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INTRODUCTION

Disease mapping, a method for displaying the
geographical distribution of disease occurrence, has
received attention for more than 2 decades.  The
traditional percentiles method frequently is applied
to the Standardized Mortality Ratio (SMR) as the
epidemiological measure under consideration.
However, this approach has been criticized.  One
criticism is that classification based on percentiles
is rather arbitrary, because there is no guarantee that
such a classification can validly detect high or low
risk areas (Schlattmann et al, 1993a).  Another prob-
lem involves the instability of the crude SMR, es-
pecially when rare diseases are investigated in an
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and provides a clearer picture of the spatial risk structure.  The advantage of the mixture model
approach to disease mapping is the graphical visual presentation of the prevalence of disease.  The
space-time mixture model more adequately investigates the dynamic nature of disease than does the
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area with a small population.  In such a case, both
the observed and the expected values are low.  As a
result, an area with a small population tends to
present an extreme SMR, yielding a map which is
dominated by the least reliable information
(Bernardinelli et al, 1992; Heisterkamp et al, 1993).

Another traditional method, the significant
method, is based on a classification using the p-
value.  However, a disease map which is based on
this approach often faces the problem of mis-clas-
sification as well, because an area with a small popu-
lation size has a greater chance of showing a sig-
nificant result (Böhning, 1999).  Additionally, the
significant method approach faces the problem of
multiple testing, and even adjusting for the number
of comparisons does not lead to a consistent esti-
mate of heterogeneity (Schlattmann et al, 1999).

Since both of these traditional approaches have
some deficiencies and disadvantages in represent-
ing the geographical distribution of disease, many
researchers have sought alternative solutions for
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mapping disease.  Empirical Bayes (EB) estima-
tion provides a more stable relative risk estimate,
and thereby overcomes some deficiencies of tradi-
tional maps which are based on the SMR.  It was
found that the EB approach removes the random
variability which is present in data from small popu-
lation counts (Böhning, 1999; Böhning and
Schlattmann, 1999), leading to a smooth map with
fewer extremes in the relative risk estimates
(Clayton and Kaldor, 1987; Marshall, 1991; Mollie
and Richardson, 1991; Devine and Louis, 1994).
However, the EB approach lacks a post hoc classi-
fication of the posterior estimate of the epidemio-
logical measure.

As a solution to the foregoing, mixture mod-
elling has been proposed for disease mapping
(Böhning and Schlattmann, 1999). The mixture
model approach more appropriately reduces the
random variation in the disease map than do the
percentiles method, the significant method, or the
EB estimation. A disease map based on the mix-
ture model approach not only provides a shrinkage
estimator in the form of the mean of the posterior
distribution, but also provides an estimate of
the underlying risk structure (Schlattmann et al,
1999). Another methodological advantage of
using the mixture model for disease mapping is
that an estimate of the number of components (each
with its respective coloring pattern) is provided
(Schlattmann et al, 1999; Böhning and Schlattmann,
1999). In a simulation study, the mixture model ap-
proach was compared with traditional approaches
of map construction, such as using  the percentiles
method or the significant method (Böhning and
Schlattmann, 1999). The results indicated that the
mixture model approach provides a significantly
higher percentage of correct classifications than do
the traditional methods.

The investigation of the geographical distri-
bution of malaria is essential for malaria control
programs. The detection of geographical hetero-
geneity by disease mapping constitutes a simple
screening procedure so that the managers of dis-
ease control programs are rationally able to use
interventions which are most likely to succeed.
Since malaria is an increasingly serious problem
in some provinces of Thailand, the purpose of our
study was twofold: (1) to investigate the geo-
graphical distribution of malaria in Thailand dur-

ing 1995, 1996, and 1997 by applying the mix-
ture model to disease mapping, and (2) to inves-
tigate the dynamic nature of malaria in Thailand
during the 3-year time frame by applying the
space-time mixture model.

