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Abstract. Disease mapping, amethod for displaying the geographical distribution of disease occur-
rence, has received attention for more than 2 decades. Because traditional approaches to disease
mapping have some deficiencies and disadvantages in presenting the geographical distribution of
disease, the mixture model-as an alternative approach-overcomes some of these deficiencies and
provides a clearer picture of the spatial risk structure. The purpose of this study was twofold: (1) to
investigate the geographical distribution of malariain Thailand during 1995, 1996, and 1997 by ap-
plying the mixture model to disease mapping, and (2) to investigate the dynamic nature of malariain
Thailand during the 3-year time frame by applying the space-time mixture model. Non-parametric
maximum likelihood estimation was employed to estimate the parameters of both the mixture model
and the space-time mixture model. Applying Bayes' theorem, the 76 provinces of Thailand were
classified into component risk levels by the rate of malaria for each province. Malaria intensively
occurred in 4 provinces on the Thai-Myanmar border and in 2 provinces on the Thai-Cambodian
border. Of the 76 provinces studied, 10 showed an increasing trend over the 3-year period. A com-
parison of the map based on the mixture model with the map based on the traditional percentiles
method indicates that the non-parametric mixture model removes random variability from the map
and provides a clearer picture of the spatial risk structure. The advantage of the mixture model
approach to disease mapping is the graphical visual presentation of the prevalence of disease. The
space-time mixture model more adeguately investigates the dynamic nature of disease than does the
mixture model.

INTRODUCTION areawith asmall population. In such acase, both
) _ i ) the observed and the expected valuesarelow. Asa
Disease mapping, amethod for displaying the result, an area with a small population tends to

geographicd di_stri bution of disease occurrence, has present an extreme SMR, yielding amap which is
received attention for more than 2 decades. The dominated by the least reliable information
tradiitional percentilesmethod frequently isapplied - (Bermardinelli et al, 1992; Heisterkampet al, 1993).
0 _the S_tandafd|zed Mortality Ratio (SM R) 8S.the Another traditional method, the significant
epidemiological measure under consideration. method. is based on aC|aSS|'ficati'on using the p-
However, this approach has been criticized. One ' . S

oL P . value. However, adisease map which is based on
criticismisthat classification based on percentiles : :
) . ) this approach often faces the problem of mis-clas-
israther arbitrary, becausethereisno guaranteethat e :

e . . sfication aswell, becausean areawith asmall popu-
s_uch aclassification can validly detect high or low lation size has a greater chance of showing a sig-
risk areas (Schlattmann etal, 1993). Anotherprob- oo it (Bshning, 1999). Additionally, the
lem involves the instability of the crude SMR, es- Lo
pecially when rare diseases are investigated in an significant method gpproach faces the problem of

y g multipletesting, and even adjusting for the number
of comparisons does not lead to a consistent esti-
mate of heterogeneity (Schlattmann et al, 1999).
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mapping disease. Empirical Bayes (EB) estima-
tion provides a more stable relative risk estimate,
and thereby overcomes some deficiencies of tradi-
tional maps which are based on the SMR. It was
found that the EB approach removes the random
variability whichispresentin datafrom smal popu-
lation counts (Bohning, 1999; Bohning and
Schlattmann, 1999), leading to asmooth map with
fewer extremes in the relative risk estimates
(Claytonand Kaldor, 1987; Marshall, 1991; Moallie
and Richardson, 1991; Devine and Louis, 1994).
However, the EB approach lacks a post hoc classi-
fication of the posterior estimate of the epidemio-
logical measure.

As a solution to the foregoing, mixture mod-
elling has been proposed for disease mapping
(Bohning and Schlattmann, 1999). The mixture
model approach more appropriately reduces the
random variation in the disease map than do the
percentiles method, the significant method, or the
EB estimation. A disease map based on the mix-
turemodel approach not only providesashrinkage
estimator in the form of the mean of the posterior
distribution, but also provides an estimate of
the underlying risk structure (Schlattmann et al,
1999). Another methodological advantage of
using the mixture model for disease mapping is
that an estimate of the number of components (each
with its respective coloring pattern) is provided
(Schlattmann et al, 1999; Béhning and Schlattmann,
1999). Inasimulation study, the mixture model ap-
proach was compared with traditional approaches
of map construction, such asusing the percentiles
method or the significant method (Bohning and
Schlattmann, 1999). The results indicated that the
mixture model approach provides a significantly
higher percentage of correct classificationsthan do
the traditional methods.

