SEQUENCE ANALYSES OF THREE NUCLEAR RIBOSOMAL LOCI AND A MITOCHONDRIAL LOCUS IN CYTOLOGICALLY DIFFERENT FORMS OF THAI ANOPHELES ACONITUS MOSQUITOES

Narissara Jariyapan¹, Wej Choochote¹, Anuluck Junkum¹, Atchariya Jitpakdi¹, Narumon Komalamisra², Paul A Bates³ and Julian M Crampton³

¹Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, ²Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; ³Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, University of Liverpool, Liverpool, United Kingdom

Abstract. Ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) of *Anopheles aconitus* mosquitoes were examined to investigate intra- and inter-species variation amongst the members of the Minimus group of *Anopheles* subgenus *Cellia*. Three rDNA loci (ITS1, ITS2 and D3 regions) and a mtDNA locus (cytochrome oxidase II) were analyzed in *An. aconitus* Form B and Form C collected in Chiang Mai Province, Thailand. The results show that the consensus sequences of the four loci of the two forms are consistent with those of mosquitoes in the genus *Anopheles*. No intraindividual variation was detected, but intrapopulation variation was present with polymorphic sequences in some forms for each gene examined. The variation rates were approximately 0.15 to 0.8%. These data indicate that *An. aconitus* Form B and Form C in Chiang Mai, Thailand are conspecific. In this study, the complete ITS1 sequence of *An. aconitus* is reported for the first time. The region showed a high variation rate (approximately 55%), compared to the closely related species *An. minimus* C. It is suggested that this rDNA locus may provide sequence information to differentiate the members of the Minimus group of *Anopheles* subgenus *Cellia*.

INTRODUCTION

Ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) of mosquitoes are useful for studying genetic variability and divergences within and among species (Norris, 2002). The rDNA consists of tandemly repeated transcriptional units with highly conserved genes, and occurs with approximately 500 copies in the genome of mosquitoes (Collins *et al*, 1987). Within each transcriptional unit, spacers separate the 18S, 5.8S and 28S rDNA subunits, the internal transcribed spacer 1 (ITS1) and 2 (ITS2), respectively, and between two transcriptional units, there is non-transcribed region called the intergenic spacer (IGS). Because of the relatively

Tel: 66 (0) 5394 5342; Fax: 66 (0) 5321 7144 E-mail: narsuwan@mail.med.cmu.ac.th rapid rate at which new mutants are fixed in the rDNA spacers, these regions have become popular targets for addressing taxonomic issues among anophelines. As the number of recognized anopheline species complexes grows, sequence information of the spacers is developed into molecular diagnostic tools (PCR-based diagnostic, RFLP-based diagnostic and DNA hybridization) that differentiate between cryptic taxa. Among these spacers the ITS2 has been extensively used for the differentiation of species within the An. funestus group (Hackett et al, 2000), An. punctulatus group (Beebe and Saul, 1995), An. minimus group (Van Bortel et al, 2000; Phuc et al, 2003), An. maculipennis complex (Porter and Collins, 1996), An. dirus complex (Xu et al, 1998; Walton et al, 1999), An. fluviatilis complex (Manonmani et al, 2001), and An. quadrimaculatus complex (Cornel et al, 1996, 1997). The IGS has been used to distinguish the members of the An. gambiae complex (Scott et al, 1993). Although not as widely used

Correspondence: Narissara Jariyapan, Department of Parasitology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Chiang Mai 50200, Thailand.

as ITS2 in mosquitoes, ITS1 has similar properties to ITS2 and has been used at the population level to study the hard tick *lxodes scapularis* (McLain *et al*, 1995).

Mitochondrial DNA has also been similarly utilized in investigations of a wide variety of anophelines and anopheline species complexes. Frequent targets used in phylogenetic and population genetic studies include both coding regions, for example, NADH dehydrogenase subunit 5 (ND5) and cytochrome oxidase subunits I and II (COI and COII), and non-coding regions, such as 16S and 12S RNA genes. Foley et al (1998) used the COII gene to derive the phylogeny of Australasian anophelines; de Merida et al (1999) used mtDNA (ND5) and single-strand conformation polymorphism (SSCP) analysis to examine the population structure of An. albimanus; and Fairley et al (2000) used a COI gene fragment to look at genetic structuring and gene flow among a population of An. punctipennis in Vermont. However, mtDNA has failed to differentiate cryptic taxa within the An. maculipennis complex (Collins et al, 1990).

