

Daníel Alcídes Carríón García (August 12, 1857 - October 5, 1885)

Human self experimentation 1800-1999

Weisse A 2012

Nobel prizes awarded to self experimenters

Year	Recipient	Research Area	NOBEL AND
1903	Niels Finsen	Phototherapy	
1904	William Ramsay	Discovery of inert elements*	Inhaled different gases to investigate anaesthetic effects
1908	Elic Metchnikoff	Phagocytes*	
1923	Frederick Banting	Insulin	
1928	Charles Nicolle	Cause of typhus	
1930	Karl Landsteiner	Blood types	Injected himself with spirochaetes
1936	Victor Hess	Discovery of cosmic rays	
1939	Gerhard Domagk	Sulfa drugs	
1939	Ernest Lawrence	Cyclotron*	Drank solution containing radioactive sodium
1943	George de Hevesy	Polarography*	Drank heavy water to study elimination
1952	Albert Schweitzer	Humanitarianism*	Injected unproven yellow fever vaccine to study side effects
1956	Werner Forssmann	Cardiac catheterization	
2005	Barry Marshall	Helicobacter pylori	

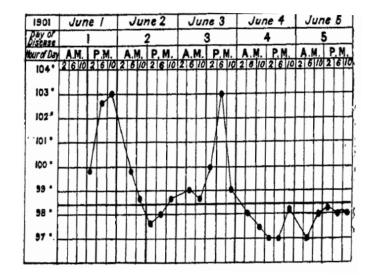
*Nobel prize awarded for work unrelated to self-experimentation.

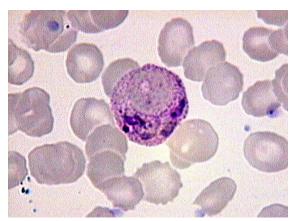
Death from self experimentation 1800-1999

Year of Death	Person (Country)	Cause of Death			
1817	Alois Rosenfeld (Austria)	Bubonic plague (?)			
1849	Anthony White (United Kingdom)	Plague			
1873	Otto Obermeier (Germany)	Cholera vaccine			
1874	Joseph von Lindwurm (Germany)	Secondary syphilis			
1885	Daniel Carrion (Peru)	Oroyo fever			
1900	Jesse Lazear (United States)	Yellow fever			
1920	Arthur Bacot (United Kingdom)	Typhus			
1928	Alexander Bogdanov (Russia)	Multiple blood transfusions			

JULY 13, 1901.] RECURRENCE OF EXPERIMENTAL MALARIA.

MEDICAL JOURNAL 77


EXPERIMENTAL MALARIA : RECURRENCE AFTER NINE MONTHS. By P. THURBURN MANSON, M.B.Lond., Aberdeen.


A SUCCESSFUL experiment, of which I was the subject, on the production of malarial infection by mosquito bite, is recorded in the BRITISH MEDICAL JOURNAL of September 29th, 1900. The sequel is of interest.


As a result of the bites of mosquitos fed in Rome on a case of benign tertian ague, I developed a double tertian fever. The first symptoms appeared on September 13th, 1900, after an incubation period of between ten and sixteen days. The illness lasted from September 13th to September 17th, when.

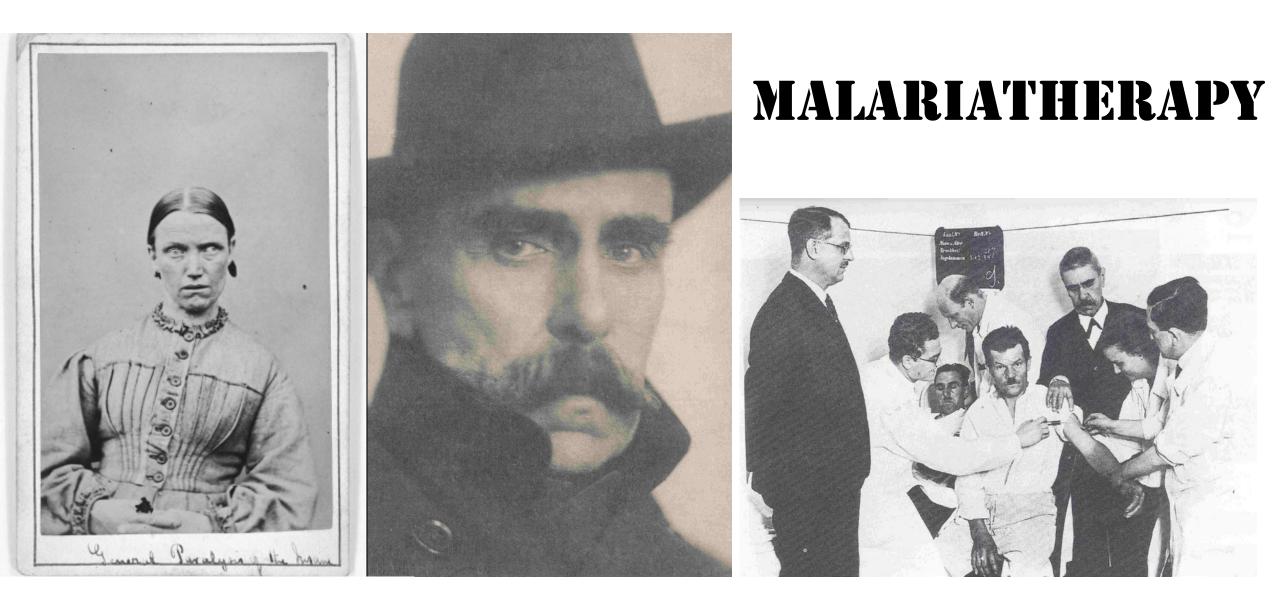
30th, 1901, I commenced without obvious reason to have prodromal symptoms of illness; these were *malaise* and pain in the splenic region. Two days later—on June 1st—a definite malarial paroxysm occurred. The following are the notes of my case:

September 17 – May 30 = 8.5 months

The Nuremberg Code (1947)

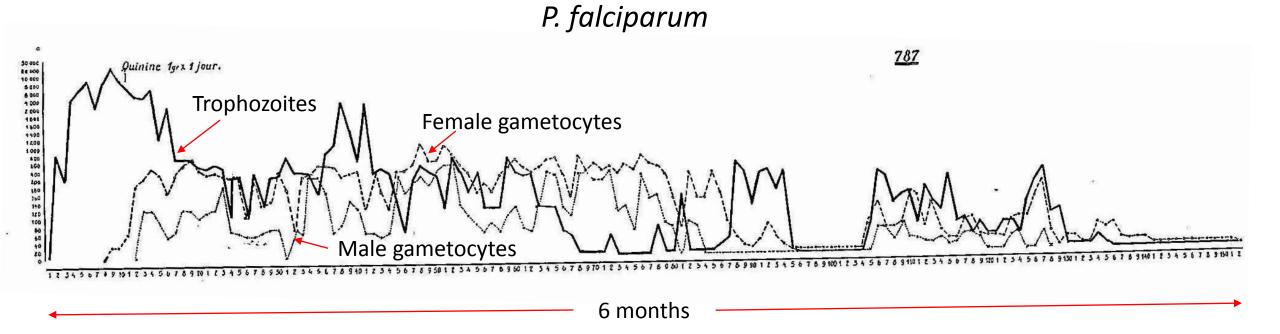
Required is the voluntary, well-informed, understanding consent of the human subject in a full legal capacity.
 The experiment should aim at positive results for society that cannot be procured in some other way.
 It should be based on previous knowledge (e.g., an expectation derived from animal experiments) that justifies the experiment.