Theinvestigation of the geographical distri-
bution of malariais essential for malaria control
programs. The detection of geographical hetero-
geneity by disease mapping constitutes a ssimple
screening procedure so that the managers of dis-
ease control programs are rationally able to use
interventions which are most likely to succeed.
Since malariais an increasingly serious problem
in some provinces of Thailand, the purpose of our
study was twofold: (1) to investigate the geo-
graphical distribution of malariain Thailand dur-
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ing 1995, 1996, and 1997 by applying the mix-
ture model to disease mapping, and (2) to inves-
tigate the dynamic nature of malariain Thailand
during the 3-year time frame by applying the
space-time mixture model.

METHODS

Data sources

The basic geographical aggregation unit for
disease mapping in this study was the province,
of whichthereare 76 in Thailand. The Standard-
ized Incidence Ratio (SIR) was used to measure
the occurrence of malariain each province.

The total number of people by age group in
each province was obtained from the database of
the Statistical DataBank and Information Dissemi-
nation Division, National Statistical Office, Thai-
land. Themaariamorbidity data(consisting of the
number of observed malaria casesby age groupin
each province) were taken from cases which had
been reported to the Division of Epidemiology,
Ministry of Public Health, Bangkok. Asthe age of
the population affectstheincidence of malaria, the
age-standardized incidenceratio wasconsidered to
be the proper epidemiologica measure for this
study. We used the indirect standardized method
for calculating the age-standardized incidence ra-
tio to determine the rate of occurrence of maaria
for each province (Bohning, 1998).

Statistical analysis

Non-parametric maximum likelihood esti-
mation (NPMLE) was used to estimate the pa-
rameters of both themixture model and the space-
time mixture model (the number of components,
and amean of SIR and aweight for each compo-
nent). After determining the number of compo-
nents, aMaximum Likelihood Estimation (MLE)
was used to estimate amean of SIR and aweight
for each component. Applying Bayes' theorem,
we then assigned each province to a component
risk level.

Disease mapping with the mixture model
approach

The simplest and most natural derivation of
the mixture model ariseswhen one sample comes
from a population that consists of several homo-
geneous components, which then becomes a het-
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erogeneous case (Lindsay, 1995). In observing
only thesamplex, x fromthemarginal density
of X (the mixture density), there is no consider-
ation given to a specific component. The mix-
ture model provides a solution to this problem
(Bohning, 1999).

Themixturemodel approach to disease map-
ping assumes that the population under scrutiny
consists of components with different risk levels
of disease. Each component has arisk of disease
(%) and represents acertain proportion (p) of the
total regional unit (Bohning and Schlattmann,
1999; Schlattmann et al, 1999). Thefirst step of
disease mapping with the mixture model approach
isto estimate 2, and p, in each component. When
we assume that the malaria cases (o)) follow a
Poi sson distribution with mean EA giventhearea
and ), o, unconditionally follows a mixture of
the Poisson distribution as:

K k
0.~ 3 (54, = 3P0 (04E) p =1(0, E, P

where

X, =0,/ E istheobserved SIRinareai, i =
1,...n,

0, is the observed number of malaria cases
inareai, i =1,...,n,

E, isthe expected malariacasesin areai, i =
1,...n,

A, isthe level of disease risk in subpopula-
tionj,

p, is the probability of belonging to the jth
subpopulation, and

k is the number of components in the mix-
ing distribution.

Estimation was done by maximum likeli-
hood. P, the non-parametric maximum likeli-
hood estimator (NPMLE), was found by maxi-
mizing the (marginal) log-likelihood function
which is defined as:

1(P) = 3, logf(xP) = 3 log {Jzklpjf(xi,x,.)}

The suitable algorithm for maximizing the
log-likelihood function was taken from Béhning
et al (1992). This agorithm is implemented in
the computer packages DismapWin (Schlattmann,
1996) or C.A.MAN (Schlattmann et al, 1993b).

