DENGUE VIRUS INFECTION OF THE CENTRAL NERVOUS SYSTEM (CNS): A CASE REPORT FROM BRAZIL

RMR Nogueira1, AMB Filippis1, JMO Coelho2, PC Sequeira1, HG Schatzmayr1, FG Paiva2, AMO Ramos3 and MP Miagostovich1

1Departamento de Virologia/IOC/FIOCRUZ; 2Centro de Pesquisas Hospital Evandro Chagas-CpHEC, FIOCRUZ. Av Brasil, 4365, Rio de Janeiro/RJ, CEP 21045-900; 3Laboratório Central (LACEN), Natal/Rio Grande do Norte; 4Setor de Verificação de Obitos, RN

Abstract. Dengue infection that is accompanied by unusual complications has been described in Brazil. We report on the presence of dengue virus in the central nervous system (CNS) of a patient who died in 1998 in Rio Grande do Norte, northeast Brazil. DEN-2 viruses were isolated from the brain, liver, and lymphnode tissue of a 67-year-old man whose signs and symptoms were those of dengue infection and a secondary immune response. A postmortem revealed nose bleeds a liver that was brownish with yellow areas, and pulmonary and cerebrae congestion. Immuno-peroxidase staining showed a dengue antigen-specific positive reaction in the gray matter cells of the cerebrall cortex; a granular citoplasmatic reaction was seen in the neurons. Dengue infection should always be considered as a cause encephalitis in tropical countries, especially in those where the disease is endemic.

INTRODUCTION

Dengue fever is caused by one of four closely related dengue virus serotypes (types 1 to 4). In most cases infection with any of the serotypes results in a mild self-limiting febrile illness. However, in some dengue infections hemorrhagic manifestations and signs of circulatory failure occur, leading to sudden and often fatal hypovolemic shock - the dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) (WHO, 1986).

Neurological disorders, cardiac abnormalities and hepatitis have been reported as unusual complications of both classic dengue infection and the hemorrhagic forms; in recent years growing numbers of dengue cases have been associated with these complications (Nimmannitya et al., 1987; George et al., 1989; Patey et al., 1993; Thisyakorn and Thisyakorn, 1994; Lum et al., 1996; Row et al., 1996).

The neurological manifestations have been shown to be secondary to vasculitis, with resultant fluid extravasation, cerebral edema, hypoperfusion, hyponatremia and hepatic and/or renal failure. The lack of direct evidence of dengue virus invasion of and replication in the brain justifies using the term encephalopathy, rather than encephalitis, to describe the neuropathology associated with dengue infections (Nimmannitya et al., 1987). However, cases of true dengue encephalitis have recently been reported (Lum et al., 1996; Hommel et al., 1998; Ramos et al., 1998; Thisyakorn et al., 1999).

The introduction of DEN-1 and DEN-2 viruses in Brazil in 1986 and 1990 respectively resulted in high dengue virus activity, with approximately 2 million cases reported from 1986 to 2000. The co-circulation of DEN-1 and DEN-2 viruses in 25 of 27 Federative Units has changed the clinical profile of dengue infections in Brazil. Besides the increasing number of DHF/DSS, dengue infection with unusual manifestations have been observed (Souza et al., 1995; Vasconcelos et al., 1995; Cordeiro, 1997).

We report on the presence of dengue virus in the central nervous system (CNS) of a patient from the State of Rio Grande do Norte, in the northeast region of Brazil.
Case report

A 67-year-old man was examined as an outpatient on March 25th, 1998, and was found to have fever, exanthem, pruritus, vomiting, generalized pain, mainly in the abdominal and lumbar regions, and anorexia of 4 days’ duration. A diagnosis of dengue was based on the clinical findings and epidemiological data.

The case was not considered severe enough to warrant admission to hospital; the patient was treated symptomatically and discharged. The patient died, 4 hours later, on his way back to the hospital, an autopsy was performed and general postmortem findings included evidence of nose bleeds, a brownish liver with yellow areas and lung congestion. The brain exhibited edema and congestion.

Samples of blood heart and other organ tissues were collected and sent to the Flavivirus Laboratory at the Oswaldo Cruz Institute (FIOCRUZ). Necropsy tissue was formalin-fixed and paraffin-embedded and subjected to histological and immunohistochemical studies.

Brain tissue sections were stained with hematoxylin eosin and showed edema and no infiltration of mononuclear cells. More data concerning the microscopic findings were not available because the laboratory could analyse only limited amounts of tissue from each organ. The immunoperoxidase stain (VECTASTAIN ABC Kit, Vector Laboratories Inc, Burlingame, CA, USA) detected a dengue-antigen-specific positive reaction in cells of cerebral cortical gray matter; a granular and cytoplasmatic reaction was observed in neurons (Fig 1).

