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INTRODUCTION

Clinical and epidemiologic evidence have
implied that human papillomavirus (HPV) is fre-
quently associated with the development of cervi-
cal carcinoma (Munoz and Bosch, 1989). The high-
risk HPV types (notably HPV 16 and 18) are as-
sociated with high-grade squamous intraepithelial
lesions and invasive cervical carcinomas, whereas
the low-risk types (HPV 6 and 11) are found mainly
in low-grade lesions (Lorincz et al, 1992; Munoz
and Bosch,1989). Although infection with high-
risk HPV types may be quite common, only a small
percentage of infected women develop invasive
cervical cancer (Young et al, 1989). Thus, HPV
infection alone may not be sufficient for the pro-
cess of malignant transformation, suggesting the
requirement of additional cellular events that fa-

cilitating the accumulation of genetic lesions.

Tumor suppressor gene p53 located on chro-
mosome 17p13.1 encodes a 53 kDa nuclear phos-
phoprotein with 393 amino acid residues. The wild
type p53 functions as a negative regulator by con-
trolling cell cycle at the G1-S transition (Kastan
et al, 1991; Levine et al, 1991). Generally, one
allele of the p53 gene is lost through a chromo-
somal deletion and the second allele undergoes
mutation within the gene. Chromosomal deletions
or point mutations in the region of the p53 gene
have been demonstrated in various human cancers,
including colon (Vogelstein et al, 1988), lung (Mori
et al, 1989), breast (Mazars et al, 1992), bladder
(Presti et al, 1990), and ovarian cancers (Eccles et
al, 1992). The mutations identified in the p53 gene
are clustered in 4 hotspot regions which coincide
with the evolutionarily most highly conserved re-
gions of the gene (Nigro et al, 1989).

In addition, abnormalities in p53 could be
mediated through protein inactivations. Many vi-
ral oncoproteins such as simian virus (SV) 40 large
T antigen and adenovirus E1B protein bind to and
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Abstract. Loss of p53 function has been implicated in a wide variety of human malignacies. Many studies
suggest that in cervical carcinoma p53 function is inactivated either by gene mutation or by complex
formation with E6 oncoprotein product of high-risk human papillomavirus (HPV). The aim of this study was
to determine the status of HPV infection and p53 gene mutation as well as their correlation in cervical
carcinomas. Formalin-fixed paraffin-embedded tissues of 12 cervicitis, 21 cervical intraepithelial neoplasia
grade 3 (CIN 3) and 17 squamous cell carcinomas were determined for the presence of HPV using poly-
merase chain reaction (PCR) amplification and dot blot hybridization. The status of p53 mutations in exons
5-8 was evaluated by polymerase chain reaction single strand conformation polymorphism (PCR-SSCP) and
confirmed by direct nucleotide sequencing. HPV infections were detected in all CIN 3  and squamous cell
carcinomas (100%). Mutations of p53 were present in 3 of 38 HPV-positive samples: one with an ATG➝

TTG transversion (Met➝ Leu) in codon 237 of exon 7; and the others with a TGC➝ TGG transversion
(Cys➝ Trp) in codon 242 of exon 7, and a CGT➝ CCT transversion (Arg➝ Pro) in codon 273 of exon 8,
respectively. Our findings show that the frequency of p53 mutation is low in primary cervical carcinoma and
that the p53 gene mutation and HPV infection are not mutually exclusive events in the development of
cervical cancer. Thus, other genetic events independent of p53 inactivation may also significantly contribute
to the carcinogenesis of the uterine cervix.
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cause p53 protein dysfunction (Lane and Crawford,
1979; Linzer and Levine, 1979; Sarnow et al, 1982).
Previous studies have shown that E6 protein of
high risk HPV formed a complex with p53 protein
resulting in degradation of p53 through the ubiquitin-
dependent proteolysis pathway (Scheffner et al,
1990; Werness et al, 1990). Moreover, HPV-nega-
tive cervical cancer-derived cell lines have shown
to contain mutations in the p53 gene, whereas cervical
cancer cells associated with HPV infections ex-
press the wild type p53 gene (Crook et al, 1991;
Scheffner et al, 1991). Taken together, the inacti-
vation of p53 is considered as an important role in
the development of cervical carcinoma and loss of
p53 activity can be achieved by two different
mechanisms;   either by mutation of the p53 gene
itself or by complex formation with HPV encoded
E6 protein.