The purpose of the current study is to apply these methods to An. aconitus in Thailand. Recently, Sharpe et al (2000) investigated intraand inter-specific variation in four members of the Minimus group of Anopheles subgenus Cellia: An. aconitus, An. varuna, An. minimus A and C. They reconstructed phylogenetic relationships of this group and estimated divergence times between An. minimus A and C using data from one mitochondrial COII and one ribosomal nuclear (D3) locus. Sharpe et al (1999) also used allele-specific amplification of the D3 variable region of the 28S rDNA to distinguish An. minimus A from An. minimus C, and SSCP of the D3 amplified region to discriminate four species: An. aconitus, An. varuna, An. minimus A and C collected in Kanchanaburi. Tak and Chiang Mai Provinces, Thailand. In this study, two haplotypes (haplotype 1: 1 wild-caught female, Tak Province, 1 wild-caught female, Chiang Mai Province, 2 wild-caught females, Kanchanaburi Province; haplotype 2: 1 wild-caught female Kanchanaburi Province) of An. aconitus, were reported. These raise questions about the genetic divergence of An. aconitus in Thailand. In 1996, Baimai *et al* reported three karyotypic forms of *An. aconitus* from Mae Taeng district, Chiang Mai Province: Form A (X_1 , X_2 , Y_1), Form B (X_1 , X_2 , Y_2), and Form C (X_1 , X_2 , Y_3). Little is known about the molecular markers, including the rDNA and mtDNA, of the three forms. In the present study, three rDNA loci, ITS1, ITS2 and the D3 region of 28S rDNA, and one mtDNA locus, COII of cytologically different forms of *An. aconitus*, were described and compared for the first time. The sequence data extends our understanding of the mosquito species in Thailand and Southeast Asia.

MATERIALS AND METHODS

Sample collection and isofemale line establishment

Isofemale lines were established from wildcaught, fully engorged An. aconitus females collected from an endemic area of malaria, Ban Pang Mai Daeng, Mae Taeng district, Chiang Mai Province, Thailand, the area where Baimai et al (1996) incriminated the three karyotypic forms of An. aconitus, in October 2002-June 2004. Metaphase chromosomes were prepared from newly-emerged adult F1 and/or F2 progenies of each isoline (Choochote et al, 2001), and karyotypic forms were identified using the cytotaxonomic key of Baimai et al (1996). The mosquitoes were further colonized using the techniques described by Choochote et al (1983). One female from each identified isoline was used for DNA extraction.

DNA extraction, PCR amplification, cloning and sequencing

Genomic DNA was extracted from individual mosquitoes with a DNeasy Tissue Kit (Qiagen) according to the manufacturer's instructions. Primers for PCR amplification of the ITS1, ITS2, D3 and COII regions are listed in Table 1. High fidelity DNA polymerase, Platinum® *Taq* polymerase (Invitrogen) was used for PCR amplification. PCR was performed using the following conditions: one cycle of 4 minutes at 94°C; 20 cycles of 1 minute at 94°C, 50 seconds at 52°C and 2 minutes at 72°C; and a final cycle of 5 minutes at 72°C. PCR products were cloned in PCR® 4-TOPO® plasmids, TA Cloning Kit for sequencing (Invitrogen) following the manufacturer's instructions. Recombinant plasmids were purified using QIAGEN miniprep columns (Qiagen) before sequencing using an automated sequencing system at the BSU Bioservice Unit, National Science and Technology Development Agency (NSTDA) Building, Bangkok, Thailand. Two to three clones of each mosquito were sequenced.

DNA sequence analysis

DNA sequences were analyzed using the CLUSTAL W program (Higgins *et al*, 1996). Sequence data of *An. aconitus* rDNA and COII, and *An. minimus* C rDNA reported by Sharpe *et al* (2000) were retrieved from GenBank. Symbols and GenBank accession numbers are given in Table 2.

