IN VITRO SENSITIVITY OF TRICHOMONAS VAGINALIS TO DNA TOPOISOMERASE II INHIBITORS

Porntip Chavalitshewinkoon Petmitr, Muhaimin Ramdja and Somsri Kajorndechakiat

Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

Abstract. Vaginal trichomoniasis is a highly prevalent sexually transmitted disease caused by a microaerophilic protozoan Trichomonas vaginalis. The disease is one of the most common sexually transmitted disease and can augment the predisposition of individuals to human immunodeficiency virus (HIV) infection. Although the disease can be treated with metronidazole and related 5-nitroimidazole, cases of trichomonal vaginitis which are refractory to standard treatment seems to be increasing. Clearly, new antitrichomonal agents are needed and DNA topoisomerase II may acts as a new target for antitrichomonal agents. In this study, in vitro sensitivity of T. vaginalis to DNA topoisomerase II was investigated. Axenic culture of local strain of T. vaginalis was performed. Both eukaryotic and prokaryotic DNA topoisomerase II inhibitors such as ellipticine, amsacrine and fluoroquinolones were tested for effectiveness against T. vaginalis in vitro compared to metronidazole. T. vaginalis was sensitive to metronidazole under aerobic conditions. Minimal inhibitory concentrations (MICs) of eukaryotic DNA topoisomerase II inhibitors, ellipticine and amsacrine, were 6.4 mM and 64 mM, respectively. The MICs of prokaryotic DNA topoisomerase II or DNA gyrase inhibitors; ciprofloxacin, ofloxacin and norfloxacin were 64, 960 and 1,280 mM, respectively. Based on the results, among DNA topoisomerase II inhibitors ellipticine was the most effective drug against T. vaginalis in vitro whereas fluoroquinolones did not show high antitrichomonal activity.

INTRODUCTION

Trichomonas vaginalis is a protozoan commonly found in the human genitourinary tract and transmitted primarily by sexual intercourse. This organism causes vaginitis in women and non-gonococcal urethritis in men. T. vaginalis vaginitis is one of the most common sexually transmitted diseases (STD), with around 120 million worldwide estimated to suffer from trichomoniasis every year. The disease is highly prevalent throughout the world including developing countries (Brabin et al, 1995).

More disturbing is the number of asymptomatic cases that are not treated. In North America alone more than 8 million new cases are reported yearly (WHO, 1995) with an estimated rate of asymptomatic cases as high as 50% (Fouts and Kraus, 1980; Wolner-Hanssen et al, 1989). This disease has important medical, social and economic implications. Women who are infected during pregnancy are predisposed to premature rupture of the placental membranes, premature labor and low-birth-weight infants (Hardy et al, 1984; Minkoff et al, 1984). Also linked to the disease are cervical cancer (Gram et al, 1992; Kharsany et al, 1993; Zhang and Begg, 1994), atypical pelvic inflamma-

*Corresponding author
ceptibility to metronidazole. Typically, the treatment-resistant isolates show low susceptibility to the drug in vivo and under aerobic conditions in vitro. The prevalence of metronidazole-resistant T. vaginalis seems to be increasing (Muller, 1983; Lossick, 1982). Furthermore, concern about mutagenic and carcinogenic potential of metronidazole has been raising (Johnson, 1993). On the basis of this information, it is clear that research for development of new antitrichomonad drugs should be given higher priority.

DNA topoisomerases are a unique class of enzymes that change the topological state of DNA by breaking and rejoining the phosphodiester backbone of DNA. DNA topoisomerases are involved in various DNA transactions such as replication, transcription, and recombination in both prokaryotes and eukaryotes (Wang and Wang, 1985; Osheroff, 1989). Based on their differences in their reaction mechanisms, DNA topoisomerases are classified into two types. Type I DNA topoisomerase changes the topological state of DNA by transiently breaking one strand of the DNA double helix and therefore characteristically changing the linking number in multiples of one. Type II DNA topoisomerase catalyses the strand-passing reaction by making a transient, enzyme-bridge, double strand breaks and consequently changing the linking number of DNA in multiples of two (Liu, 1989). As these processes are essential for multiplication of all cells, inhibition of these reactions will stop cell division and cell growth (Liu, 1989). DNA topoisomerases have been identified as the targets of chemotherapeutic compounds and it is proposed that they may also be possible targets for antitrichomonad drugs.