METHODS

Data sources
The basic geographical aggregation unit for

disease mapping in this study was the province,
of which there are 76 in Thailand.  The Standard-
ized Incidence Ratio (SIR) was used to measure
the occurrence of malaria in each province.

The total number of people by age group in
each province was obtained from the database of
the Statistical Data Bank and Information Dissemi-
nation Division, National Statistical Office, Thai-
land.  The malaria morbidity data (consisting of the
number of observed malaria cases by age group in
each province) were taken from cases which had
been reported to the Division of Epidemiology,
Ministry of Public Health, Bangkok. As the age of
the population affects the incidence of malaria, the
age-standardized incidence ratio was considered to
be the proper epidemiological measure for this
study. We used the indirect standardized method
for calculating the age-standardized incidence ra-
tio to determine the rate of occurrence of malaria
for each province (Böhning, 1998).

Statistical analysis
Non-parametric maximum likelihood esti-

mation (NPMLE) was used to estimate the pa-
rameters of both the mixture model and  the space-
time mixture model (the number of components,
and a mean of SIR and a weight for each compo-
nent).  After determining the number of compo-
nents, a Maximum Likelihood Estimation (MLE)
was used to estimate a mean of SIR and a weight
for each component.  Applying Bayes’ theorem,
we then assigned each province to a component
risk level.

Disease mapping with the mixture model
approach

The simplest and most natural derivation of
the mixture model arises when one sample comes
from a population that consists of several homo-
geneous components, which then becomes a het-
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erogeneous case (Lindsay, 1995).  In observing
only the sample x1,...,xn from the marginal density
of X (the mixture density), there is no consider-
ation given to a specific component.  The mix-
ture model provides a solution to this problem
(Böhning, 1999).

The mixture model approach to disease map-
ping assumes that the population under scrutiny
consists of components with different risk levels
of disease. Each component has a risk of disease
(λj) and represents a certain proportion (pj) of the
total regional unit (Böhning and Schlattmann,
1999; Schlattmann et al, 1999).  The first step of
disease mapping with the mixture model approach
is to estimate λj and pj in each component.  When
we assume that the malaria cases (oi) follow a
Poisson distribution with mean Eiλ given the area
and λ), oi unconditionally follows a mixture of
the Poisson distribution as:
              k                                    k

oi ~ ∑f (xi;λj) pj = ∑ Po (oi;λjEi) pj = f(oi, Ei, P)
   

j=1                              j=1

where

xi = oi / Ei  is the observed SIR in area i, i =
1,...,n,

oi is the observed number of malaria cases
in area i, i = 1,...,n,

Ei is the expected malaria cases in area i, i =
1,...,n,

λj is the level of disease risk in subpopula-
tion j,

pj is the probability of belonging to the jth
subpopulation, and

k is the number of components in the mix-
ing distribution.

Estimation was done by maximum likeli-
hood.  P̂ , the non-parametric maximum likeli-
hood estimator (NPMLE), was found by maxi-
mizing the (marginal) log-likelihood function
which is defined as:

                                        n                                     n                  k

1(P) = ∑ logf(xiP) = ∑ log {∑ pjf(xi,λj)}
            

i=1                             i=1             j=1

The suitable algorithm for maximizing the
log-likelihood function was taken from Böhning
et al (1992).  This algorithm is implemented in
the computer packages DismapWin (Schlattmann,
1996) or C.A.MAN (Schlattmann et al, 1993b).

The second step was to determine the num-

ber of components.  This was done by computing
the Likelihood Ratio Statistic (LRS) for testing
the hypothesis:

H0: number of components = k
against
Ha: number of components = k+1.
The likelihood ratio test can be defined as:

     LRS = 2logξn

= 2 x [1(P̂ 
k+1) - 1(P̂ 

k)]
where
P̂ 

k is the maximum likelihood estimator un-
der H0, and

P̂ 
k+1 is the maximum likelihood estimator

under Ha.