4. The experiment should be set up in a way that avoids unnecessary physical and mental suffering and injuries.
5. It should not be conducted when there is any reason to believe that it implies a risk of death or disabling injury.
6. The risks of the experiment should be in proportion to (that is, not exceed) the expected humanitarian benefits.
7. Preparations and facilities must be provided that adequately protect the subjects against the experiment's risks.
8. The staff who conduct or take part in the experiment must be fully trained and scientifically qualified.
9. The human subjects must be free to immediately quit the experiment at any point when they feel physically or mentally unable to go on.


10.Likewise, the medical staff must stop the experiment at any point when they observe that continuation would be dangerous

The Declaration of Helsinki (1964-2013)

On 1 January 1913, of 103,842 patients suffering from mental disorder in 95 public mental hospitals in England, 6380 (5352 men and 1028 women) were diagnosed as suffering from general paralysis of the insane (GPI). In the mental hospitals administered by the London County Council (LCC) at that time more than 8% of new admissions were found to be suffering from the same dread disease – a late syphilitic invasion of the brain and central nervous system – most of whom were doomed to die a wretched, lingering death. There was no known cure. There was no hope.



Nobel laureates who studied malaria

- 1902. Ronald Ross
- 1905. Robert Koch
- 1906. Camillo Golgi, Santiago Ramón y Cajal
- 1907. Alphonse Laveran
- 1908. Ilya Mechnikov, Paul Ehrlich
- 1927. Julius Wagner-Jauregg
- 2015. Tu Youyou

Proceedings of a Meeting of the Society held on Thursday, 15th May, 1924, at 8.15 p.m., at 11, Chandos Street, Cavendish Square, W. 1, Dr. A. G. BAGSHAWE, C.M.G. (Vice-President), in the Chair.

The CHAIRMAN said he had received a letter from the President, Sir PERCY BASSETT-SMITH, who wished the meeting to be informed how sorry he was he could not occupy the Chair, but he hoped to be able to do so at the next meeting.

OBSERVATIONS ON MALARIA MADE DURING TREATMENT OF GENERAL PARALYSIS. Professor Barmojon yoke. M.D.

BY

WARRINGTON YORKE, M.D., AND J. W. S. MACFIE, D.Sc., M.B., CH.B.

Malignant Tertian Malaria.—At the very beginning of our work one case was inoculated with the blood from a patient suffering from malignant tertian malaria. The infection which resulted was of a fulminating character and the disease terminated fatally.

Pijper & Russell 1924 乃 WUN 45 RA 57 47A S DIED 30 5 A A 50 M * WWWWWWW Fig. 3.

MAY 9.

TRANSACTIONS

OF THE

ROYAL SOCIETY OF TROPICAL MEDICINE

AND HYGIENE.

Vol. XXIV. No. 5.

Proceedings of an Ordinary Meeting of the Society, held at 11, Chandos Street, C Cavendish Square, London, on Thursday, 15th January, 1931. Dr. G. CARMICHAEL LOW, F.R.C.P. (President), in the Chair.

PAPER.

SOME GENERAL RESULTS OF A STUDY OF INDUCED MALARIA IN ENGLAND.

BΥ

Lieut.-Colonel S. P. JAMES, M.D., I.M.S. (Retired). Adviser on Tropical Diseases to the Ministry of Health.

THE MATERIAL ON WHICH THE STUDY IS BASED				
THE VALUE OF THE MALARIAL TREATMENT AS A REMEDY FO	OR GENER	AL PA	ARALYSIS	
THE TRANSMISSION OF MALARIA FROM MAN TO MOSQUITO	ES			
(a) The human source of infection				
(b) The number and character of the gametocytes				
(c) The number of feeds on infective blood				
(d) Varying receptivity of different individuals of the	e same bat	ch of	anophel	les
(e) Influence of temperature, humidity, etc.				
(f) Influence of feeding upon fruit, etc.				
(g) Influence of the quantity of blood ingested				
(h) Influence of the length of life of the mosquitoes				
THE TRANSMISSION OF MALARIA FROM MOSQUITOES TO MA	N			
(a) Failures in primary infections			••	
(b) Failures as a result of previous attacks. The		of to	olerance	and
immunity	-			

CLINICAL OBSERVATIONS	• •			
(A) Benign Tertian Malaria.				
(a) The incubation period ; the influence of	f dose. e	tc.		
(b) Latent infections	- uooo, .		••	
(c) Latency in mixed infections	• •	•••		
(d) Duration of the incubation period in la	tent cas	ses cor	npared	
the duration of the interval between				
rences				
(e) Recrudescences, relapses and recurrence				
(f) Splenic enlargement .				
			-	• •
(B) Quartan Malaria.	••			• •
(C) Malignant Tertian Malaria	• •	•••	• •	
Deservations on Parasites				• •
EPIDEMIOLOGICAL OBSERVATIONS				
(a) Period during which Anopheles maculipennis may	remain	infecti	ive	
(b) Apparent antagonism between the different specie	s of the:	malari	a parasi	ite
(c) Explanation of the seasonal incidence of malaria				
DESERVATIONS ON PROPHYLAXIS AND TREATMENT				
1. Prophylaxis by Quinine				
2. Treatment with Quinine			·	
(a) Difference between cases infected by bloc	od and	those	infecte	d by
mosquitoes				
(b) Treatment of cases of benign tertian malar	ria infec	ted by	mosou	itoes
3. On Testing the Therapeutic Efficacy of Different				
Appendices.	Drugs	••	••	
1. Benign Tertian Malaria.				
	• •	••	••	••
14 Ouartan Malaria				
IA. Quartan Malaria Malignant Tertian Malaria		••	••	••

OBSERVATIONS ON MALARIA MADE DURING TREATMENT

OF GENERAL PARALYSIS.

BY WARRINGTON YORKE, M.D., AND J. W. S. MACFIE, D.Sc., M.B., CH.B.

Blood inoculation:

4-18 months follow up following quinine treatment1/61 recrudescence(XXX grains/day 2-4 days)

Mosquito inoculation

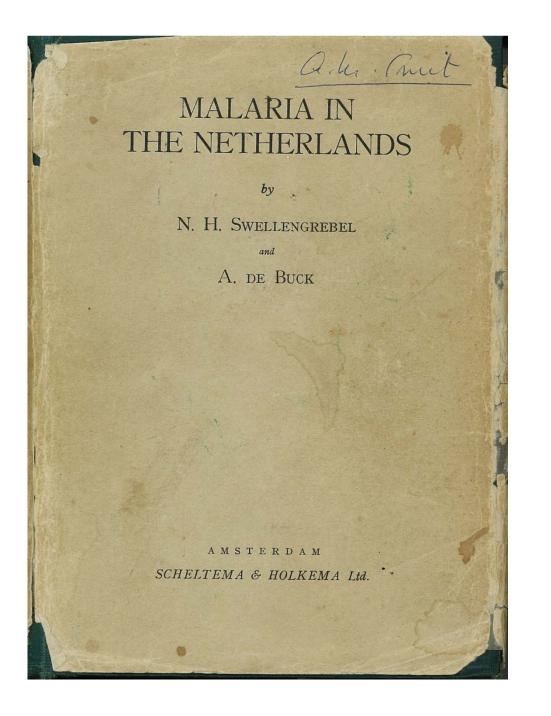
2-6 months follow up following quinine treatment4/31 relapsed; Intervals (days)

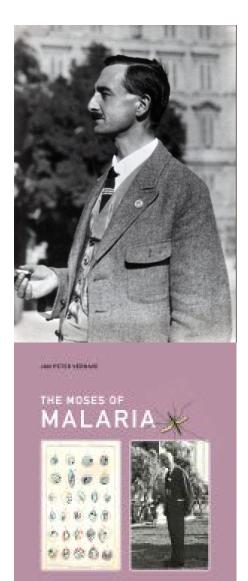
24, 19 24,31 11,18, 33, 40 25, 42

FURTHER OBSERVATIONS ON MALARIA MADE DURING TREATMENT OF GENERAL PARALYSIS.