In this study, we examined cervical carcino-
mas for the presence of p53 mutation by poly-
merase chain reaction single strand conformation
polymorphism (PCR-SSCP) and confirmed by di-
rect sequencing. HPV infection was determined
by PCR amplification and dot blot hybridization.
The status of p53 and HPV infection was also
analyzed.

MATERIALS AND METHODS

Cervical tissue samples and DNA extraction

A total of 50 formalin-fixed paraffin-embed-
ded tissues with pathological diagnosis as 12 cer-
vicitis, 21 cervical intraepithelial neoplasia grade
3 (CIN 3), and 17 squamous cell carcinomas were
used in this study. Genomic DNA from sections of
paraffin-embedded tissues was isolated by the
method of Wu et al (1990) and used for detection
of HPV DNA and p53 mutations.

Detection and typing of HPV

The presence of HPV DNA was detected by
PCR amplification of HPV L1 region using con-
sensus primers MY09 and MY11 (Manos et al,
1989) as described by Bauer et al (1991). The
consensus primers detect approximately 25 differ-
ent HPV types by a 450 base pair product. Human
β-globin gene was simultaneously amplified as a
control. Amplification was performed in 50 µl reaction
mixture containing 1 µl template DNA, 50 mM
KCl, 10 mM Tris-HCl pH 8.5, 4mM MgCl

2
, 200

µM each of deoxyribonucleoside triphosphate
(dNTP), 25 pmole of each HPV L1 consensus primer,

2.5 pmole of each β-globin primer (GH20 and PC04),
and 1.25 units of Taq DNA polymerase (Amplitaq,
Perkin-Elmer Cetus, USA). The samples were
subjected to 40 cycles of denaturation at 95ºC
for 1 minute, annealing at 50ºC for 1 minute and
extension at 72ºC for 2 minutes, with an addi-
tional 10 minutes at 72ºC during the last cycle.

HPV typing was done by dot blot hybridiza-
tion of HPV PCR products as described by
Lertworapreecha et al (1998) using type specific
HPV probes MY12, MY13, MY14, WD74, and
MY16 which are specific to HPV 6, 11, 16, 18,
and 33, respectively. Oligonucleotide sequences of
HPV L1 consensus primers, β-globin gene and type
specific HPV probes are shown in Table 1.

Detection of p53 mutations

Mutations of p53 gene were firstly screened
by  an improved nonisotopic PCR-SSCP as previ-
ously described by Pooart et al (1999). The intronic
primers specific for exons 5-8 of the p53 gene
were used for amplification (Koga et al, 1994)
(Table 1). Each reaction mixture (50 µl) contained
1 µl of DNA sample, 200 µM each of dNTP, 50
mM KCl, 10 µM Tris-HCl pH 8.5, 1.5 mM MgCl

2

for exons 6-8 (2 mM MgCl
2
 for exon 5), 26 µM

of each primer and 1.25 units Taq DNA polymerase
(Pharmacia Biotech, Uppsala, Sweden). Amplifi-
cation was carried out by 35 cycles of 30 seconds
at 94ºC, 30 seconds at 60ºC and 30 seconds at
72ºC with an additional 5 minutes at 94ºC before
the first cycle and 7 minutes at 72ºC after the last
cycle. Two microliters of PCR products were added
to 10 µl of formamide loading dye ( 90% formamide,
20 mM EDTA, 0.025% bromphenol blue and 0.025%
xylene cyanol). Samples were heated to 95ºC for
5 minutes and immediately put into an icebath.
Ten microliters of each sample were loaded onto
a 82x80x0.75 mm 15% polyacrylamide (69:1
acrylamide to N,N´-methylene-bis-acrylamide), 90
mM Tris-borate pH 8.0, 2 mM EDTA (TBE) gel.
The electrophoresis was carried out on a horizon-
tal electrophoresis apparatus (Mighty Small II SE
250, Hoefer Scientific Instruments, San Francisco,
USA) for 1  hour at 400 V at 15ºC using 1xTBE
as a running buffer.

