INTRODUCTION

Humans acquire the intestinal trematode, *Stellantchasmus falcatus*, by consumption of raw and/or undercooked freshwater fish containing their infective stages or metacercariae. *S. falcatus* is one of the heterophyid flukes reported in humans in northern Thailand (Kliks and Tantachamrun, 1974; Radomyos et al., 1998). As for the treatment of heterophyid flukes, niclosamide at a dosage of 6 g over 3 alternate days has been recommended for *Heterophyes heterophyes* infection (Khalil et al., 1964), or 100-125 mg/kg for *Metagonimus yokogawai* infection (Rim, 1975), and 40 mg/kg for *Haplorchis taichui* infection (Sukontason et al., 2000). However, there has been no report on drugs and traditional anthelmintic plants for treating *S. falcatus* infections, in experimental animals or humans. Therefore, this study was undertaken to investigate the effect of traditional anthelmintic plants on *S. falcatus*, compared with niclosamide.

The ebony tree (*Diospyros mollis* Griff.) of the family Ebenaceae, is widely found in Thailand. The berries of this plant, popularly known as Maklua, are used extensively to dye black silk since ancient times. Local herbal medicines have used *D. mollis* to treat intestinal diseases (Sadun and Vajrasthira, 1954).

Lemon grass, *Cymbopogon citratus* (DC. ex Nees) Stapf, of the family Gramineae, is an aromatic and medicinal tropical plant with a clumped, bulbous stems that ultimately become leaf blades. The stems and leaves are used for cooking and utilized as traditional medicine such as using against coughing cuts, asthma, and bladder disorders, as a diaphoretic, and to relieve headache and abdominal pain.

Correspondence: Dr Chalobol Wongsawad, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: cwongsawd@yahoo.com

MATERIALS AND METHODS

Metacercarial stage *S. falcatus* were immediately collected from half-beaked fish, *Dermogenus pusillus*, by using acid pepsin solution at a ratio of 1 g of fish and 10 ml of acid pepsin solution in a blender. The digested material was incubated in a shaking water bath for 1 1/2 hours at 37°C and subsequently passed through two layers of wet gauze. The digested material was rinsed with 0.85% sodium chloride solution and examined for metacercariae under a stereomicroscope.

The identification of metacercariae was carried out by morphological examination based on Scholz et al. (1991) and Wongsawad et al. (2000) under a compound microscope.

There were four experiments in this study. Each experiment contained five three-day-old chicks (*Gallus gallus domesticus*) weighing 60-70 g. Each chick was intragastrically inoculated with 500 encysted active metacercariae via a polyethylene tube (feeding tube), then kept in a feeding cage and fed with commercial chick food for 4 days. All experiments were done simultaneously, as follows; experiment 1 was the control group; experiment 2, niclosamide-treated (Yomesan tablets; Bayer, Germany) at a single dose of 40 mg/kg body weight; experiment 3, *D. mollis-*
TREATMENT OF S. FALCATUS WITH ANTIHELMINTHIC PLANTS

treated, at the single dose of 1.6 ml/kg body weight; and experiment 4, C. citratus-treated, at the single dose of 350 ml/kg body weight.

Chicks were sacrificed at day 2 after drug administration. The chick’s intestines were resected and scraped, then rinsed with 0.85% sodium chloride solution. The sediment was examined under a stereomicroscope for adult S. falcatus. The number of worms recovered in the treated and control groups were compared by Mann-Whitney U test.

RESULTS

The result of treating S. falcatus in Gallus gallus domesticus is shown in Table 1. A single dose of niclosamide given at 40 mg/kg body weight, was able to eradicate the parasites effectively. A similar result was observed in the D. mollis-treated group. The mean worm recoveries in niclosamide and D. mollis-treated groups were 20 and 22, respectively, which was significantly different from the control group (p<0.05), whereas C. citratus had no effect on the number of parasites recovered.

DISCUSSION

The numbers of parasites found in the control and C. citratus groups were highly variable between chicks. Sukontason et al (2000) also found this phenomenon in studies of Haplorchis taichui in mice, similar to this study of S. falcatus in chicks, with significant differences from niclosamide and D. mollis-treated groups (p<0.05). It is generally noted that the number of flukes recovered was much smaller than the number of cysts administered.

Niclosamide has previously been reported in the treatment of intestinal cestode infection (Katz, 1986); it has also been reported as a treatment for trematodes such as Fasciolopsis buski in humans (Suntharasamai et al, 1974). As for minute intestinal flukes, this drug was effective against H. heterophyes and M. yokogawai, but higher dosages were required (Rim, 1975). Niclosamide at a dosage of 40 mg/kg body weight has eradicated H. taichui from the intestines of mice (Sukontason et al, 2000). However, this same property may be useful in eradicating simultaneously, with the same or nearly the same dose, other small flukes in the intestines.

Praziquantel, at the same dosage used to treat O. viverrini infection (single dose 40 mg/kg body weight), has also been proven to eradicate both O. viverrini and minute intestinal flukes (Radomyos et al, 1998). Low doses of praziquantel may be effective against not only minute intestinal flukes but also O. viverrini, as indicated by the 44% cure in O. viverrini-infected patients treated with a single dose of 25 mg/kg body weight (Bunnag and Harinasuta, 1981).

D. mollis as a single dose of 2-4 g/kg body weight in humans and dogs was able to eradicate Ancylostoma duodenale, Necator americanus, Enterobius vermicularis, Strongyloides stercoralis, Fasciolopsis buski, Taenia saginata, and T. solium (Mokkhasmit and Harinasuta, 1960). With preliminary studies, the crude extract of D. mollis at a single dose of 1.6 ml/kg body weight was able to eradicate S. falcatus in chicks.

This is the first report of niclosamide and traditional anthelminthic plants being used against S. falcatus. This information is particularly important for public health care, due to the high prevalence of this parasite in human populations in northern Thailand (Radomyos et al, 1998).

ACKNOWLEDGEMENTS

The authors wish to thank Mr Palongyut Sripalwit, Ms Kanda Kumchoo, Mr Suksan Chuboon, Ms Kingkan Boonchot, and Ms Passaphan Luangphi for

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Regimes</th>
<th>Number of recovered worms range(mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>132-274 (229)</td>
</tr>
<tr>
<td>Niclosamide</td>
<td>40 mg/kg</td>
<td>4-40 (20)</td>
</tr>
<tr>
<td>Diospyros mollis</td>
<td>1.6 ml/kg</td>
<td>9-41 (22)</td>
</tr>
<tr>
<td>Cymbopogon citratus</td>
<td>350 ml/kg</td>
<td>157-192 (180)</td>
</tr>
</tbody>
</table>
their assistance. Special thanks are extended to the Parasitology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University and the Applied Technology in Biodiversity Research Unit, Institute for Science and Technology Research and Development.

REFERENCES