BY

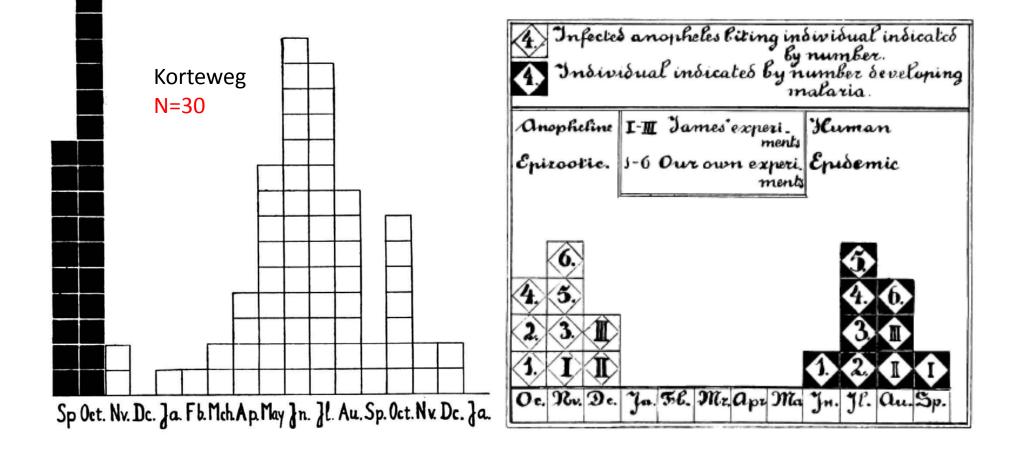
PROFESSOR WARRINGTON YORKE, M.D.


Blood inoculation


18-24 months follow up following quinine treatment2/100 recrudescence(XXX grains/day 2-4 days)

Mosquito inoculation

21/34 relapsed! : median 168 (range)20-331 days


Long latency *P. vivax*

Medicine. — Report on a small experimental epidemic of benign tertian malaria started in September 1931 and followed up till January 1933. By N. H. SWELLENGREBEL. (Communicated by Prof. W. A. SCHÜFFNER.)

(Communicated at the meeting of February 25, 1933.)

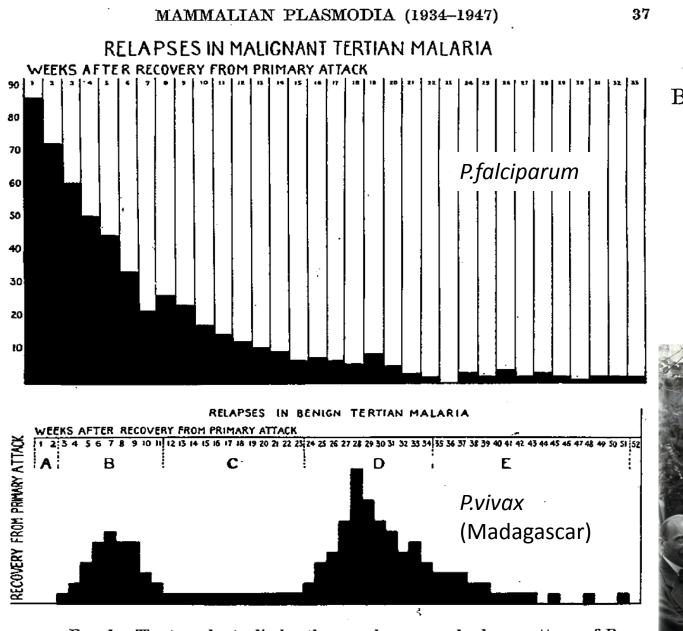


FIG. 1. The two charts display the recrudescence and relapse patterns of *P. falciparum* on the one hand and those of the long term relapse Madagascar strain of *P. vivax* on the other. (From James, S. P., Nicol, W. D. and Shute, P. G., 1936. *Proc. Roy. Soc. Med.*, 29, 879.)

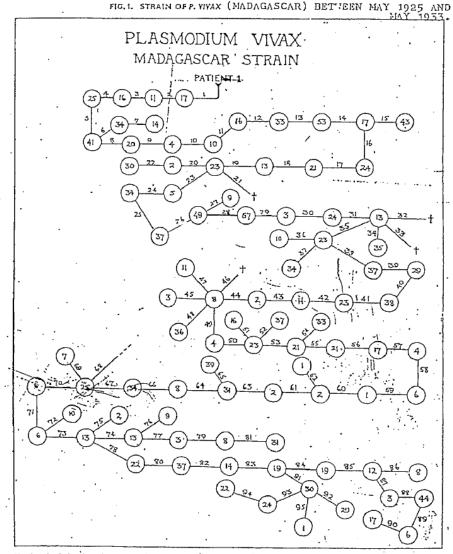
[May 5, 1932.]

A Study of Induced Malignant Tertian Malaria.

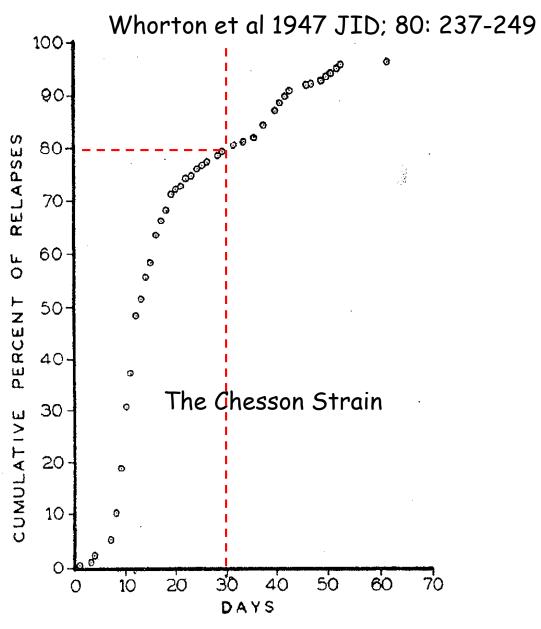
By S. P. JAMES, W. D. NICOL and P. G. SHUTE.

Arch. Inst. Pasteur Madagascar 1978 (1979), 47, 173-183.

THE MADAGASCAR STRAIN OF PLASMODIUM VIVAX


the late P.-G. SHUTE, P.-C.-C. GARNHAM and Mary MARYON

In a


series of cases, James, Nicol and Shute (1936) recorded the time of the relapse and showed that the relapses occured between 189 and 273 days after the primary attack.

