa and Southeast Asia.
- 2007- an outbreak occurred in Yap Island, Federation States of Micronesia. Zika was first considered as an emerging disease.
- 2013- the outbreak occurred in French Polynesia. Complication with Guillain-Barré syndrome was first noted.

Guillain-Barre syndrome (GBS)

- Acute inflammatory demyelinating polyneuropathy ปลอกหุ้มเส้นประสาทหลายเส้นมีการ อักเสบอย่างเฉียบพลัน
- The incidence of GBS during Zika outbreak in French Polynesia was > 20-folds over the baseline, or approximately 0.24 per 1,000.

May 2015- the outbreak occurred in Brazil.

By November 2015, Brazil notified congenital microcephaly that may be associated with Zika virus infection.

On February 1st, 2016, the WHO declared the Zika outbreak as a <u>Public Health Emergency of</u> <u>International Concern</u> (PHEIC).

http://www.bbc.com/

Plus sense, SS RNA genome of 10,794 bp in length and encodes for a polyprotein of 3,419 aa.

The polyprotein is processed by host and viral proteases into 3 structural proteins and 7 nonstructural proteins.

http://viralzone.expasy.org/

Full genome analysis Shapschak e al 2015

Phylogenetic trees of fragments of NS5

Buathong R, et al. Am J Trop med Hyg 2015: 93: 380.

http://www.houstonchronicle.com/news/medical/article/That-little-rash-you-have-Let-s-hope-it-s-not-6522030.php

Origin of zika lineages

- Both African and Asian lineages emerged in Africa.
- The Asian lineage originated during the virus's migration from Africa to Southeast Asia, where it was first detected in Malaysia (1966?).
- From Malaysia, Zika virus spread to the Pacific Islands, separately to Yap and French Polynesia, and then to New Caledonia, Cook Islands, Easter Island, and the Americas. ?????

- Southeast Asian Zika virus might not be the direct source of South American outbreaks.
- Amino acid residues on envelope, pr and NS1 are unique to South American isolates only.

Mosquito vectors

- Aedes aegypti, suspected to be major vector in Asia and French polynesia
- A. albopictus
- A. africanus
- A. henselli (outbreak in Yap Island)

Incubation period in mosquitoes is about 10 days.

Transmission cycle of zika virus

Wang, et al Virologic Sinica 2016

https://static-content.springer.com/image/art%3A10.1007%2Fs12250-016-3780y/MediaObjects/12250_2016_3780_Fig1_HTML.gif

Human to human transmission:

- Congenital/intrapartum transmission
- Sexual transmission
- Blood transmission is possible.

Clinical outcome of Zika virus infection

- Incubation period: 3-12 days
- Mostly mild or no symptoms.
- About 25% of infected people develop symptoms, including rash, fever, joint pain, red eyes, and headache.
- Recovery is usually complete and fatalities are rare.

Incubation period

- Extrinsic incubation period in mosquito is about 10 days.
- Intrinsic incubation period in humans is 3-12 days.

https://en.wikipedia.org/wiki/Zika_virus_outbrea keak_(2015-present) microbewiki.kenyon.edu

Bilateral Conjuctival Hyperemia (Red eyes)

T. Tantitaweewat & R. Buathong, Thailand MOPH

Differential diagnosis

Rickettsial infection and Leptospirosis, malaria, measles, rubella kufarooq3blog.wordpress.com

Zika virus pathogenesis

Lazear and Diamond. J Virol (Mar) 2016

Zika differs from DENV by around 41–46% (in the sequence of the envelope protein), the similarities are sufficient to drive antibody dependent enhancement of infection.

Nature Review Microbiol 2016

<page-header>

Baby with Typical Head Size

Baby with Microcephaly

Baby with Severe Microcephaly

- Use a measuring tape that cannot be stretched
- Securely wrap the tape around the widest possible circumference of the head
 - Broadest part of the forehead above eyebrow
 - Above the ears
 - Most prominent part of the back of the head

- Take the measurement three times and select the largest measurement to the nearest 0.1 cm
- Optimal measurement at 24-36 hours after birth when molding of the head has subsided

Congenital Zika syndrome

In addition to microcephaly, other manifestations include brainstem dysfunction, brain calcification, ocular abnormalities, hearing loss.

Genitourinary, cardiac and digestive systems can be affected

Symptoms are more severe when infection occurs during early gestation.