DNA topoisomerase II inhibitors were tested in the present study to determine the minimal inhibition concentration (MIC) against T. vaginalis in culture. The tested drugs are ellipticine, amsacrine (m-AMSA), fluoroquinolones, and metronidazole as a standard drug. Ellipticine, amsacrine (m-AMSA) are eukaryotic DNA topoisomerase II inhibitors. Fluoroquinolones are inhibitors of DNA gyrase, a bacterial DNA topoisomerase II.

MATERIALS AND METHODS

Parasite

A local strain of Trichomonas vaginalis employed for this study was taken from a patient at Rajavithi Hospital, Bangkok, Thailand.

Cultivation of Trichomonas vaginalis

Tryplicase yeast extract maltose (TYM) medium was used for culturing Trichomonas vaginalis. The medium consisted of tryplicase (BBL) 4 g, yeast extract 2 g, maltose 1 g, ascorbic acid 0.2 g, KCl 0.2 g, KHCO₃ 0.2 g, K₂HPO₄ 0.1 g, KH₂PO₄ 0.2 g, agar (Bacto agar) 0.1 g. These ingredients were mixed with 180 ml H₂O, dissolved with heat and aliquot into screw-capped tube containing 7 ml of medium then all tubes were autoclaved.

Axenic cultures of Trichomonas vaginalis

A single colony of T. vaginalis was obtained aseptically by using agar plate culture technique (Hollander, 1976) and transferred to a screw-capped tube containing 7 ml TYM medium. Before using, 1 ml inactivated human serum was added to the medium as nutrient supplement. To prevent bacterial contamination of the culture, antibiotics (1,000 U/ml penicillin G potassium salt and 500 mg/ml streptomycin sulfate) were used. The cultures were then incubated at 37ºC. Subcultures were usually done every 2-3 days.

Drug preparation

m-AMSA and ellipticine were initially dissolved in absolute DMSO to give a concentration of 9 mM. Metronidazole was dissolved in sterile distilled water to give a concentration of 1mM. Fluoroquinolones (ofloxacin, norfloxacin and ciprofloxacin) were dissolved in distilled water to give a concentration of 10 mM. Drug solutions were freshly prepared before use by diluting with TYM medium to appropriate concentration.

Effects of DNA topoisomerase II inhibitors on T. vaginalis

Standard microtiter plates with 8 rows of 12 flat-bottom wells were used in the test. Various concentrations of the drug added in the wells in 50 ml aliquots. A 200 µl of suspension containing 5 x 10⁶/ml T. vaginalis was placed into each well (Tachezy et al, 1993). All of the drug concentrations and controls were tested in duplicate. The plates were incubated at 37ºC. The plates were examined after 24 hours with an inverted microscope at x25 to search for motile trichomonads. The minimal inhibitory concentration (MIC) is defined as the lowest concentration of the drugs in which no motile organism was seen.

In order to observe the effect of DMSO on the parasite, an experiment was performed expos-
ing *T. vaginalis* to DMSO in ten-fold dilution for 24 hours. It was observed that DMSO 20% did not effect the motility of the parasite.

RESULTS AND DISCUSSION

A local strain of *T. vaginalis* was cultured axenically in TYM Diamond’s Medium (Diamond, 1957) supplemented with 1% human serum. After culturing 2-3 days, *T. vaginalis* were observed under binocular microscope. In a freshly wet-mounted preparation, it can be observed that *T. vaginalis* were actively motile and usually pear-shaped. The organisms vary somewhat in size and shape and are most easily identified by their twitching motility. Physiochemical conditions do alter the appearance of the parasite. In axenic culture the shape of the protozoan tends to be uniform, ie pear shaped or oval (Fig 1). Under certain conditions, *T. vaginalis* can round up and internalize the flagellum. Some believe these forms to be pseudocysts, but it is more likely that they are degenerate forms of *T. vaginalis*, since they have not been reported to give rise to normal motile forms.

Giemsa staining demonstrates morphological characteristics of *T. vaginalis*. There are four free anterior flagella and the fifth posterior flagellum. Undulating membrane that extends about half way across the organism. A slender hyaline, rod-like structure, called an axostyle commences at the nucleus and bisects the protozoan longitudinally. It protrudes through the posterior of the parasite terminating in a sharp point. A prominent nucleus in *T. vaginalis* is located in its anterior portion.