The LRS test conventionally has been an
asymptotic χ2 distribution with d degrees of free-
dom, where the degrees of freedom, d, are equal to
the difference between the number of parameters
both in the null and in the alternative hypotheses.
However, because this theory is known to fail for
the mixture problem, critical values in our study
were obtained from a simulation technique which
had been developed by Böhning (1999).

The final step in the mixture model approach
for disease mapping was to classify the SIR value
for each area into one of the components of the
mixing distribution. This was accomplished by
applying Bayes’ theorem and by using the esti-
mated mixing distribution as the prior distribu-
tion.  Classification was done by computing the
probability of each area belonging to a certain
component.  When Zij is the unobserved variable
which describes area i in subpopulation j (Zij),
the posterior probability is defined as:

                                p̂ jf(oi, λ̂ j, Ei)
Pr(Zij = 1oi,P̂ , Ei) = ––––––––––, for  j = 1,...,k  and  i = 1,...,n.
                              

k

∑p̂ jf(oi, λ̂ j, Ei)
                             

l=1

The ith area is then assigned to that subpopu-
lation j for which it has the highest posterior prob-
ability of belonging (Böhning and Schlattman,
1999).

Disease mapping with space-time mixture
modeling

Because the space-time mixture model gives
a valuable indication of an emerging pattern over
time, it was introduced to investigate the fluctua-
tion of the occurrence of malaria from 1995
through 1997. This model looks simultaneously
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for all space-time components (clusters) (Böhning
et al, 2000). Because the space-time mixture
model gives fewer parameters for comparison, the
fluctuation of a certain disease over time is easier
to compare and interpret.

The basic idea of disease mapping with the
space-time mixture model approach is to consider
the space-time data as one data set which models
a single mixture distribution.  When Oit and Eit

are respectively the observed and the expected
cases for area i, i = 1,...,n, and time t, t = 1,...,T,
the mixture density is defined as:

                      
k                                               k

 f(oit, P, Eit) = ∑ pjf(oit, λj, Eit) = ∑ Pjf(xit,λj)
 j=1  j=1

with

                 k∑ pj = 1 and pj ≥ 0, for j = 1,...,k
                j=1

and, in this case, the mixture log-likelihood
is:

                                         T    n               k

1(P) = ∑ ∑log{∑ pj f(xit,λj)}
                                       t=1  j=1        j=1

where

xit = oit/Eit is the observed SIR in area i and
time period t.

Estimation of the parameters of this model
was done by repeating the foregoing process.
Classification of the areas into the T maps was
done again with the posterior probability, which
is defined as:

                                   p̂ jf(oit, λ̂ j, Eit)
Pr(Zitj = 1 oit, P̂

 , Eit) = ––––––––––––––– ,
                                  ∑

k  

p̂ 1f(oit, λ̂1, Eit)
                       l=1

so that area i in time period t is classified in
that component j for which it has the highest
posterior probability of belonging. (Note that
each area is classified T times when using this
classification rule).

RESULTS

For 1995 we obtained 7 components from
NPMLE.  Based on the NPMLE, MLE for the
lower numbered component, the corresponding
log-likelihoods for all k components, and the as-
sociated LRS (Table 1), the smallest number of

components compatible with malaria data in 1995
consisted of 5 components (Table 2).

Category λ1 had the lowest risk with a mean
SIR of 0.08 and a weight of 61%, and category
λ5 had the highest risk with a mean SIR of 39.55
and a weight of 1% (Table 2).  The correspond-
ing maps (with risk categories) for the three time
periods (1995, 1996, and 1997) of malaria data
are illustrated in Fig 1.

For application of the space-time mixture
model to our data set for 1995 through 1997, we
obtained 8 components from NPMLE.  Based on
the NPMLE, MLE for the lower numbered com-
ponent, the corresponding log-likelihoods for all
k components, and the associated LRS, we found
that k=6 was the optimum component for this data
set (Table 3).  The resulting MLE which is com-
patible with malaria data for 1995 through 1997
is shown in Table 4.

