PASTEUR ORAL CHOLERA VACCINE: STUDIES OF REACTOGENICITY, CLINICAL ACCEPTABILITY AND IMMUNOGENICITY IN HUMAN VOLUNTEERS

Punnee Pitisuttitham, Sricharoen Migasena, Benjaluck Prayurahong, Wichai Supanaranond, Pravan Suntharasamai, Ladawan Supeeranan, Arun Chantra and Supa Naksrisook

Vaccine Trial Center, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

Abstract. Pasteur cholera vaccine consists of isolated antigenic fractions from V. cholerae El Tor Ogawa and Inaba. Enteric coated microgranules were prepared from antigen lyophilisate. Three doses of this vaccine were administered orally to 19 healthy young Thai adults at one week intervals. None of the volunteers experienced untowards reactions. The vibriocidal antibody responses manifested a significant antibody rise (>4 fold) to serovar Inaba in 8 vaccinees (42.1%) and Ogawa in 4 (21.1%). Five and 6 vaccinees (26.3% and 31.6%) showed a ≥4 fold rise of IgG and IgA anti-LPS, respectively.

INTRODUCTION

Vibrio cholerae is a non-invasive pathogen that does not penetrate the intestinal mucosa and some evidence suggests that the immunity is mediated by intestinal secretory IgA (sIgA) antibodies (Svennerholm et al, 1978; Pierce, 1978). Oral administration of an antigen is the most efficient method for eliciting intestinal secretory antibodies, so most current research involves the use of oral vaccine with either non-living antigen or live attenuated vaccine strains.

The major attraction of non-living oral vaccines is their safety but multiple doses are required. Until now two oral cholera vaccines consisting of killed V. cholerae 01 whole cells of both biovars and serovars, either with or without the B subunit of cholera toxin, have been studied (Svennerholm et al, 1982, 1984 a, b; Black et al, 1987; Migasena et al, 1989; Clemens et al, 1988). Three doses of 1×10^{11} organisms of killed whole cells (WC) plus 1 mg of B subunit (BS) given at two week intervals elicited 33% and 42% significant rise of vibriocidal antibodies to Inaba and Ogawa, respectively (Migasena et al, 1989). A field trial in Bangladesh recently showed that three doses of 1×10^{11} organisms of killed WC and 1 mg of BS given at four week intervals provided 85%, 62% protection during the first six months and one year of follow up respectively (Clemens et al, 1988).

Another candidate oral cholera vaccine is the Pasteur vaccine. It consists of isolated antigenic fractions from V. cholerae El Tor Ogawa and Inaba (Dodin and Wiart, 1975). It was shown that extracts of Vibrio cholerae given to rabbits by the oral route could induce a strong antibody response in both serum and intestinal fluid (Dodin and Wiart, 1975). This vaccine was tried during an epidemic of cholera in Zaire and was claimed to have 96% efficacy (Dodin et al, 1984), but the study design was not quite optimal. Other studies were carried out suggesting that the vaccine induced both serum vibriocidal titers and intestinal production of antigen specific IgA (Langevin-Perriat et al, 1988). With these promising findings, it was considered appropriate to evaluate its safety and immunogenicity in volunteers in Thailand where cholera is endemic.

MATERIALS AND METHODS

Volunteers

Participants in this study were healthy young Thai adults aged 20-40 years from the Bangkok area who passed the medical and psychological screening and gave informed, signed consent. No volunteers had a history of cholera vaccination for the past five years.

Vaccines

Pasteur oral cholera vaccine consisted of isolated antigenic fractions from V. cholerae El Tor Ogawa and Inaba. The component includes a complex of
smooth type lipopolysaccharide and outer membrane proteins. Enteric coated microgranules were prepared from antigen lyophilisate. Each capsule contains 370 mg of enteric coated microgranules which comprises 30 mg of lyophilisate corresponding to 3 mg of the antigenic fraction.

Immunization schedule

All volunteers received three oral doses at one week intervals. Volunteers fasted for two hours and 90 minutes prior to and post vaccination.

Immune response

Sera were collected from volunteers before and 7, 14 and 21 days after the first dose of vaccination. Jejunal fluid was collected by aspiration before and 21 days after the first dose of vaccine.

For sera, vibriocidal antibody was measured by a microtechnique (Benenson et al., 1968). Antibody to *Vibrio cholerae* LPS was assayed by ELISA (Svennerholm et al., 1984 a, b).

For jejunal fluid, specific sIgA antibodies to LPS of *Vibrio cholerae* were measured by ELISA (Svennerholm et al, 1984 a, b; Young et al., 1980).