1925-1933

Total number of patients infected1,739Total number of mosquitoes infected24,361

Numbers in circles show the number of patients infected Numbers on lines show the batch number of mosquitoes used † All mosquitoes died before completion of parasite cycle -- Batch abandoned Batch 1 used May 1925. Batch 95 used May 1933 Total number of patients infected: 1,739 Total number of mosquitoes infected: 24,361

F1G. 4.—Duration of latent period after 151 malarial attacks† in patients who subsequently relapsed.

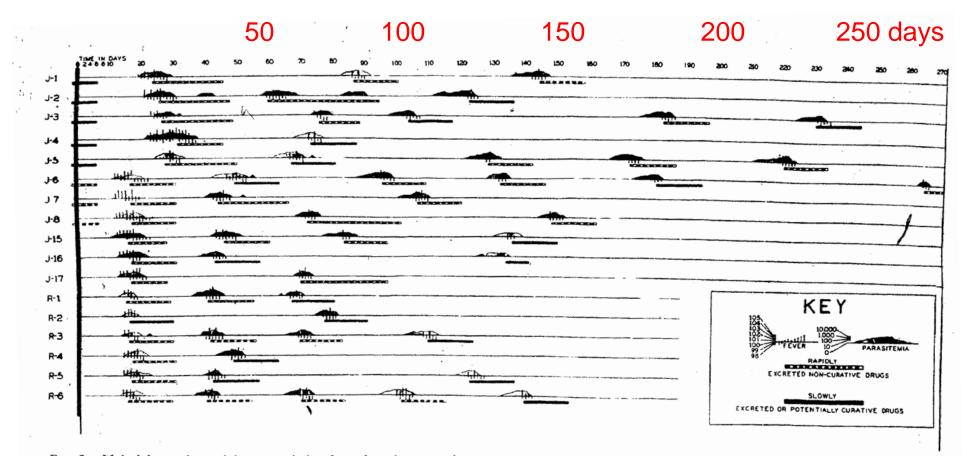


FIG. 5.—Malarial attacks and latent periods of a selected group of sporozoite-induced (Chesson) infections. Note absence of delayed primary attacks after prophylactic therapy and absence of long latent intervals after treatment of primary attacks. This relapse pattern is in sharp contrast to that of the St. Elizabeth strain of vivax malaria². (Time indicates days after inoculation.)

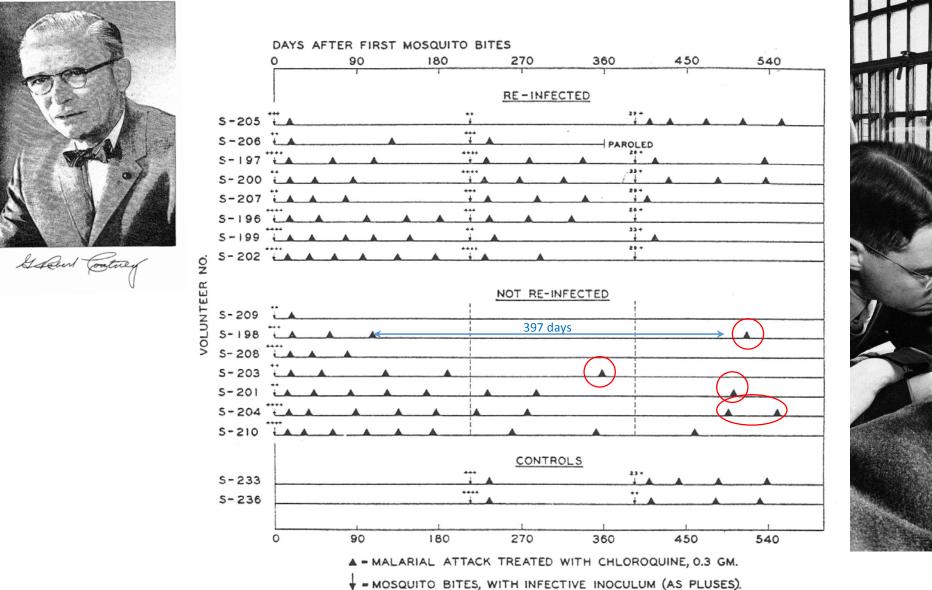


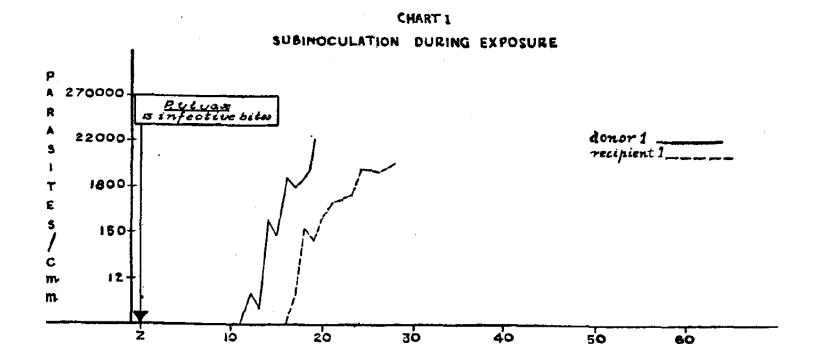
FIG. 2. Pattern of attacks of Chesson strain *vivax* malaria in subjects bitten by one infected mosquito each. (Presentation of attacks is diagrammatic). Selected individuals were reinfected as indicated.

Coatney GR et al J Nat Mal Soc 1948

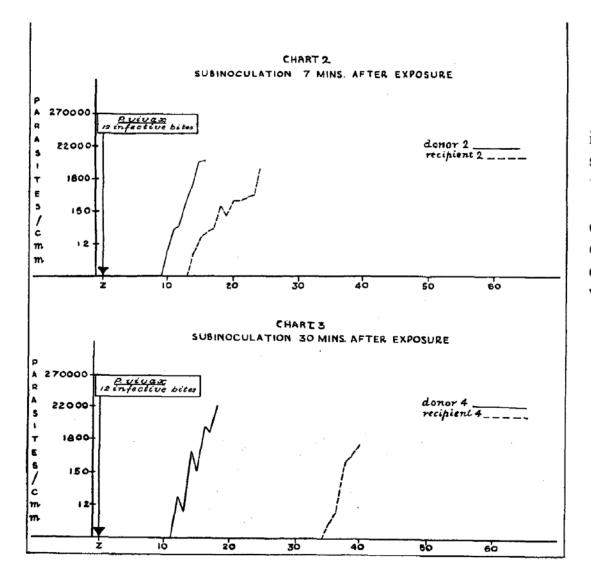
A CONTRIBUTION TO THE PROBLEM OF STRAINS OF HUMAN PLASMODIUM

P. G. SHUTE and M. MARYON Medical Research Council Malaria Reference Laboratory, Horton Hospital, Epsom, Surrey. *P. falciparum* from Europe required
 <u>ten</u> times more quinine for cure than
 P. falciparum from India

Estratto dalla «Rivista di Malariologia» - Vol. XXXIII, nn. 1-3, 1954



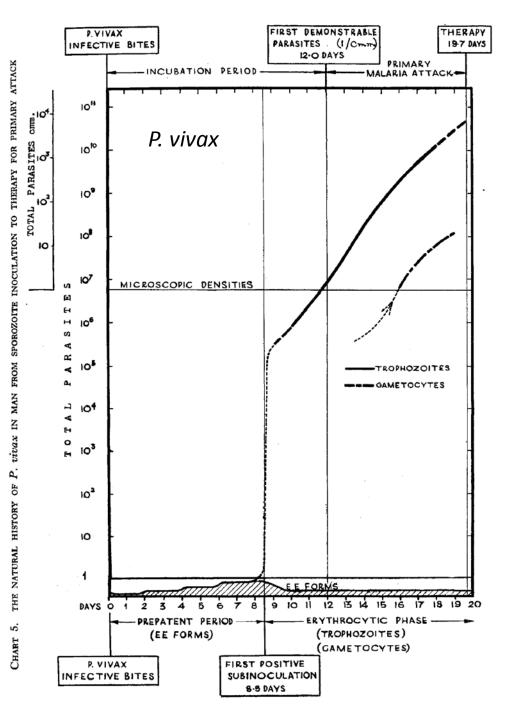
TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE. Vol. 40. No. 5. May, 1947.