RESULTS

After 217 specimens were carefully identified for karyotypic forms, *An. aconitus* Form A (X_1, X_2, Y_1) was not found in this current study. One hundred and twenty-eight specimens were identified as *An. aconitus* Form B, and 89 specimens as Form C. Therefore, the ITS1, ITS2 and D3 regions of rDNA and COII of mtDNA were investigated in only two karyotypic forms of *An. aconitus*, Form B and Form C (Fig 1).

In individual mosquitoes, no clonal variation was observed in any sequences of each region.

Sequence analysis of ITS1

Two identical ITS1 sequences (BITS1) were obtained from 5 isolines of An. aconitus Form B and two others (CITS1) from 5 isolines of Form C. Sequence alignment for the ITS1 is given in Fig 2. The ITS1 sequences of both forms were 503 bp long and show over 99% identity. Their GC contents were approximately 48%. The boundaries of ITS1 were defined according to the previously published sequence for An. minimus C (Sharpe et al, 2000). The An. aconitus ITS1 shown in Fig 2 begins at position 184 and ends at position 686 of the amplified DNA, being flanked by approximately 183 bp of the 3 end of the 18S, and 86 bp of the 5' end of the 5.8S rDNA genes. Two base substitutions were detected at positions 306 and 329 of both loci (variation rate = 0.4%). Comparison of ITS1 DNA sequences among An. aconitus Form B, Form

Fig 1-Metaphase karyotypes of Anopheles aconitus
Forms B and C collected in Chiang Mai, Thailand (Giemsa staining). Testes chromosomes:
(A) Form B; showing X₁,Y₂-chromosomes, (B)
Form B; showing X₂,Y₂-chromosomes, (C) Form
C; showing X₁,Y₃-chromosomes, (D) Form C; showing X₂,Y₃-chromosomes. Ovary chromosomes: (E) showing homozygous X₁,X₁-chromosomes, (F) showing homozygous X₂,X₂-chromosomes, (G) showing heterozygous X₁,X₂-chromosomes. Note, all types of X-chromosomes were found in all forms and strains of An. aconitus.

C and *An. minimus* C (Sharpe *et al*, 2000) was performed. Summary of the sequence variation is shown in Table 3. *An. minimus* C ITS1 sequences diverged more markly from *An. aconitus* Form B and Form C with 55.4% and 55.2% variation, respectively.