Zika virus disease – Interim case definition (as of 12 February 2016)

- Suspected case: A person presenting with rash and/or fever and at least one of the following signs or symptoms: arthralgia; or arthritis; or conjunctivitis (nonpurulent/hyperaemic).
- Probable case: A suspected case with presence of IgM antibody against Zika virus (with no evidence of infection with other flaviviruses: and contact with a confirmed case, or a history of residing in or travelling to an area with local transmission of Zika virus within 2 weeks prior to onset of symtom.
- **Confirmed case :** A person with laboratory confirmation of recent Zika virus infection:

Confirmed case : A person with laboratory confirmation of recent Zika virus infection:

Presence of Zika virus RNA or antigen in serum or other samples (e.g. saliva, tissues, urine, whole blood); or

IgM antibody against Zika virus positive and PRNT90 for Zika virus with titre ≥20 and Zika virus PRNT90 titre ratio ≥ 4 compared to other flaviviruses; and exclusion of other flaviviruses Laboratory diagnosis of zika virus infection

- Genome detection by RT-PCR
- Virus isolation
- Serology
- Antigen detection by immunohistochemistry in the infected fetus

 Genome detection and plaque reduction neutralization are the gold standard methods.

https://www.researchgate.net/profile/Kuldeep_Dhama/publication/296700595/figure/download/fig3/AS:3604085494 78403@1462939502612/Figure-1-Structure-of-Zika-virus-and-its-genome-Zika-possess-ssve-sense-RNA-which-has.png

Genome detection

Based on 2 gene targets

- Pan-flavivirus specific: NS5, prM, NS1, NS2b
- Zika virus specific: E region

Multiplex RT-PCR for Zika, dengue and chikungunya viruses

Sources of Zika virus

- Serum/whole blood
- Urine
- CSF
- Saliva
- Semen
- Vaginal discharge
- Amniotic fluid
- Placenta and fetal tissues

Congenital infection

Zika virus RNA was detected in

- amniotic fluid of mothers
- tissue of fetuses

Primers and probes for Zika virus detection by real time RT-PCR

Primer and probe sets	Target gene	Primer/probe name	Sequence (5'-3')	Position
CDC1 (Lanciottii)	PrM E	ZIKV 835 ZIKV 911c ZIKV 860-FAM ZIKV 1086 ZIKV 1162c ZIKV 1107-FAM	TTGGTCATGATACTGCTGATTGC CCTTCCACAAAGTCCCTATTGC CGGCATACAGCATCAGGTGCATAGGAG CCGCTGCCCAACACAAG CCACTAACGTTCTTTTGCAGACAT AGCCTACCTTGACAAGCAGTCAGACAC TCAA	835–857 911–890 860–886 1086–1102 1162–1139 1107–1137
CDC2 (PAHO)	NS2b	Zika 4481 Zika 4552c Zika 4507c-FAM	CTGTGGCATGAACCCAATAG ATCCCATAGAGCACCACTCC CCACGCTCCAGCTGCAAAGG	4434–4453 4524–4505 4479–4460

Waggoner JJ, Pinsky BA. J Clin Microbiol, 2016

เปรียบเทียบผลประเมินการตรวจสารพันธุกรรมไวรัสซิกา โดยวิธี RT-PCR รวม 4 วิธี

	Zika isolated No. 10/15			
Virus Concentration	ผลตรวจ (Nested		
(FFU)	CDC1 (Lanciotti)	CDC2 (PAHO)	RealStar® (Altona)	RT-PCR
Zika 10*-3	ไม่พบเชื้อ	ไม่พบเชื้อ	ไม่พบเชื้อ	ไม่พบเชื้อ
Zika 10*-2	ไม่พบเชื้อ	ไม่พบเชื้อ	<u>พบเชื้อ(37.15)</u>	ไม่พบเชื้อ
Zika 10*-1	ไม่พบเชื้อ	<u>พบเชื้อ(36.04)</u>	พบเชื้อ(34.27)	<u>พบเชื้อ</u>
Zika 10*0	<u>พบเชื้อ (36.23)</u>	พบเชื้อ(33.61)	พบเชื้อ(31.95)	พบเชื้อ
Zika 10*1	พบเชื้อ(33.00)	พบเชื้อ(29.49)	พบเชื้อ(29.16)	พบเชื้อ
Zika 10*2	พบเชื้อ(29.96)	พบเชื้อ(26.24)	พบเชื้อ(25.95)	พบเชื้อ
Zika 10*3	พบเชื้อ(26.51)	พบเชื้อ(22.91)	พบเชื้อ(22.71)	พบเชื้อ
Zika 10*4	พบเชื้อ(22.96)	พบเชื้อ(19.47)	พบเชื้อ(19.06)	พบเชื้อ