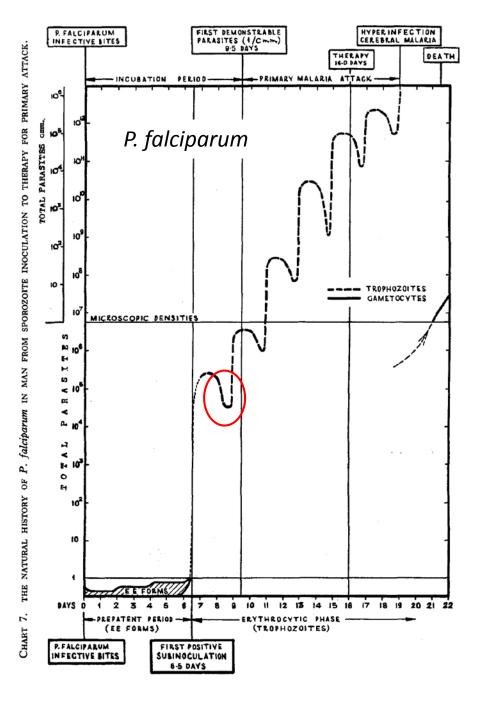

SIDELIGHTS ON MALARIA IN MAN OBTAINED BY SUBINOCULATION EXPERIMENTS.

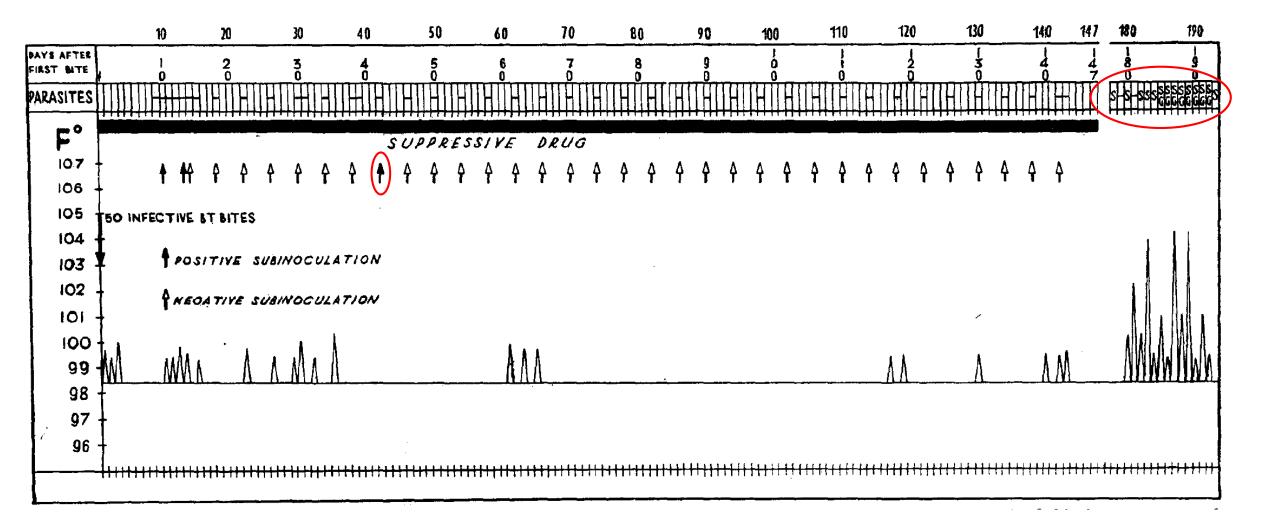
BY

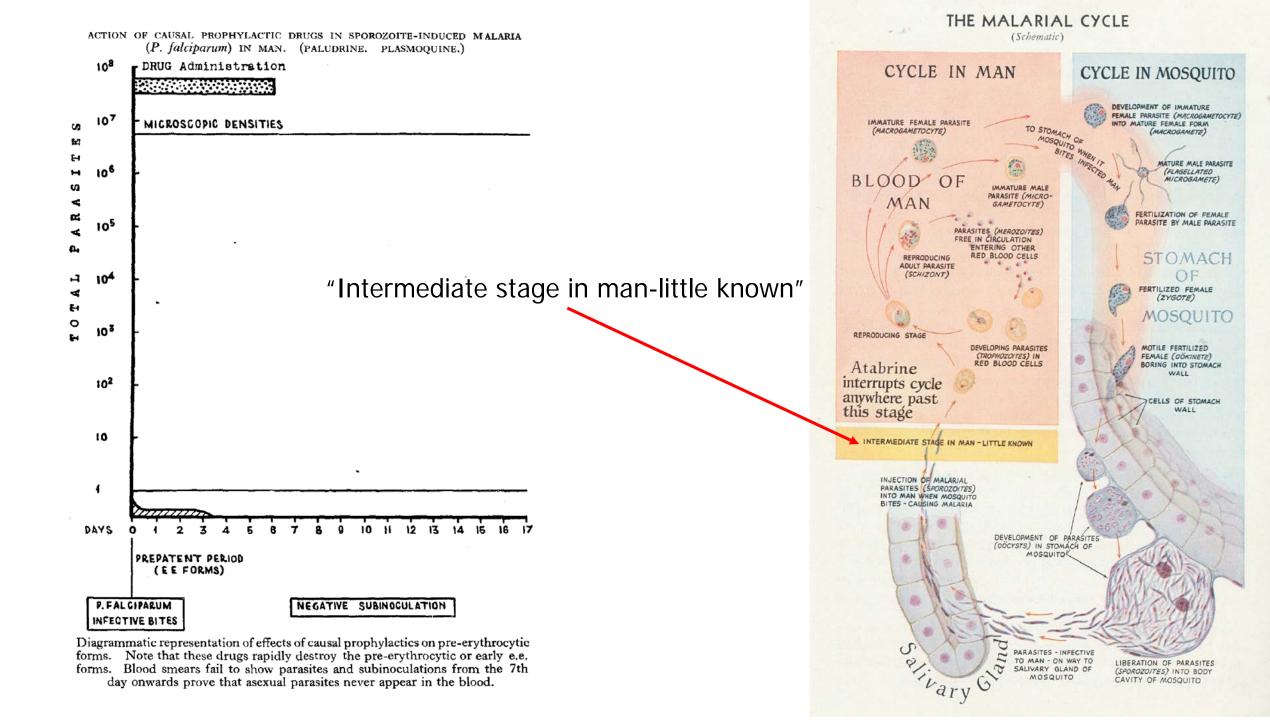
Brigadier N. HAMILTON FAIRLEY, C.B.E., F.R.S., et al.* (From the Land Headquarters. Medical Research Unit (A.I.F.), Cairns, Australia).

SIDELIGHTS ON MALARIA IN MAN OBTAINED BY SUBINOCULATION EXPERIMENTS.