DEN-2 virus was isolated from a 10% suspension of ground brain, liver and lymph node tissues in Leibovitz medium, inoculated into Aedes albopictus (C6/36) cells adapted for 34.5°C and typed by using specific monoclonal antibodies (Gubler et al, 1984). No virus was isolated from blood or from heart, spleen, lung or thymus tissue. DEN-2 virus RNA was amplified from ground brain tissue according to the procedure described by Lanciotti et al (1992).

Nucleotides from the E/NS1 junction (240 nt) were amplified using RT-PCR according to the method of Rico-Hesse et al (1997). The sequencing reaction was performed by using the Taq DyeDeoxy Terminator Cycle Sequencing Kit (Applied Biosystem, Inc, USA); cycle sequencing parameters were those given in the manufacturer’s protocol. Analysis of deduced amino acid sequence revealed 98% similarity with Jamaica 1998 DEN-2 strain (GenBank Accession, no M32950). The average similarity of the detected strain and other DEN-2 Brazilian strains was 98% for both nucleic acid and amino acid sequences (data not shown).

Serum immunoenzymatic assay (Mac-Elisa and G-Elisa) results revealed no IgM titers and IgG specific dengue antibody titer of 1/640, suggesting a secondary immune response (Kuno et al, 1987; Miagostovich et al, 1999).

DISCUSSION

In Brazil, dengue with involvement of CNS was first observed in 1987 during an epidemic in the state of Rio de Janeiro, when five fatal dengue cases were reported (Chimelli...
et al., 1990); in a retrospective study, the use of the immunohistochemical procedure confirmed dengue infection in three of these cases, showing dengue virus antigen in the CNS. Extended immunohistochemical studies performed in one case demonstrated infiltration of CD68+ macrophages after the breakdown of the blood-brain barrier, showing that virus-infected macrophages could be one of the pathways by which virus enters the brain (Miagostovich et al., 1997).

Further cases of dengue infection presenting with neurological manifestations, eg drowsiness, restless, mental disorders, convulsions, dizziness, depression and paralysis and with neurological sequelae, eg signs of Parkinson’s disease and tetraplegia, have been reported from in Ceará and Recife (Vasconcelos et al., 1995; Cordeiro et al., 1997); those states are located in the northeast region, associated with more than 80% of dengue infection in the country, especially after 1994. The case reported on here occurred in Natal, the State capital; 35 of the city’s 36 districts were infested by Aedes aegypti (house index of about 10%) in 1997. In the same year, the city was responsible for 56.5% of the reported cases (15,057) in the State and reported another case with CNS involvement during an epidemic peak in 1997 (Cunha et al., 1999).

The autopsy findings for our patient showed cerebral edema described previously as the predominant autopsy finding in dengue encephalopathy (Hommel et al., 1998). The rapid progression to death in one case in which dengue virus was isolated from the brain has been described (Janssen et al., 1999). As with our patient, the subject studied by Janssen et al. (1999) appeared to have had a relatively benign disease and dengue virus infection was confirmed only by necropsy specimen.

Determining the presence of dengue antigen in brain tissue, particularly in neurons, astrocytes, microglia and endothelial capillary cells, by immunohistochemistry using antibody specific for dengue has been described previously (Ramos et al., 1998).

Although a secondary dengue infection could be more aggressive, resulting in DHF/DSS, the presence of the virus in the brain at such an early stage is probably the best argument in favor of a true encephalitis (Hommel et al., 1998); in addition Lum et al. (1996) provided strong evidence that DEN-2 and DEN-3 viruses can cause dengue encephalitis in both primary and secondary infections. An association between the Southeast Asian genotype of DEN-2 viruses (Jamaica genotype) and the increased pathogenicity of dengue infection in the Americas has been suggested (Rico-Hesse et al., 1997).

Unfortunately, it was not possible to obtain the past history of the patient in relation to individual risk factors such as chronic disease, although his chronic alcoholic dependency was known.

The isolation of dengue viruses from CSF and brain in many cases in which encephalitis appears early in the course of disease suggests the breakdown of the blood-brain barrier and the direct invasion of the brain by viruses that induce cerebral damage (Lum et al., 1996; Hommel et al., 1998; Ramos et al., 1999).

Although more data, including laboratorial results for the patient, were not available, we would like to emphasise that dengue infection should be considered in cases of encephalitis in the tropics, especially in those countries in which the disease is endemic a caution echoed by Hommel et al (1998).

ACKNOWLEDGEMENTS

The authors are thankful to Eliane Saraiva Machado de Araújo, José da Costa farias Filho and José de Carvalho Filho for their technical support.

This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Oswaldo Cruz Foundation. RMRN, HGS and MPM were supported by fellowships from CNPq. Grant no. 400164-98-1.
REFERENCES