บทสรุปการประชุมโรคอุบัติใหม่ สธ

เปรียบเทียบผลประเมินการตรวจสารพันธุกรรมไวรัสซิกา โดยวิธี RT-PCR รวม 4 วิธี

	Zika isolate No. 217/14			
Virus Concentration	ผลตรวจ	Nested		
(FFU)	CDC1 (Lanciotti)	CDC2 (PAHO)	RealStar® (Altona)	RT-PCR
Zika 10*-3	ไม่พบเชื้อ	ไม่พบเชื้อ	ไม่พบเชื้อ	ไม่พบเชื้อ
Zika 10*-2	ไม่พบเชื้อ	ไม่พบเชื้อ	<u>พบเชื้อ(38.23)</u>	<u>พบเชื้อ</u>
Zika 10*-1	ไม่พบเชื้อ	<u>พบเชื้อ(36.46)</u>	พบเชื้อ(34.76)	พบเชื้อ
Zika 10*0	<u>พบเชื้อ(35.60)</u>	พบเชื้อ(32.81)	พบเชื้อ(31.96)	พบเชื้อ
Zika 10*1	พบเชื้อ(31.81)	พบเชื้อ(29.29)	พบเชื้อ(29.09)	พบเชื้อ
Zika 10*2	พบเชื้อ(28.34)	พบเชื้อ(26.13)	พบเชื้อ(25.76)	พบเชื้อ
Zika 10*3	พบเชื้อ(24.89)	พบเชื้อ(22.53)	(22.14)	พบเชื้อ
Zika 10*4	พบเชื้อ(21.29)	พบเชื้อ(19.02)	(18.78)	พบเชื้อ

บทสรุปการประชุมโรคอุบัติใหม่ สธ

Test Category	Assay	Approval
Molecularª	CDC Trioplex Real-time RT-PCR Assay	Approved for Zika, chikungunya, and dengue testing on serum and CSF Additionally approved for Zika testing on whole blood and amniotic fluid
	Zika Virus RNA Qualitative Real-time RT-PCR (Focus Diagnostics, Cypress, California)	Approved for Zika testing on serum
	RealStar Zika virus RT-PCR kit US (Altona Diagnostics GmbH, Hamburg, Germany)	Approved for Zika testing on serum and urine
	Aptima Zika Virus Assay (Hologic Inc, Marlborough, Massachusetts)	Approved for Zika testing on serum and plasma
	Zika Virus Real-time RT-PCR test (Viracor-IBT, Lee's Summit, Missouri)	Approved for Zika testing on serum, plasma, and urine
	VERSANT Zika RNA 1.0 Assay (kPCR) Kit (Siemens Healthcare Diagnostics Inc, Newark, Delaware)	Approved for Zika testing on serum, plasma, and urine
	xMAP MultiFLEX Žika RNA Assay (Luminex Corp, Austin, Texas)	Approved for Zika testing on serum, plasma, and urine
	LightMix Zika rRT-PCR Test (Roche Molecular Systems, Pleasanton, California)	Approved for Zika testing on serum and plasma
Serology	CDC Zika MAC-ELISA for the detection of IgM	Approved for Zika testing on serum and CSF
	ZIKV Detect IgM Capture ELISA (InBiOS, Seattle, Washington)	Approved for Zika testing on serum

Zile Views (ZUV) Discover of Assess Mith Freework and Lies Asthewise time

Table F

Abbreviations: CDC, Centers for Disease Control and Prevention; CSF, cerebrospinal fluid; Ig, immunoglobulin; MAC-ELISA, IgM antibody capture enzyme-linked immunosorbent assay; rRT-PCR, real-time reverse transcription–polymerase chain reaction; RT-PCR, reverse transcription–polymerase chain reaction.

Duration of genome detection

- Serum: 3-5 d
- Urine: 20 d
- Saliva: 5-7 d
- Semen: 2 6 mo.
- Female genital secretion: 8 d

Biosafety issue on virus isolation

- Pregnant women should not handle virus isolation technique.
- BSL2 with BSL3 practice or BSL3 laboratory

Virus isolation

Toxorynchites mosquito (elephant mosquito or mosquito eater)

- C6/36
- Vero E6

http://farm9.static.flickr.com/8319/7922750140_68e2a305e4.jpg

- LLC-MK2
- Zika virus produces plaque in Vero cells.

Why it is difficult to isolate Zika virus?

Patients infected with Zika virus had low level of viremia (0.9×10^3 –7.2 × 10⁵ cDNA copies/ml); while it was 10⁷ for chikungunya and 10⁸ for DENV-2.

Antibody detection

Serology is of less value due to cross reaction among flaviviruses, especially dengue virus.