Sequence analysis of ITS2

DNA sequences of An. aconitus Form B and

Primers	Sequence $(5^{\prime} \rightarrow 3^{\prime})$	Priming region	References				
ITS1				- 1			
18S (f)	CCTTTGTACACACCGCCCGT 18S Sharpe <i>et al</i> (2		Sharpe et al (200	0)			
ITS6 (r)	GTTCATGTGTCCTGCAGTTCAC 5.8S Sharpe <i>et al</i> (20						
ITS2							
ITS2A (f)	TGTGAACTGCAGGACACAT	5.8S	Beebe and Saul (1995)			
ITS2B (r)	TATGCTTAAATTCAGGGGGT	28S	Beebe and Saul (1995)			
D3				-)			
D3a (f)	GACCCGTCTTGAAACACGGA	285	Sharpe <i>et al</i> (199	9)			
D3D (r)	ICGGAAGGAACCCGCIACIA	285	Sharpe <i>et al</i> (199	9)			
			Charma at al/200				
LEU (I)		TRNA-LEU	Sharpe et al (200	0)			
LYS (I)	ACTIGUTTCAGTCATCTAATG	IRINA-LYS	Sharpe et al (200	0)			
BTTS1	<u></u>		COTTOCTCOTCACCTCCA	90			
CITS1			T	90			
MCITS1	G.C	•••••••••••	• • • • • • • • • • • • • • • • • • • •	68			
BITS1 CITS1	GTAGGCATGGCCGAAGTTGACCGAACTTGATGATTTAGAGGAAGTAA	AAGTCGTAACAAGGTTTCCGTAGG	TGAACCTGCGGAAGGATCA	180 180			
MCITS1				158			
	184						
BTTS1		CACCGAGGCAAAGTTGTTCGCTTC	GTGCACGAACTATATGGGT	270			
CITS1				270			
MCITSI		G.T ALL. GUU.A.A.AGUUG	CCAA A. G. G. G. G. T	238			
BITS1 CITS1	TACGGTTGCTGAAGTCGGCTATTCCTAGCAACGCGTAACAGAACGGT	AGCAAGGTTTCTGGCTAGTCCCAG	ATCACCGTATAAGAGAAAG	360 360			
MCITS1	C.G.AA.T.AA.C.AT.T.AG.CATG.AACTG.TCGTT~	-A.GGCAAA-GTAT.	.G.GAGG.CCTGT	323			
BITS1	ACCAATCGAGTTGACAAGTTAATCAAACGATGTGGCCATTAATAGAG	ттааааааааастстаасасааас	CCCTGGAGATGGGTGGTGA	450			
CITS1 MCITS1	GCG.C.CGC.GGT.ACT.ATAC-GC.C	ACGGGTGGCGTC.	TTACCC.C.CA.AG.G	450 404			
p7701	ივიაივიივებითიუფიიებიაიაააივითვივავიიიიიიიიიიიიიიიიიიიიიიიი		GTOCGTTCCGAGTCTAAAA	540			
CITS1				540			
MCITS1	ACT.NA.GAGA.ATN.GGG-T.AGAT.A.AAATT	?CAC.C.G.T.ACGA.C	AT.AC.TA.GGGCG	491			
BITS1	ACCGTGAACTCAGCCCCAGTTCTAACAAGAAGAGGAGGTGTCCAAAG	GTCGATCGCGCACGGCAAAGGCAA	CTTAGTCGATGCGATCTGG	630 630			
MCITS1	GAA.ACAGTGTA.ANGA.A.AC.T.C.GGT.A.GCCACC	TACC.A.A.GG.AGG.A.C.	AG, GTC. T. CAGTCG. AAA	580			
		686					
BTTS1	CAGAG-AGAGGTGTC-CCATGGAAGCAATTCCTGAGGACTTCTACTAC		ATCACTCGGCTCATGGATC	718			
CITS1				718			
MCITS1	CT.C.C.AAAGTA.C.AA.CGGGAA.TTG.AC.T.G	iC.AA		600			
		÷					
BITS1	GATGAAGACCGCAGCTAAACGCGCGCGTCTGAAT <u>GTGAACTGCAGGACA</u>	CATGAAC 772					
MCITS1	G.TC	700					

Table 1 Primers used for PCR amplification. f = forward; r = reverse.

Fig 2–Alignment of the ITS1 and flanking 18S and 5.8S regions of rDNA for *Anopheles aconitus* Form B (BITS1), Form C (CITS1) and *An. minimus* C (MCITS1). Dots indicate sequence identity with BITS1; dashes represent gaps introduced to maximize overall sequence similarity. The target sequences for PCR primers that flank the region analyzed are double-underlined. Arrows at 184 and 686 delineate the ITS1. Sequence names are defined in Table 2.

Region	Approx PCR product size (bp)	Number of individuals sequenced/species name/unique sequences identified	Symbol	GenBank accession number	Geographic origin	Reference
ITS1	772	2/An. aconitus Form B/1	BITS1	AY547356	СМ	This study
	772	2/An. aconitus Form C/1	CITS1	AY547357	CM	This study
	-	1/An. minimus C/1	MCITS1	AF194480-1	KB	Sharpe <i>et al</i> (2000)
ITS2	517	9/An. aconitus Form B/4	BITS2-1,	AY547358	CM	This study
	517		BITS2-2,	AY547359	CM	
	517		BITS2-3,	AY547360	CM	
	515		BTIS2-4	AY547361	CM	
	517	3/An. aconitus Form C/2	CITS2-1,	AY547362	CM	This study
	516		CITS2-2	AY547363	CM	
	-	4/An. aconitus	UITS2-1,	AF194494	KB	Sharpe <i>et al</i> (2000)
	-	(unidentified form, U)/2	UITS2-2	AF194493	KB	
D3	375	5/An. aconitus Form B/2	BD3-1,	AY547364	CM	This study
	375		BD3-2	AY547365	CM	
	375	4/An. aconitus Form C/1	CD3	AY547366	CM	This study
	-	3/An. aconitus	UD3-1,	AF114015	KB	Sharpe <i>et al</i> (1999)
	-	(unidentified form, U)/2	UD3-2	AF114014	KB	
COII	770	4/An. aconitus Form B/2	BCOII-1,	AY547367	CM	This study
	770		BCOII-2	AY547368	CM	
	770	4/An. aconitus Form C/1	CCOII	AY547369	CM	This study
	-	4/An. aconitus	UCOII-1,	AF194448	KB	Sharpe <i>et al</i> (2000)
	-	(unidentified form, U)/2	UCOII-2	AF194451	KB	