The second step was to determine the num-
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ber of components. Thiswas done by computing
the Likelihood Ratio Statistic (LRS) for testing
the hypothesis:

H,: number of components = k
against
H.: number of components = k+1.
The likelihood ratio test can be defined as:
LRS =2logg, R
=2x[1(P,,)) - 1(PY]

where

P isthe maximum likelihood estimator un-
der H,, and

P .., 1s the maximum likelihood estimator

k+1
under Ha.

The LRS test conventionally has been an
asymptotic 2 distribution with d degrees of free-
dom, where the degrees of freedom, d, areequal to
the difference between the number of parameters
both in the null and in the alternative hypotheses.
However, because this theory is known to fail for
the mixture problem, critical values in our study
were obtained from a simulation technique which
had been devel oped by Béhning (1999).

Thefinal stepin the mixture model approach
for disease mapping wasto classify the SIR value
for each areainto one of the components of the
mixing distribution. This was accomplished by
applying Bayes' theorem and by using the esti-
mated mixing distribution as the prior distribu-
tion. Classification was done by computing the
probability of each area belonging to a certain
component. When Z; isthe unobserved variable
which describes area i in subpopulation j (Z,),
the posterior probability is defined as:

. pf(0,. A,.E)
Pr(Zij =1o,P,E) = forj=1,.k and i=1,...,n.
‘Zlfalf(o‘, A, E)

Theith areaisthen assigned to that subpopu-
lation j for which it hasthe highest posterior prob-
ability of belonging (B6hning and Schlattman,
1999).

Disease mapping with space-time mixture
modeling

Because the space-time mixture model gives
avaluableindication of an emerging pattern over
time, it wasintroduced to investigate the fluctua-
tion of the occurrence of malaria from 1995
through 1997. This model looks simultaneously
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for all space-time components (clusters) (Bohning
et al, 2000). Because the space-time mixture
model givesfewer parametersfor comparison, the
fluctuation of acertain disease over timeiseasier
to compare and interpret.

The basic idea of disease mapping with the
space-time mixture model approachisto consider
the space-time data as one data set which models
a single mixture distribution. When O, and E,
are respectively the observed and the expected
casesfor areai,i =1,..,n,and timet, t = 1,...,T,
the mixture density is defined as:

%)

it?

k k
f(On, R Eit) =j§ pjf(oit' )\‘j’ Eit) =j=21 ij(X
with
ipjzlandpjzo,forjzl ..... k
j=1

and, in this case, the mixture log-likelihood

1P =3 ilog{g B f(x, M)}

t=1 j=1

where

x, = 0,/E, isthe observed SIR in areai and
time period t.

Estimation of the parameters of this model
was done by repeating the foregoing process.
Classification of the areas into the T maps was
done again with the posterior probability, which
is defined as:

. p.f(o ,X, E
PI(Z, = 1| 0,P,E)= E()J(“—JA“)
3pif(0, oy )

so that area i in time period t is classified in
that component j for which it has the highest
posterior probability of belonging. (Note that
each areais classified T times when using this
classification rule).

RESULTS

For 1995 we obtained 7 components from
NPMLE. Based on the NPMLE, MLE for the
lower numbered component, the corresponding
log-likelihoods for all k components, and the as-
sociated LRS (Table 1), the smallest number of
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components compatiblewith malariadatain 1995
consisted of 5 components (Table 2).

Category A, had the lowest risk with amean
SIR of 0.08 and a weight of 61%, and category
A had the highest risk with amean SIR of 39.55
and aweight of 1% (Table 2). The correspond-
ing maps (with risk categories) for the three time
periods (1995, 1996, and 1997) of malaria data
areillustrated in Fig 1.

For application of the space-time mixture
model to our data set for 1995 through 1997, we
obtained 8 componentsfrom NPMLE. Based on
the NPMLE, MLE for the lower numbered com-
ponent, the corresponding log-likelihoods for all
k components, and the associated LRS, wefound
that k=6 wasthe optimum component for thisdata
set (Table 3). The resulting MLE which is com-
patible with malaria data for 1995 through 1997
isshown in Table 4.