BY


Brigadier N. HAMILTON FAIRLEY, C.B.E., F.R.S., et al.* (From the Land Headquarters. Medical Research Unit (A.I.F.), Cairns, Australia).


(a) The initial invasion stage when viable sporozoites may be demonstrated in the circulating blood for short periods $(\frac{1}{2}$ to 1 hour) after inoculation of sporozoites by anopheline mosquitoes into the tissues or directly into the blood vessels.


(b) The negative blood phase or prepatent period when pre-erythrocytic or early e.e. forms are presumably undergoing schizogony in reticulo-endothelial cells; this lasts approximately 6 days in *P. falciparum* and 8 days in *P. vivax* during which time massive subinoculations of blood from heavily infected volunteers uniformly fail to induce malaria in recipients.

PENICILLIN IN THE TREATMENT OF NEUROSYPHILIS*

BY

W. D. NICOL and M. WHELEN

From the Mott Clinic, Horton Hospital, Epsom, Surrey

1945-1947

Therapy		Males	Females	Total
Penicillin only	•	19 109 207	12 43 73	31 152 280

Conclusion

It is our view that, in spite of the divergent opinions quoted above, it would be unwise to eliminate malaria altogether, but at the same time we feel that penicillin has usurped the role played by malaria. Penicillin is now the main line of treatment and malaria the supplementary, at any rate in the more severe forms of parenchymatous neurosyphilis.

INFECTION-RATES OF MALARIAL PARASITES IN RED BLOOD-CELLS WITH NORMAL AND DEFICIENT GLUCOSE-6-PHOSPHATE-DEHYDROGENASE

PATIENTS AND METHODS

6 adults (3 male and 3 female) deficient in G.-6-P.D. as measured by the brilliant-cresyl-blue dye test were studied. All had natural *P. falciparum* infections except in case 2 in which infection was induced therapeutically for cerebral syphilis by intravenous injection of approximately 0.5 million trophozoites. Thin films were made from blood.

> MONGKOL KRUATRACHUE M.B. Bangkok, D.T.M. & H. KOSSOM KLONGKUMNUANHARA B.SC. Bangkok CHAMLONG HARINASUTA M.D. Bangkok, PH.D. Lpool, D.T.M. & H.

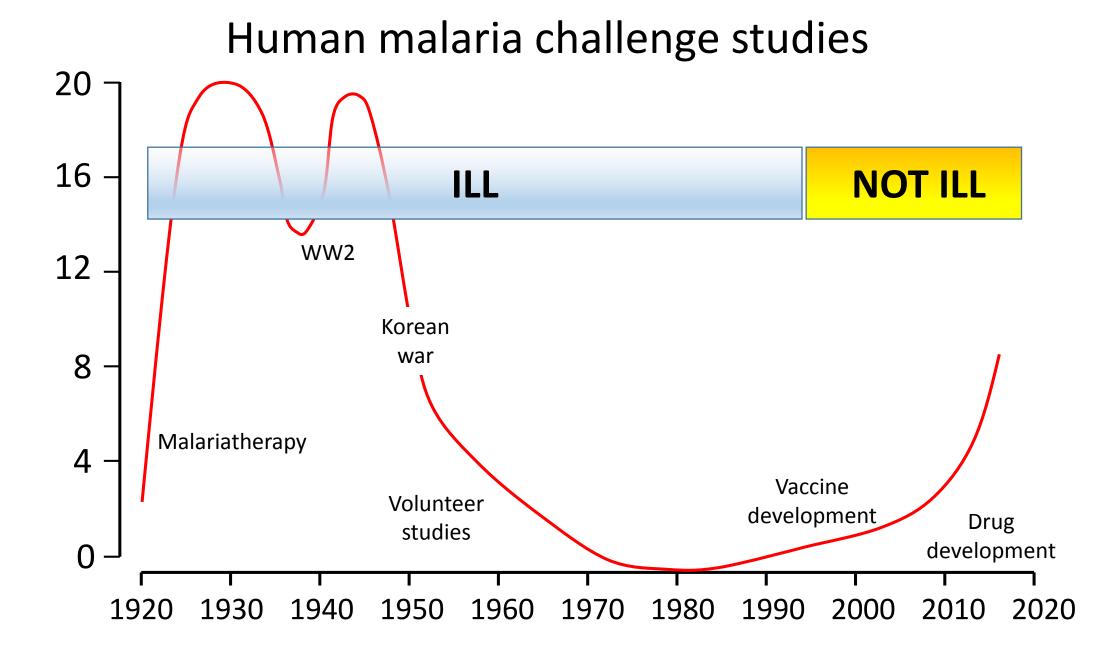
Faculty of Tropical Medicine, University of Medical Sciences, Bangkok, Thailand

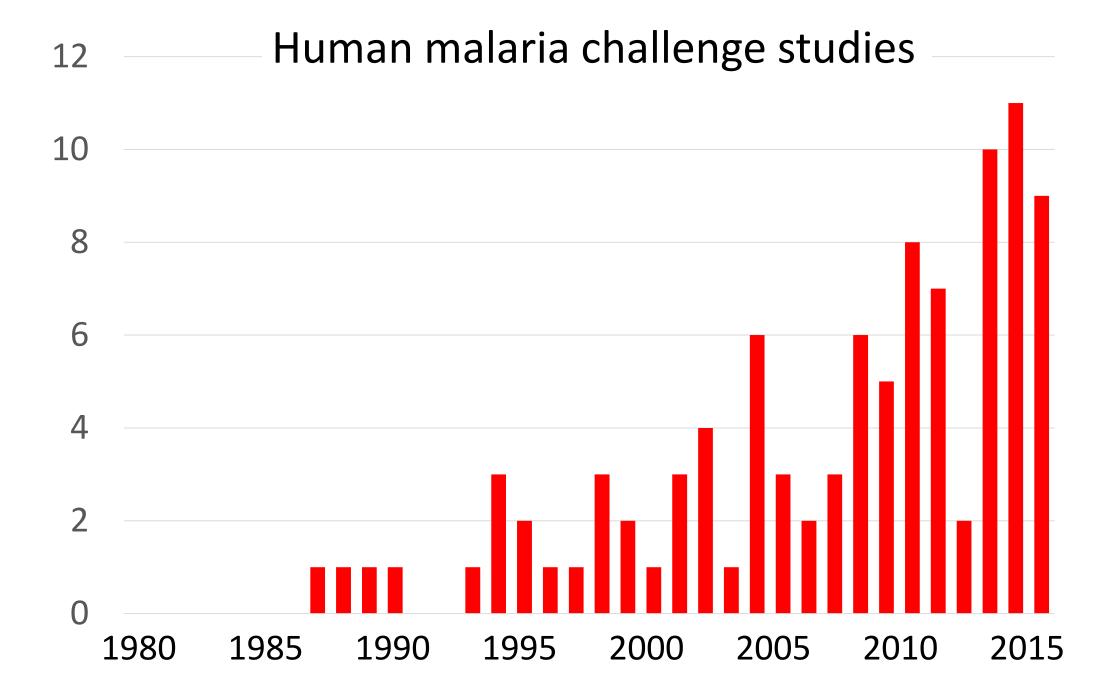
CHANGES IN BLOOD VOLUME IN FALCIPARUM MALARIA†

TAN CHONGSUPHAJAISIDDHI, RATANAPORN KASEMSUTH, SIRIVAN TEJAVANIJA and TRANAKCHIT HARINASUTA

Faculty of Tropical Medicine, Mahidol University, Bangkok. Thailand.