Category λ1 had the lowest risk with a mean
SIR of 0.09 and a weight of 59%, and category
λ6 had the highest risk with a mean SIR of 29.16
and a weight of 2% (Table 4).  Based on the clas-
sification rule for map construction (Böhning,
1999), we constructed the corresponding maps
for the rate of malaria for each the three time pe-
riods (Fig 2).  Sixty (78.95%) provinces did not
change their allocation, and 16 (21.05%) prov-
inces changed their allocation. Of the 10 (13.16%)
provinces that changed from a lower to a higher
risk component, 3 (3.94%) provinces increased
significantly. Six (7.89%) provinces changed from
a higher to a lower risk component.

DISCUSSION

Disease mapping has been studied and de-
veloped by several researchers for a long time;
however, the traditional methods of disease map-
ping still have some deficiencies.  For instance,
the percentiles method has the potential danger
of misrepresenting the geographical distribution
of the measure of interest (Cislaghi et al, 1995),
that is, a considerable overestimation of high risk
areas appears in a disease map based on this
method.  The mixture model application for dis-
ease mapping is an alternative approach which
satisfactorily produces a smooth map in which
random variability has been extracted from the
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Table 1
NPMLEa, MLEb for lower component models, corresponding log-likelihoods, and LRSc (1995).

Component Parameterd Weight Log-likelihoodk -2(logk-logk+1)

0.0827
0.7383
3.1964
8.2728

18.6119
26.0796
39.5625

0.0837
0.7702
3.6113

18.5737
26.0818
39.5925

0.0837
0.7705
3.6168

21.0612
39.5474

0.0837
0.7706
3.6173

23.4826

0.1597
2.3510

20.7741

0.2658
21.5824

1.0025

k=7

k=6

k=5

k=4

k=3

k=2

k=1

0.6073
0.2347
0.0926
0.0127
0.0251
0.0144
0.0131

0.6119
0.2361
0.0991
0.0253
0.0144
0.0131

0.6120
0.2361
0.0992
0.0395
0.0132

0.6120
0.2361
0.0993
0.0526

0.7922
0.1533
0.0545

0.8684
0.1316

1.0000

-193.3718

-195.1883

-196.9889

-205.4545

-211.7140

-226.8476

-367.7237

3.6330

3.6012e

16.9312

12.5190

30.2672

281.7522

aEstimates of the number of components, parameter, and weight.
bEstimates of parameter and weight when we fixed the number of components.
cFor testing hypothesis H0: number of components=k; for Ha: number of components=k+1.
dMean of SIR for each component.
eCritical value for rejecting the null hypothesis was 4.01; the smallest components were used.

Table 2
Results of fitting mixture model to disease mapping of malaria (1995).

Parameter Values

Means of SIR λ1 λ2 λ3 λ4 λ5

0.0837 0.7705 3.6168 21.0612 39.5474
Weights p1 p2 p3 p4 p5

0.6120 0.2361 0.0992 0.0395 0.0132
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Table 3
NPMLEa, MLEb for lower component models, corresponding log-likelihoods, and LRSc

(1995 through 1997).

Component Parameterd Weight Log-likelihood -2(logk-logk+1)

k=8

k=7

k=6

k=5

k=4

k=3

k=2

k=1

0.0898
0.7493
3.1631
8.8603

15.1165
16.9776
27.8392
38.8803

0.0898
0.7493
3.1633
8.8712

16.3810
27.8237
38.8807

0.0898
0.7493
3.1633
8.8711

16.4087
29.1590

0.0898
0.7503
3.1778

11.3226
28.8048

0.0950
0.8930
5.0975

20.3846

0.1791
2.1912

13.3655

0.2667
6.3014

0.9984

0.5872
0.2539
0.0793
0.0272
0.0098
0.0163
0.0217
0.0043

0.5875
0.2540
0.0793
0.0274
0.0257
0.0218
0.0043

0.5875
0.2540
0.0793
0.0274
0.0260
0.0259

0.5876
0.2540
0.0795
0.0467
0.0321

0.6082
0.2571
0.0790
0.0557

0.7827
0.1383
0.0789

0.8576
0.1424

1.0000

-610.8472

-610.8878

-611.9261

-614.6374

-628.2674

-676.6765

-687.7241

-1,031.7150

0.0812

2.0766e

5.4226

27.2600

96.8182

22.0952

687.9818

aEstimates of the number of components, parameter, and weight.
bEstimates of parameter and weight when we fixed the number of components.
cFor testing hypothesis H0: number of components=k; for Ha: number of components=k+1.
dMean of SIR for each component.
eCritical value for rejecting the null hypothesis was 4.01; the smallest components were used.
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1995