The SSCP bands were detected using a silver
staining method as described by Bassem et al (1991)
with slight modifications. Briefly, the gels were
fixed in 10% ethanol for 3 minutes and in 1%
nitric acid for 3 minutes. The gels then were soaked
in impregnation solution (0.1 g AgNO

3
, 150 µl

formaldehyde in 100 ml deionized water) for 10
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Consensus primers for HPV L1 region

CGT CCM ARR GGA WAC TGA TC
GCM CAG GGW CAT AAY AAT GG

Type specific HPV probes

CAT CCG TAA CTA CAT CTT CCA (HPV type 6)
TCT GTG TCT AAA TCT GCT ACA (HPV type 11)
CAT ACA CCT CCA GCA CCT AA (HPV type 16)
GGA TGC TGC ACC GGC TGA (HPV type 18)
CAC ACA AGT AAC GAG TGA CAG (HPV type 33)

β-globin gene primers

GAA GAG CCA AGG ACA GGT AC
CAA CTT CAT CCA CGT TCA CC

Primers for exons 5-8 of p53 gene

TTC AAC TCT GTC TCC TTC CT
CAG CCC TGT CGT CTC TCC AG
GCC TCT GAT TCC TCA CTG AT
TTA ACC CCT CCT CCC AGA GA
AGG CGC ACT GGC CTC ATC TT
TGT GCA GGG TGG CAA GTG GC
TTC CTT ACT GCC TCT TGC TT
AGG CAT AAC TGC ACC CTT GG

Cases Types of HPV

11 16 18 16/18 33 untype HPV HPV
(+) (-)

Table 1
Oligonucleotide sequences of primers and probes for HPV, β-globin and p53.

Oligonucleotide sequences (5´ ➝  3´)

MY 09
MY11

MY12
MY13
MY14
WD74
MY16

GH20
PC04

Exon 5 sense
      antisense
Exon 6 sense
      antisense
Exon 7 sense
      antisense
Exon 8 sense
      antisense

M = A+C, R = A+G, W = A+T, Y = C+T

Table 2
The distribution of HPV types in samples tested.

Total
Histological
diagnosis

Cervicitis
CIN 3
Squamous CA*
Total

12
21
17
50

-
1
-
1

 -
 6
 8
14

-
2
5
7

-
1
2
3

-
1
2
3

-
10
-

10

-
21
17
38

12
-
-

12

CA*: carcinoma

minutes and subsequently in developing solution
(3 g Na

2
CO

3
, 150 µl formaldehyde, 100 µl  of 2

mg/ml Na
2
S

2
O

3
 in 100 ml deionized water) until

SSCP bands were discerned, then immersed in 5%
acetic acid for 5 minutes to stop reaction.

Samples which showed a band shift by SSCP
were subsequently sequenced by Sequenase PCR
product sequencing kit (Sequenase® version 2.0;
United States Biochemical, Cleveland, OH, USA)
according to the manufacturer’s instruction.

RESULTS

HPV analysis

HPV DNA was detected in 21 of 21 (100%)
CIN 3 and in 17 of 17(100%) squamous cell car-
cinomas. No HPV DNA was detected in 12 cervi-
citis subjects. The high-risk HPV types were mostly
found in both CIN 3 and squamous cell carcino-
mas and the predominant types appeared to be HPV
16 and 18. The distribution of HPV types in all
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subjects is shown in Table 2.

P53 mutations

All samples were subjected to PCR-SSCP
analysis to screen for mutations in the p53 coding
sequences of exons 5-8. The PCR products of exons
5-8 were 248, 181, 177 and 231 base pairs, re-
spectively. No p53 mutation was found in 12 cer-
vicitis. Of 38 HPV-positive samples detected, three
showed mobility shifts of DNA  (Fig 1). One was
in exon 7 of CIN 3 with untyped HPV (Fig 1A)
and the others were in exon 7 with HPV 16 and in
exon 8 with HPV 16/18 of squamous cell carcino-
mas (Fig 1B and 1C).

Dideoxynucleotide sequencing confirmed the
presence of p53 point mutations in these samples.
CIN 3 sample had an ATG to TTG transversion at
codon 237, resulting in substitution of methionine
for leucine (Fig 2A). Each squamous cell carci-
noma showed a missense point mutation in codons
242 and 273 changing TGC to TGG and CGT to
CCT transversion and causing substitution of cys-
teine for tryptophane and arginine for proline in
encoded protein, respectively (Fig 2B and 2C). In
these samples, a normal allele and mutated allele
were found at these sites.