MATERIALS AND METHODS


The study was made on 5 Thai male patients who had been transferred from a mental hospital to the Hospital for Tropical Diseases, Faculty of Tropical Medicine, Bangkok. *Plasmodium falciparum* trophozoites 5-10 million, from a donor of the same blood group was given intravenously to each of the subjects, except case 2 who was infected by mosquito.


Malariatherapy

- 1. A major therapeutic advance in a common, previously incurable and devastating disease.
- 2. Tens of thousands of patients treated –over half benefited.
- 3. Revealed the complex biology of malaria in quantitative detail.
- 4. Facilitated safe human challenge studies in volunteers

Human volunteer studies (pre 1980s)

- 5. First detailed PK-PD and dose finding studies (quinine, mepacrine, chloroquine, primaquine, proguanil, pyrimethamine)
- 6. Detailed safety assessment of primaquine in G6PD A- variant

Vaccine 33 (2015) 5316-5320

Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

RESEARCH

Open Access

Diagnosis and treatment based on quantitative PCR after controlled human malaria infection

Jona Walk^{1†}, Remko Schats^{2†}, Marijke C. C. Langenberg², Isaie J. Reuling¹, Karina Teelen¹, Meta Roestenberg¹, Cornelus C. Hermsen¹, Leo G. Visser² and Robert W. Sauerwein^{1*}

Profiling the host response to malaria vaccination and malaria challenge

Susanna Dunachie^{a,b,c,*}, Adrian V.S. Hill^a, Helen A, Fletcher^{d,a}

^a The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK ^b Mahidol-Oxford Tropical Medicine Research Unit, 3rd Floor, 60th Anniversary Chalermprakiat Building, 420/6 Ratchawithi Road, Bangkok 10400, Thailand ^c Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK

d London School of Hygiene & Tropical Medicine, London, W1CE 7HT, UK

Review

Breaking barriers: a leap ahead in Plasmodium biology

Experimentally induced blood stage malaria infection as a tool for clinical research

Christian R. Engwerda^{1,2}, Gabriela Minigo³, Fiona H. Amante¹, and James S. McCarthy^{1,2}

CASE STUDY

DOI 10.1186/s12936-015-0671-x

Hodgson et al. Malaria Journal (2015) 14:182

Lessons learnt from the first controlled human malaria infection study conducted in Nairobi, Kenya

Susanne H Hodgson^{1*}, Elizabeth Juma^{2,3}, Amina Salim⁴, Charles Magiri², Daniel Njenga², Sassy Molyneux⁴, Patricia Njuguna⁴, Ken Awuondo⁴, Brett Lowe⁴, Peter F Billingsley⁵, Andrew O Cole^{2,3}, Caroline Ogwang⁴, Faith Osier⁴, Roma Chilengi⁶, Stephen L Hoffman⁵, Simon J Draper¹, Bernhards Ogutu^{2,3} and Kevin Marsh⁴

Malaria Journal

Open Access

Human malaria challenge studies

SCIENCE AND SOCIETY

Experimental human challenge infections can accelerate clinical malaria vaccine development

Robert W. Sauerwein, Meta Roestenberg and Vasee S. Moorthy

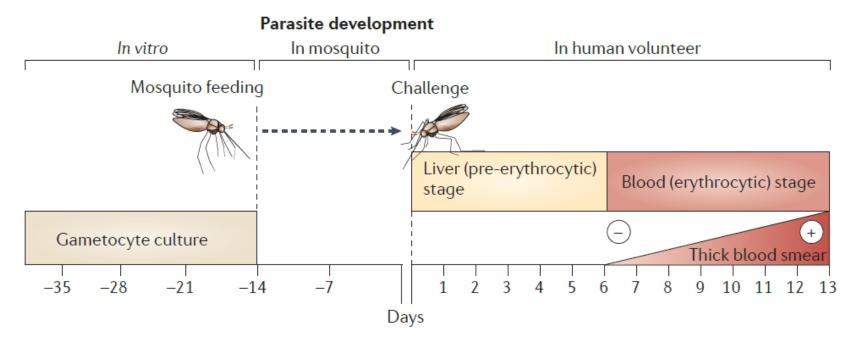
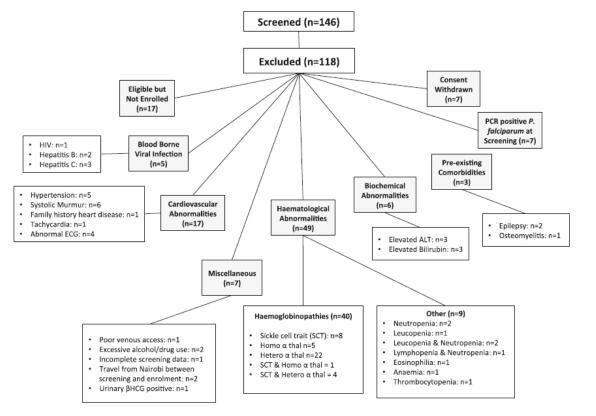
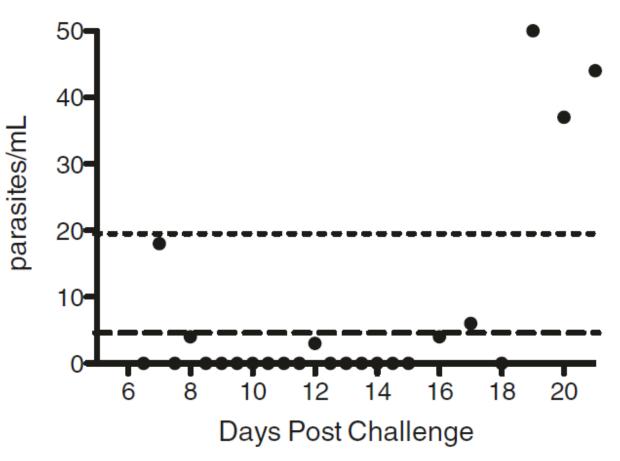


Figure 2 | **Timeline of** *Plasmodium falciparum* sporozoite challenge infection in humans. Gametocytes are derived from *in vitro* parasite culture in donor blood and are fed to laboratory-reared *Anopheles stephensi* mosquitoes. After 14–21 days, five infectious mosquitoes are allowed to feed on malaria-naive human volunteers for 5–10 minutes. Subsequent development of liver-stage parasites is subclinical and takes approximately 6 days. Parasites can be detected in the blood of unprotected volunteers by microscopy (using a thick blood smear) on average 11 days (range 7–15 days) after challenge.