Table 1 shows the minimal inhibitory concentrations (MIC) of *m*-AMSA, ellipticine, fluoroquinolone antibiotics and metronidazole; Fig 2 shows the morphological effect of ellipticine. The local strain of *T. vaginalis* which was employed throughout this study is sensitive to metronidazole under aerobic conditions (MIC=0.096 µM). Aerobic resistant strains of *T. vaginalis* can attain MIC >100 µM in vitro (Lossick et al, 1986). Aerobic resistance to metronidazole can be developed in vitro under low drug pressure applied to the parasite for a long period of time. This fact is of concern with regard to the possibility of appearance of drug-resistant *T. vaginalis* due to inappropriate metronidazole regimens in patients (Tachezy et al, 1993).

Cosar and Julou (1959) first demonstrated

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Minimal inhibitory concentration (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipticine</td>
<td>6.4</td>
</tr>
<tr>
<td>Amsacrine</td>
<td>64</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>960</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>1,280</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>64</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Fig 1–The appearance of *Trichomonas vaginalis* in control well after incubation for 24 hours (x25).

Fig 2–The appearance of *Trichomonas vaginalis* exposed to minimal inhibitory concentration of ellipticine (6.4 mM) for 24 hours (x25).
antitrichomonad activity of metronidazole. When metronidazole was first introduced, cure rates approximated 95%, but within 2 years of its introduction, the first case of metronidazole resistance was reported in Canada. Nitroimidazole resistance has been reported in most areas of the world and, in recent years, the prevalence of metronidazole resistance seems to be increasing (Lossick, 1986; Muller, 1988).

It is therefore wise to consider other potential drugs for the treatment of trichomoniasis. Among DNA topoisomerase II inhibitors tested, ellipticine, a eukaryotic DNA topoisomerase II inhibitor, showed the lowest MIC against T. vaginalis (MIC=6.4 μM). The appearance of parasites in culture wells treated with MIC of ellipticine is demonstrated in Fig 2. Most of parasites were lysed and disappeared, only a few rounded parasites were observed. Amsacrine (m-AMSA), another eukaryotic DNA topoisomerase II inhibitor containing strong antitumor activity (Wilson et al, 1981) showed lower activity (MIC=64 μM) against T. vaginalis. Ellipticine is non intercalating agent whereas amsacrine is DNA intercalator (Pommier, 1993). However, as DNA topoisomerase II inhibitors, ellipticine and amsacrine are able to stimulate topoisomerase II-mediated DNA cleavage and induced fragmentation of chromosomal DNA in cells (Furlong et al, 1978; Ralph, 1980; Nelson et al, 1984). In addition, amsacrine also demonstrated antimalarial activity: the IC50 against Plasmodium falciparum K1 strain was 0.5 μM (Chavalitshewinkoon et al, 1993).

The effects of prokaryotic DNA topoisomerase II inhibitors, including ofloxacin, norfloxacin and ciprofloxacin, were also determined. MICs of ofloxacin, norfloxacin, and ciprofloxacin were 960 μM, 1,280 μM and 64 μM, respectively (Table 1). Ciprofloxacin was the most effective fluoroquinolone against T. vaginalis in vitro. However, its MIC was 10 times higher than that of ellipticine. Since the principal target of fluoroquinolones is prokaryotic DNA topoisomerase II (DNA gyrase), an essential bacterial enzyme which catalyses the introduction of a negative superhelical twist into closed covalently circular chromosomal and plasmid DNA within the bacterial cell (Drlica, 1984). In fact, T. vaginalis does not contain mitochondria but has a special organelle, hydrogenosome (Muller, 1980), and DNA is not present in this organelle (Johnson et al, 1993). Therefore, it seems that these fluoroquinolones do not have an appropriate target in T. vaginalis compared with P. falciparum which is sensitive to fluoroquinolones, and the mitochondrial DNA topoisomerase II of malaria parasite has been suggested as a drug target. However, further work needs to be done to show whether DNA topoisomerase I or II possibly act as targets for trichomoniasis chemotherapy.

ACKNOWLEDGEMENTS

This work was supported by a grant from Mahidol University. We would like to thank Mr Saiyud Incheng and Miss Niramol Thima, Department of Protozoology, Faculty of Tropical Medicine, Mahidol University for their technical assistance.

REFERENCES

Cameron DW, Padian NS. Sexual transmission of HIV and the epidemiology of other sexually transmitted diseases. AIDS 1990; 4 (suppl 1): 99-103.

Diamond LS. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 1957; 43: 488-90.

Osheroff N. Biochemical basis for the interaction of type I and type II topoisomerase with DNA. *Pharmacol Ther* 1989; 41: 223-41.