Category A, had the lowest risk with amean
SIR of 0.09 and a weight of 59%, and category
Azhad the highest risk with amean SIR of 29.16
and aweight of 2% (Table 4). Based on the clas-
sification rule for map construction (Bodhning,
1999), we constructed the corresponding maps
for the rate of malariafor each the three time pe-
riods (Fig 2). Sixty (78.95%) provinces did not
change their allocation, and 16 (21.05%) prov-
inces changed their allocation. Of the 10 (13.16%)
provinces that changed from alower to a higher
risk component, 3 (3.94%) provinces increased
significantly. Six (7.89%) provinceschanged from
ahigher to alower risk component.

DISCUSSION

Disease mapping has been studied and de-
veloped by severa researchers for a long time;
however, the traditional methods of disease map-
ping till have some deficiencies. For instance,
the percentiles method has the potential danger
of misrepresenting the geographical distribution
of the measure of interest (Cislaghi et al, 1995),
that is, aconsiderable overestimation of high risk
areas appears in a disease map based on this
method. The mixture model application for dis-
ease mapping is an alternative approach which
satisfactorily produces a smooth map in which
random variability has been extracted from the
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Tablel
NPMLE? MLEP for lower component models, corresponding log-likelihoods, and LRS® (1995).
Component Parameter® Weight Log-likelihood, -2(log,-log,,,)
k=7 0.0827 0.6073 -193.3718
0.7383 0.2347
3.1964 0.0926
8.2728 0.0127
18.6119 0.0251
26.0796 0.0144
39.5625 0.0131
3.6330
k=6 0.0837 0.6119 -195.1883
0.7702 0.2361
3.6113 0.0991
18.5737 0.0253
26.0818 0.0144
39.5925 0.0131
3.6012°
k=5 0.0837 0.6120 -196.9889
0.7705 0.2361
3.6168 0.0992
21.0612 0.0395
39.5474 0.0132
16.9312
k=4 0.0837 0.6120 -205.4545
0.7706 0.2361
3.6173 0.0993
23.4826 0.0526
12.5190
k=3 0.1597 0.7922 -211.7140
2.3510 0.1533
20.7741 0.0545
30.2672
k=2 0.2658 0.8684 -226.8476
21.5824 0.1316
281.7522
k=1 1.0025 1.0000 -367.7237

aEgtimates of the number of components, parameter, and weight.

bEstimates of parameter and weight when we fixed the number of components.

“For testing hypothesis H,: number of components=k; for H_: number of components=k+1.
9Mean of SIR for each component.

eCritical value for rejecting the null hypothesis was 4.01; the smallest components were used.

Table 2
Results of fitting mixture model to disease mapping of malaria (1995).
Parameter Values
Means of SIR A, A, Ay A, Ag
0.0837 0.7705 3.6168 21.0612 39.5474
Weights P, p, P, P, Ps
0.6120 0.2361 0.0992 0.0395 0.0132
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Table 3
NPMLE? MLEP for lower component models, corresponding log-likelihoods, and LRS
(2995 through 1997).
Component Parameter® Weight Log-likelihood -2(log,-log,,,)
k=8 0.0898 0.5872 -610.8472
0.7493 0.2539
3.1631 0.0793
8.8603 0.0272
15.1165 0.0098
16.9776 0.0163
27.8392 0.0217
38.8803 0.0043
0.0812
k=7 0.0898 0.5875 -610.8878
0.7493 0.2540
3.1633 0.0793
8.8712 0.0274
16.3810 0.0257
27.8237 0.0218
38.8807 0.0043
2.0766°
k=6 0.0898 0.5875 -611.9261
0.7493 0.2540
3.1633 0.0793
8.8711 0.0274
16.4087 0.0260
29.1590 0.0259
5.4226
k=5 0.0898 0.5876 -614.6374
0.7503 0.2540
3.1778 0.0795
11.3226 0.0467
28.8048 0.0321
27.2600
k=4 0.0950 0.6082 -628.2674
0.8930 0.2571
5.0975 0.0790
20.3846 0.0557
96.8182
k=3 0.1791 0.7827 -676.6765
21912 0.1383
13.3655 0.0789
22.0952
k=2 0.2667 0.8576 -687.7241
6.3014 0.1424
687.9818
k=1 0.9984 1.0000 -1,031.7150

aestimates of the number of components, parameter, and weight.

bEstimates of parameter and weight when we fixed the number of components.