DISCUSSION

More than 70 different HPV types have been
characterized and approximately 30 types are known
to be associated with male and female anogenital
tract diseases (Bergeron et al, 1992). Among these,
HPV 16, 18, 31, 33, and 45 are the most common
types associated with high grade CIN and inva-
sive cervical cancers (zur Hausen, 1991). Several
investigations show that the development of cer-
vical carcinoma correlates closely with the pre-
sence of certain HPV types, such as HPV 16 and
18 (Campion et al, 1986; Schneider et al, 1987),
our findings are consistent with those previous
reports.

Inverse correlation between infection of on-
cogenic HPV and mutation of p53 gene has been
observed in both cervical cancer-derived cell lines
and primary cervix tumors (Crook et al, 1991, 1992;
Iwasaka et al, 1993; Scheffner et al, 1991;  Srivastava
et al, 1992). This correlation raises the hypothesis
that p53 inactivation can be achieved either by
mutation in HPV-negative cases or by complex
formation with HPV E6 oncoprotein in HPV-posi-
tive cases. Contrary to previous reports, this study

showed that mutations of p53 gene could occur in
HPV-positive cervical cancers. Moreover, we also
studied p53 status in 12 selected HPV-negative
cases and found no p53 mutation in these cases
(data not shown). Furthermore, many recent stud-
ies have demonstrated that p53 mutation may not
be a functionally important feature in some HPV-
negative cervical carcinoma cell lines and primary
tumors (Busby-Earle et al, 1994; Choo and Chong,
1993; Kessis et al, 1993;  Kurvinen et al, 1994;
Pao et al, 1994). They also suggested that some
cervical cancers could develop without involve-
ment of either HPV infection or p53 gene muta-
tion. The HPV-negative carcinomas must have
achieved their malignant phenotype by a different
pathway including genetic aberration other than
inactivation of p53. Although previous studies

Fig 1–Screening of p53 mutations by PCR-SSCP. N, nor-
mal DNA; T, tumor DNA. (A) CIN 3 exon 7. (B)
Squamous cell carcinoma exon 7. (C) Squamous cell
carcinoma exon 8. Mutations are indicated by arrow-
heads.

Fig 2–Nucleotide sequence analysis of the cases that
showed mobility shift on SSCP. (A) CIN 3 exon 7
(ATG➝ TTG). (B) Squamous cell carcinoma exon 7
(TGC➝ TGG). (C) Squamous cell carcinoma exon 8
(CGT➝ CCT). Arrowheads indicate positions of mu-
tated bases.

➤

➤

➤

➤➤
➤
➤
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have revealed that a vast majority of mutational
hot spots exist in the exons 5-8 of the p53 gene
(Nigro et al, 1989), the possibility that mutations
locate outside these regions cannot be excluded.

The presence of p53 mutations in HPV-posi-
tive cases does not support the hypothesis. The
coexistence of p53 mutation and HPV genome in
cervical carcinomas has been demonstrated by several
investigators (Helland et al, 1993; Kim et al, 1997;
Mittal et al, 1995;  Munirajan et al, 1998) and is
consistent with our observations. It should be noted
that the presence of p53 mutation in a HPV-posi-
tive CIN 3 sample may help in the prognosis of
cervical cancer since p53 mutation has been shown
to occur in a late stage of this disease (Bremer et
al, 1995). Three point mutations at codons 237,
242, and 273 were found in this study, whereas
only a point mutation at codon 273 has been re-
ported by others in cervical carcinomas (Crook et
al, 1991,1992; Park et al, 1994).

In conclusion, our findings indicate that  mu-
tations in the highly conserved regions of the gene
are relatively infrequent in cervical carcinoma. No
correlation has been found between p53 mutational
status and the presence of HPV in this cancer. In
contrast to other solid tumors, alterations of p53
gene does not appear to be involved in cervical
carcinogenesis. The results also suggest that an
alternative pathway independent of p53 inactiva-
tion may play an important role in contributing
the subsequent accumulation of genetic alterations
associated with cervical carcinogenesis.
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