RESULTS

Nineteen volunteers, 15 males and 4 females with mean age of 24.5 years (ranged from 20 to 34 years) were studied. The mean weight was 56 kg, with a range of 50-62.5 kg. There were no adverse effects observed after any dose of vaccine.

Table 1 showed that the serum antibody levels before vaccination were low and the responses to vaccination were only modest. The detected rise is sIgA in jejunal fluid was due to a response in one volunteer.

The distribution of antibody responses in serum and in jejunal fluid are shown in Table 2. After three oral doses of Pasteur vaccine, 8 (42.1%) and 4 (21.1%) developed ≥ four-fold rise of vibriocidal antibody to Inaba and Ogawa, respectively. With respect to anti-LPS antibody, 5 (26.3%) and 6 (31.5%) developed ≥ four fold rise of serum IgG and IgA antibodies.

The antibody responses obtained were comparable with those after oral killed whole cell/B subunit vaccine reported from our previous studies (Migasena et al, 1989) (Table 3).

DISCUSSION

This study confirmed that Pasteur vaccine was safe, easily administered and caused no side effects in Thai adults. Similar results were obtained from the other ethnic population (Langevin-Perriat et al., 1988). The seroconversion in terms of vibriocidal antibody was comparable between whole cell/B subunit vaccine and Pasteur vaccine (Migasena et al, 1989). However the peak GMT of anti-Inaba vibriocidal antibody with Pasteur vaccine in this study was higher than that with the WC-BS vaccine; on the other hand, with the anti-Ogawa antibody, the killed whole cell-B subunit was better. Even it is not certain that protection against cholera is solely due to anti-LPS antibody; however, a strong epidemiological correlation has been found between them in the field (Mosley *et al.*, 1968). Since Pasteur vaccine is safe and easily administered, this may offer an alternative tool for preventing cholera and justifying examination in a challenge study.

ACKNOWLEDGEMENTS

The authors wish to express their thanks to the Institut Pasteur, France for the support of the study and the staff of the Vaccine Trial Center for their co-operation.

REFERENCES

Table 1
Antibody responses after three oral doses of Pasteur vaccine (n = 19).

<table>
<thead>
<tr>
<th>Antibody assay</th>
<th>Baseline titer GMT (range)</th>
<th>Peak titer GMT (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum: Vibriocidal antibody to Inaba</td>
<td>46 (20-80)</td>
<td>143 (40-640)</td>
</tr>
<tr>
<td>to Ogawa</td>
<td>35 (10-80)</td>
<td>69 (40-160)</td>
</tr>
<tr>
<td>Anti-LPS IgG</td>
<td>23 (20-40)</td>
<td>42.2 (20-1,280)</td>
</tr>
<tr>
<td>IgA</td>
<td>6 (2.5-20)</td>
<td>16.7 (2.5-320)</td>
</tr>
<tr>
<td>Jejunal fluid: Anti-LPS (sIgA)</td>
<td>2 (2)</td>
<td>8 (8)</td>
</tr>
</tbody>
</table>

Table 2
Rise of antibody responses after three oral doses of Pasteur vaccine (N = 19).

<table>
<thead>
<tr>
<th>Type of antibodies</th>
<th>No. (%) with ≥ fold rise</th>
<th>No. (%) with ≥ 2 fold rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>In serum Vibriocidal antibody to Inaba</td>
<td>8 (42.1%)</td>
<td>17 (89.5%)</td>
</tr>
<tr>
<td>to Ogawa</td>
<td>4 (21.1%)</td>
<td>13 (68.4%)</td>
</tr>
<tr>
<td>Anti-LPS IgG</td>
<td>5 (26.3%)</td>
<td>8 (42.1%)</td>
</tr>
<tr>
<td>IgA</td>
<td>6 (31.5%)</td>
<td>14 (73.7%)</td>
</tr>
<tr>
<td>In jejunal fluid sIgA anti-LPS</td>
<td>1 (5.3%)</td>
<td>1 (5.3%)</td>
</tr>
<tr>
<td>Any responses of the above</td>
<td>13 (68.42%)</td>
<td>19 (100%)</td>
</tr>
</tbody>
</table>

Table 3
Comparison of serum vibriocidal antibody responses after three doses of Pasteur vaccine or killed whole cell-B subunit vaccine.

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>No. of volunteers</th>
<th>Percent of volunteers with fold rise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inaba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 4</td>
</tr>
<tr>
<td>Pasteur</td>
<td>19</td>
<td>42</td>
</tr>
<tr>
<td>WC (1 × 10¹¹) + 1 mg B-subunit</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>WC (2 × 10¹¹) + 5 mg B-subunit</td>
<td>11</td>
<td>36</td>
</tr>
</tbody>
</table>

Vol 24 No 1 March 1993
Pasteur Oral Cholera Vaccine