“For testing hypothesis H,: number of components=k; for H_: number of components=k+1.
9Mean of SIR for each component.

eCritical value for rejecting the null hypothesis was 4.01; the smallest components were used.
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Fig 1-Disease maps of occurrence of maariausing a
separate mixture model for each time period.

2=29.08
A=15.41
A=7.22
2=2.49
2=0.68
2=0.08

OO0OCODOm

data (Schlattmann et al, 1999). Thisisillustrated
by comparing the disease map of malariain 1995
using the percentiles method based on quintiles
with the disease map of malariain 1995 based on
the mixture model (Fig 3). It isquite clear from
the comparison of the two mapsin Fig 3 that the
mixture model removes random variability from
the map and provides a much clearer picture of
the high risk areas. In addition, one of the spe-
cific methodologically attractive features of the
mixture model approach isthat an estimate of the
number of componentsis provided (Béhning and
Schlattman, 1999).

Inthe past, space-timevariation of diseaserisk
frequently had been studied simply by describing
the difference between two risk maps, each esti-
mated separately for a given period of time
(Bernardindlli et al, 1995). The mixture model re-
quires mixture modelling to be applied separately
to each time period. In our study, the results of
fitting 3 individual mixture models to the 3 indi-
vidual periods of malaria data collection showed
that each of the three mixture models has its own
number of components-5 (k=5) for 1995, 6 (k=6)
for 1996, and 5 (k=5) for 1997 (Fig 1). Although
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A=29.16
A=16.41
A=8.87
A=3.16
2=0.75
2=0.09

Fig 2-Disease mapsof occurrence of malariausing space-
time mixture models.
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the parameters of the component for both 1995 and
for 1997 are different, both periods have the same
number of components (k=5). Comparison of the
3mapsin Fig 1isdifficult, Since an areamight not
be only in different components at different times,
but aso-if that area were in the same component-
the means for that component might be different
(Schlattmann et al, 1996). In our study, this was
corrected by fitting a space-time mixture model to
the three time periods of malaria data (Fig 2).
Space-time mixture modelling isan aternative ap-
proach which makes comparison easier since the
number of parametersin aspace-timemode iscon-
siderably reduced in comparison with separately
fitting the mixture mode! to each time period.

Malaria is prevalent along heavily forested
international borders, ashasbeen confirmed by the
severa studies(Hu et al, 1998; Jadsri, 1992; Myint
and Ye, 1991). In our study, we used the mixture
model approach for disease mapping in order to
investigate the geographical distribution of malaria
in Thailand during 1995, 1996, and 1997. There-
sults are illustrated by maps (Fig 1) showing that
malariaismost prevalentin 4 provincesonthe Thai-
Myanmar border and in 2 provinces on the Thai-
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Quintiles Components

B 0.94-39.48 Bl 0001 2=3955
M 0.32-094 B p-0.04 2=21.06
E 0.09-0.32 Ml p=0.10 2=3.62
[ 0.04-0.09 O p=0.24 »=0.77
[ 0.00-0.04 [ p=0.61 2=0.08

Fig 3—Disease maps of occurrence of malaria using a) Percentiles method, b) mixture model.

Table 4
Results of fitting space-time mixture model to disease mapping of malaria (1995 through 1997).
Parameter Value
Means of SIR A A2 A3 M A5 \6
0.0898 0.7493 3.1633 8.8711 16.4087 29.1590
Weight pl p2 p3 p4 p5 p6
0.5875 0.2540 0.0793 0.0274 0.0260 0.0259
Cambodian border; in each of the 6 provinces the fully Bayesian analysisof geographical variationin
forest covers more than 50% of the landscape. disease risk. Stat Med 1992; 11: 983-1007.

Theadvantage of the mixturemodel approach Bohning D. Gene_ral epi demiology and itsmethodol ogi-
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tation of the prevalence of disease. The space-time Bbhnilnggg (go?nagig sted analvsisof mixtures and
mixture model more adequately investigates the gv: b y
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dynamic nature of disease than does the mixture others. Boca Raton (Florida): Chapman & Hall,
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