CASE STUDY

Open Access

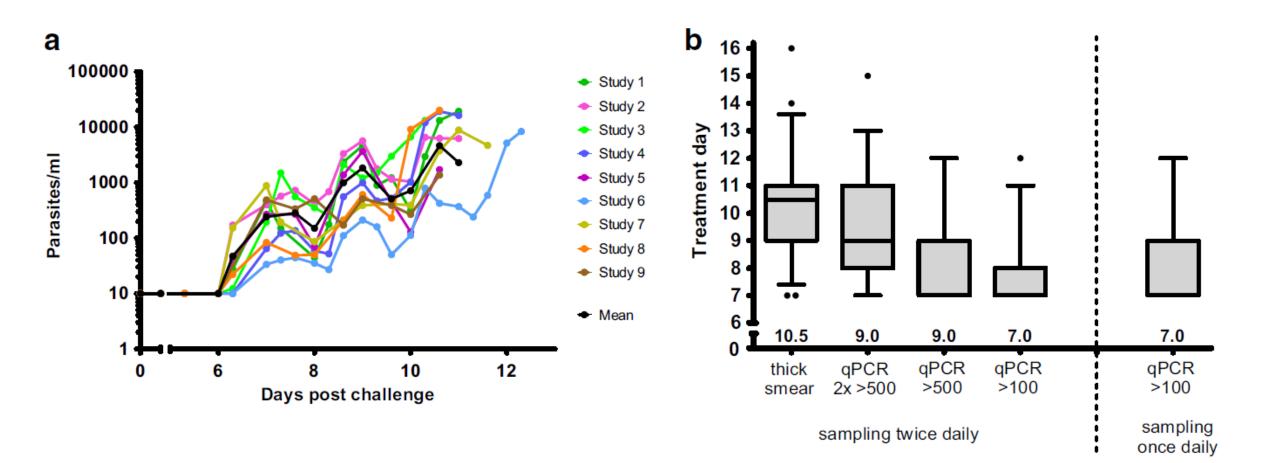
Lessons learnt from the first controlled human malaria infection study conducted in Nairobi, Kenya

Susanne H Hodgson^{1*}, Elizabeth Juma^{2,3}, Amina Salim⁴, Charles Magiri², Daniel Njenga², Sassy Molyneux⁴, Patricia Njuguna⁴, Ken Awuondo⁴, Brett Lowe⁴, Peter F Billingsley⁵, Andrew O Cole^{2,3}, Caroline Ogwang⁴, Faith Osier⁴, Roma Chilengi⁶, Stephen L Hoffman⁵, Simon J Draper¹, Bernhards Ogutu^{2,3} and Kevin Marsh⁴

Figure 4 qPCR results post-challenge for Volunteer 110, Group 2. Long dashed line = lower limit of detection (i.e., a probability of > 50% of \geq 1 positive result among three replicate PCR reactions) for qPCR assay (5 parasites/mL). Short dashed line = lower limit of quantification (defined as %CV < 20%) for qPCR assay (20 parasites/mL).

Why is controlled human malaria infection "coming back"?

1. Accelerates malaria vaccine assessment

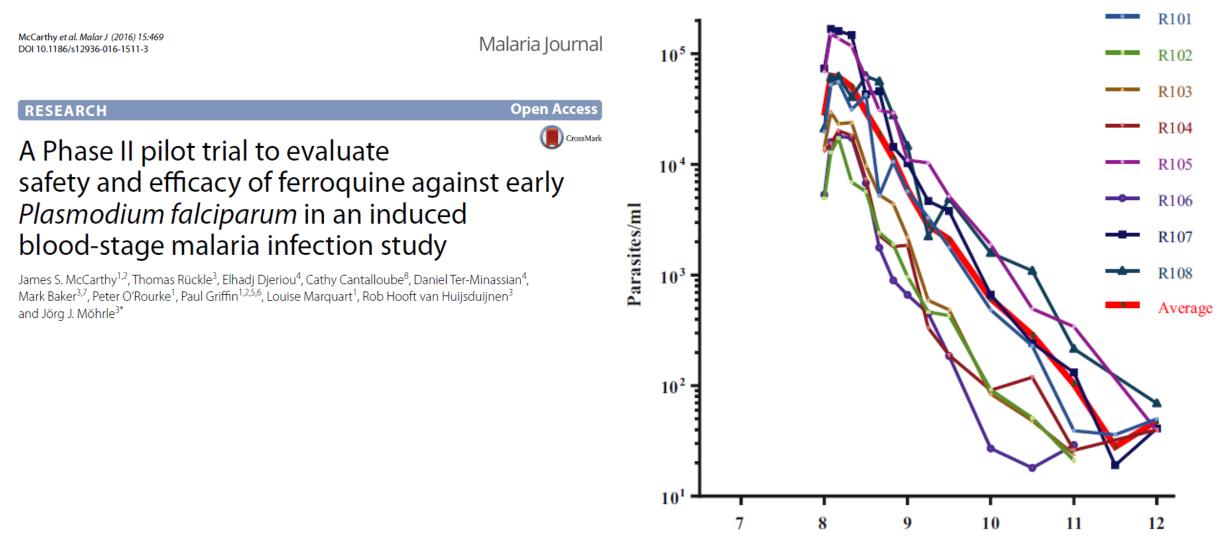

2. Accelerates antimalarial drug development


3. uPCR allows all information to be obtained "sub-clinically"

4. Minimal risk

Pyrogenic density = 50,000 parasites/mL Limit of quantitation ~ 20 parasites/mL

Therefore there are ~ 3 asexual cycles between LOQ and illness


С

Box 1. Relative merits of approaches to undertake CHMI

Parameter	SIM	IBSM
Safety record	>1500	>100
Risk of introduction of adventitious agents	Minimal	Possible
Ability to vary size of inoculum	+	+++
Knowledge of size of inoculum	+/-	+++
Logistical ease	Need for insectary	Cryopreserved blood
Availability	Widespread	Limited
Life cycle stages amenable to study	All human stages	Limited to erythrocytic and gametocytes

Sporozoite induced malaria infection Induced blood stage malaria infection

Engwerde et al TiP 2012

Time (days after *Plasmodium* inoculum)

2017

CelPress

Review

Plasmodium vivax Controlled Human Malaria Infection – Progress and Prospects

Ruth O. Payne, 1,2,* Paul M. Griffin, 3,4,5,6 James S. McCarthy, 3,6 and Simon J. Draper 1,*

Table 1. Overview of Published Plasmodium vivax CHMI Studies

Trial site	Number of volunteers	Pre-patent period (days) ^a	Number of infected mosquitoes OR infective inoculum	Number of volunteers with patent parasitemia	Refs		
Sporozoite (mosquito-bite) CHMI studies							
Cali, Columbia	18	9–13	2–10	17/18 ^b	[26]		
Cali, Columbia	17 Duffy positive 5 Duffy negative	9–16	2–4	17/17 (Duffy positive) 0/5 (Duffy negative)	[27]		
Cali, Columbia	7 malaria-naïve 9 semi-immune	11–13	2–4	16/16 ^c	[28]		
Cali, Columbia	12 Duffy -positive vaccinees 2 Duffy-positive controls 5 Duffy-negative controls	12–13	2–4	7/12 vaccinees2/2 Duffy-positivecontrols0/5 Duffy-negativecontrols	[31]		
WRAIR, USA	27 vaccinees 6 infectivity controls	10–13 10–11	5	27/27 vaccinees 6/6 controls	[32]		
Blood-stage CHMI studies (IBSM)							
QIMRB, Australia	2	8–9	13 000 genome equivalents	2/2	[35]		
QIMRB, Australia	6	8–9	31 786 (\pm 11 947) as determined by qPCR (= 15 \pm 5 viable <i>P. vivax</i> parasites)	6/6	[37]		

Conclusion:

- 1. Controlled human malaria infections (CHMI) can be performed safely and reliably in hospitalized volunteers with little or no symptomatology provided there is close monitoring and real-time quantitative uPCR is available.
- 2. CHMI can accelerate both vaccine and drug development.
- 3. It may be particularly useful in the evaluation of new treatments for artemisinin resistant falciparum malaria and for assessment of radical cure in vivax malaria.