Serological techniques used:

- ELISA IgM
- Plaque reduction neutralization
- Mouse neutralization
- Hemagglutination-inhibition
- Complement-fixation

Zika patients may be positive in dengue IgM detection.

Serum from Zika patient may react with dengue NS1 Ag.

Plaque reduction neutralization test of acute (A) and convalescent (B) patient sera against Zika virus (ZIKV). Serial dilutions of patient serum were each incubated with 100 plaque-forming units of ZIKV for 1 hour at room temperature, then the serum-virus mixtures were inoculated onto Vero monolayers. Following an incubation of several days, cultures were fixed and stained, and virus-induced plaques were enumerated. Plaque counts lower than 10 were considered negative. In the examples shown here, the titers for both acute and convalescent sera are 1:160, indicating exposure to ZIKV, but the timing of exposure is inconclusive.

Landry and St.George . Arch Pathol Lab Med2017;141: 60

Confirmed case : A person with laboratory confirmation of recent Zika virus infection:

Presence of Zika virus RNA or antigen in serum or other samples (e.g. saliva, tissues, urine, whole blood); or

IgM antibody against Zika virus positive and PRNT90 for Zika virus with titre ≥20 and Zika virus PRNT90 titre ratio ≥ 4 compared to other flaviviruses; and exclusion of other flaviviruses

Days after PRNT ₉₀ titer											
Patient	onset	ZIKV	DENV1	DENV2	DENV3	DENV4	JEV	YFV	WNV	SLEV	MVEV
Primary fla	avivirus ZIKV										
822a	5	320	<10	<10	<10	<10	<10	<10	<10	<10	<10
822b	10	2,560	10	10	10	10	<10	<10	<10	<10	<10
Secondary	/ flavivirus ZIKV ((probable)									
817a	1	80	80	160	320	160	<10	<10	<10	40	40
817b	19	10,240	2,560	20,480	5,120	5,120	20	320	160	1,280	640
833a	1	160	320	80	40	20	<10	<10	<10	<10	<10
833b	19	81,920	20,480	5,120	5,120	1,280	<10	<10	80	320	320
844a	2	20	1,280	640	320	160	<10	<10	5	20	20
844b	16	10,240	40,980	10,240	5,120	1,280	5	<10	160	640	640

Table 2. Neutralization testing with heterologous flaviviruses of patients infected with ZIKV, Yap State, Micronesia, 2007*

Doctrine of original antigenic sin

When Zika virus was detected in Thailand?

TABLE III.	Proportion of adult indigenous residents of North Vietnam and	Thailand possessing
	neutralizing antibodies against six arthropod-borne viruses.	Mouse NT

		Per cent. of sera positive from :				
	Number of LD	North Vietnam	Thailand			
Virus	Number of LD ₅₀ used	Tonkin	Bangkok	Chiangmai (25 sera tested)		
		(50 sera tested)	(25 sera tested)			
JE	16	96	*			
	60	_	64	80		
Ntaya	20	82				
	80	_	84	64		
Zika	80		8	0		
	320	2				
Ilhéus	60		4	0		
	400	2		—		
WN	250		36	16		
Semliki	40		64	4		
	65	22		—		

Pond WL. Transac Royal Soc Trop Med Hyg 1963; 57:364

Why there is no big Zika outbreak in Thailand and Southeast Asia?

Cross protective immunity confers by dengue viruses???

Dengue sera can neutralize Zika virus.

Dengue sera mediates antibody dependent enhancement.

 Southeast Asian strain and South American strain is different in pathogenicity???

Why Zika virus outbreak emerged?

- NS1 codon usage adaptation to human could facilitate viral replication and increase viral titers.
- Control of *A. aegypti* (fed mostly on human blood) may let *A. albopictus* (fed on both human and animal blood) moved to the areas.

Warm climate and outbreaks

- With warm weather, mosquitoes fly more and bite more.
- Warm weather speeds up virus replication rate in mosquitoes.

Patients infected with Zika virus had low level of viremia (0.9×10^3 –7.2 × 10⁵ cDNA copies/ml); while it was 10⁷ for chikungunya and 10⁸ for DENV-2.

Zika patients may be positive in dengue IgM detection.

Serum from Zika patient may react with dengue NS1 Ag.

Safety guideline of blood transfusion

 For areas with no local transmission, it recommends donors who are at risk of Zika infection be deferred for 4 weeks.

People at risk : those who had symptoms consistent with Zika virus infection within the past 4 weeks, had sexual contact with someone who visited or lived in an area of local spread during the past 3 months, and anyone who traveled in the past 4 weeks to an area where the virus is circulating.

