CASE REPORT:

SEPTICEMIC MELIOIDOSIS FOLLOWING NEAR DROWNING

Pornpimol Pruekprasert¹ and Siroj Jitsurong²

¹Department of Pediatrics and ²Department of Pathology, Faculty of Medicine, Songkhlanagarind Hospital, Songkhla, Thailand.

Melioidosis is an infection caused by Pseudomonas pseudomallei, a Gram-negative bacterium, that has been isolated from water and soil in Southeast Asia (Finkelstein, 1967). Clinical manifestations of melioidosis are variable and involve many organs (Patamasucon et al., 1982). Infection is probably acquired by inhalation of bacteria (Patterson et al., 1967) or through a contaminated wound (Thin et al., 1970; Jayanetra et al., 1975). Only two case of acute septicemic melioidosis following near drowning have been reported (Vimuktalaba et al., 1985; Lee et al., 1985). We describe here a third case of melioidosis following a near drowning accident.

A 9-year-old girl was found lying unconscious after a five minute immersion in a muddy fresh water pool. Mouth-to-mouth resuscitation was performed immediately by her father who transferred her to Songkhlanagarind Hospital. At the emergency room she appeared severely ill, with marked central cyanosis and in a comatose condition, responding purposefully only to deep pain. Body temperature was 36.5°C, pulse rate 140/minute, and blood pressure 110/70 mmHg. Breathing was apneustic and assisted ventilation was required. She had no bruises or abrasions on her skin. Diffuse fine crepitations and rales were audible over both lung fields and the sputum was frothy. Otherwise the physical examination was unremarkable. A initial chest roentgenogram revealed diffuse bilateral pulmonary infiltration compatible with acute pulmonary edema (Fig 1).

The results of laboratory tests on the day of admission revealed hemoglobin 10.6% gm/dl; leukocyte count 12,000/cu mm with 9% segmented neutrophils, 3% band forms 76% lymphocytes and 10% eosinophils; BUN 11.6 mg/dl and creatinine 0.9 mg/dl. Severe hypoxemia and acidosis were noted on arterial blood gas analysis.

Oxygen was administered and respiratory support was instituted. Treatment started with intravenous penicillin G sodium (2 MU/kg/day) and intramuscular gentamicin (5 mg/kg/day). Bicarbonate and furosemide were also given to correct the metabolic acidosis and the pulmonary edema.

The patient regained consciousness one hour later and at the tenth hour of hospitalization she could follow verbal commands. A repeated chest roentgenogram showed marked improvement of the pulmonary infiltration (Fig 2). Sputum culture on the day of admission yielded mixed flora.

On the fiftieth hour of hospitalization, body temperature rose to 40.3°C. A third chest roentgenogram showed progression of the pulmonary infiltration (Fig 3). Gentamicin was then replaced with intravenous ceftazidime (150 mg/kg/day) for a presumed diagnosis of melioidosis.

The blood and sputum cultures obtained before the start of ceftazidime yielded gram-negative bacilli that were identified as Pseudomonas pseudomallei by standard criteria (Gilardi, 1985). The organisms were susceptible to ceftazidime, cefotaxime, ceftriaxone, chloramphenicol and cotrimoxazole; immediately susceptible to ticarcillin and kanamycin; and resistant to cefuroxime, cephalothin, gentamicin, netilmicin and amikacin.

The patient responded very well to the treatment and on the sixth day of hospitalization she was afebrile, and did not require ventilatory support. She was treated intravenously with penicillin for ten days and ceftazidime for twenty-one days and then cotrimoxazole (10 mg trimethoprim/kg/day)
Melioidosis was first described by Whitmore and Krishnaswami in 1912 in morphine addicts and vagabonds found dead in the streets of Rangoon, Burma. It has been observed in all age groups with variable clinical manifestations which mimic many other diseases (Patamasucon et al., 1982). The clinical presentation of septicemic melioidosis ranges from simple acute febrile illness to fulminating septicemia. Most patients are seriously ill and about one-third complicated by septic shock (Chaowagul et al., 1989). A variety of antimicrobials have been recommended for the treatment of melioidosis on the basis of in vitro sensitivity test (Chau et al., 1986; Ashdown, 1988; Puthucheary et al., 1987; Eickhoff et al., 1970). Ceftazidime, a third-generation cephalosporin, is now considered as the treatment of choice for severe melioidosis since it is bactericidal, safe, highly active in vitro and associated with a 50% lower overall mortality (White et al., 1989). The optimum duration of treatment however, is not known, although relapses are common if treatment is given for less than one month. Current practice is to give intravenous and then oral antimicrobial therapy for six weeks to four months depending on the site of the infection (Chaowagul et al., 1989).

The successful treatment in the present case is ascribed to early diagnosis of the infection with administration of the effective antimicrobial agent.

Case of acute pulmonary and septicemic melioidosis following near drowning accidents have been reported from Thailand (Vimuktalaba et al., 1985) and Taiwan (Lee et al., 1985). The infection in our case probably was acquired by aspiration of contaminated water since in Songkhla, since Pseudomonas pseudomallei has been isolated in 61% of the surface soil samples from rubber plantations and 78% of the bottom sediments in rice fields (Na Chiangmai et al., 1985).

In conclusion, the possibility of Pseudomonas pseudomallei infection should be considered in the case of a victim of fresh-water near-drowning in Southeast Asia. Appropriate cultures should be obtained and effective antimicrobial therapy should be started early.
REFERENCES