p=0.01   λ=39.55

p=0.04   λ=21.06

p=0.10   λ=3.62

p=0.24   λ=0.77

p=0.61   λ=0.08

Fig 1–Disease maps of occurrence of malaria using a
separate mixture model for each time period.

1997

p=0.03   λ=29.08

p=0.04   λ=15.41

p=0.01   λ=7.22

p=0.10   λ=2.49

p=0.24   λ=0.68

p=0.03   λ=0.08

1996

data (Schlattmann et al, 1999).  This is illustrated
by comparing the disease map of malaria in 1995
using the percentiles method based on quintiles
with the disease map of malaria in 1995 based on
the mixture model (Fig 3).  It is quite clear from
the comparison of the two maps in Fig 3 that the
mixture model removes random variability from
the map and provides a much clearer picture of
the high risk areas.  In addition, one of the spe-
cific methodologically attractive features of the
mixture model approach is that an estimate of the
number of components is provided (Böhning and
Schlattman, 1999).

In the past, space-time variation of disease risk
frequently had been studied simply by describing
the difference between two risk maps, each esti-
mated separately for a given period of time
(Bernardinelli et al, 1995).  The mixture model re-
quires mixture modelling to be applied separately
to each time period.  In our study, the results of
fitting 3 individual  mixture models to the 3 indi-
vidual periods of malaria data collection showed
that each of the three mixture models has its own
number of components-5 (k=5) for 1995, 6 (k=6)
for 1996, and 5 (k=5) for 1997 (Fig 1).  Although

p=0.03   λ=27.12

p=0.07   λ=10.24

p=0.05   λ=4.32

p=0.28   λ=0.82

p=0.58   λ=0.11
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p=0.03   λ=29.16

p=0.03   λ=16.41

p=0.03   λ=8.87

p=0.08   λ=3.16

p=0.25   λ=0.75

p=0.59   λ=0.09

1997

Fig 2–Disease maps of occurrence of malaria using space-
time mixture models.

19961995

the parameters of the component for both 1995 and
for 1997 are different, both periods have the same
number of components (k=5).  Comparison of the
3 maps in Fig 1 is difficult, since an area might not
be only in different components at different times,
but also-if that area were in the same component-
the means for that component might be different
(Schlattmann et al, 1996).  In our study, this was
corrected by fitting a space-time mixture model to
the three time periods of malaria data (Fig 2).
Space-time mixture modelling is an alternative ap-
proach which makes comparison easier since the
number of parameters in a space-time model is con-
siderably reduced in comparison with separately
fitting the mixture model to each time period.

Malaria is prevalent along heavily forested
international borders, as has been confirmed by the
several studies (Hu et al, 1998; Jadsri, 1992; Myint
and Ye, 1991).  In our study, we used the mixture
model approach for disease mapping in order to
investigate the geographical distribution of malaria
in Thailand during 1995, 1996, and 1997.  The re-
sults are illustrated by maps (Fig 1) showing that
malaria is most prevalent in 4 provinces on the Thai-
Myanmar border and in 2 provinces on the Thai-



SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH

46 Vol  35  No. 1  March  2004

Cambodian border; in each of the 6 provinces the
forest covers more than 50% of the landscape.

The advantage of the mixture model approach
to disease mapping is the graphical visual presen-
tation of the prevalence of disease. The space-time
mixture model more adequately investigates the
dynamic nature of disease than does the mixture
model.
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