Та	ble	2

Taxa examined, their GenBank accession numbers and sources of specimens. CM = Chiang Mai Province, northern Thailand; KB = Kanchanaburi province, central Thailand.

Table 3

Summary of sequence variation of the ITS1 region of rDNA among *Anopheles aconitus* Form B, Form C and *An. minimus* C.

Species or forms (see symbol in Table 2)	Length (bp)	Length difference (bp)	Number of fixed nucleotide substitutions (%)	Number of fixed indel (%)	Total variation (%)
BITS1/ CITS1	503/503	0	2 (0.4)	0 (0)	0.4
BITS1/ MCITS1	503/474	29	264 (49.6)	31 (5.8)	55.4
CITS1/ MCITS1	503/474	29	263 (49.4)	31 (5.8)	55.2

Form C with approximately 515 to 517 bp in length were obtained from PCR amplification using ITS2A and ITS2B primers. The boundaries of the 5.8S and 28S regions were estimated by comparison with those determined by Sharpe *et al* (2000), for the Minimus group. Alignment for the ITS2 of *An. aconitus* Form B, Form C, and an unidentified form of *An. aconitus* reported by Sharpe *et al* (2000) is shown in Fig 3. The ITS2 of *An. aconitus* begins at position 96 and ends at position 473. The lengths of the ITS2 sequences were 376 to 378 bp. The sequences were slightly GC rich (56%). Simple tandem repeats were present at various locations along the ITS2. For example, CA was repeated at positions 109, 141 and 234, AG at positions 241 and 278, and CAT at position 403. Other tandem repeats of ACGCAT at position 434 and

BITSZ-I	TGTGAACTGCAGGAC	ACATGAACACCGACAC	GTTGAACGCATATGGCGCATCGGACGTTTAA	ACCCGACCGATGTACACATTCTTGAGTG 9	0
BITS2-3				9	90
BITS2-4					90
CITS2-2					90
BITS2-2		• • • • • • • • • • • • •		9	90
CITS2-1				9	90
UITS2-1			NNNN	N	54
UITS2-2			N	N	55
	96	109	141		
D7000 1		↓ ••••••••••••••••••••••••••••••••••••	↓ • • • • • • • • • • • • • • • • • • •		20
BITSZ-1	CUTACCARATCUTIG	IIACACAAAIACAIAA	CIACAGGACGGGCGIGCIACACAGICAAGIC	AACATTCCGGGCGAGCAGCCGCCGCCACG 10	20
DI102~J				18	30
CTTG2-3					30
BITS2-2					30
CTTS2-1					30
UTTS2-1				15	54
UITS2-2				15	55
			234 24	1	
			\downarrow \downarrow		
BITS2-1	GAAGTCACTGGACGT	ACACGCTGTCGGACTG	TGCATCTTGGCGTGCTTGGTTCCACACCCAG	AGCGGGGTGAACCTCGGGCGCTGAAAAG 27	70
BITS2-3					70
BITS2-4					70
CITS2-2				27	0
BITS2-2				27	10
CITS2-1					10
UITS2-1		•••••			4
UITS2-2	• • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •			15
	278				
	↓ * *				
BITS2-1	GTAAGGCAGAGTACA	ATCTTGTACACC-AGG	GTACAGCGTCAAGTCGCACGGGTCGAACTTC	GGCTATGGACGACCTGAGAACCCCGGCA 35	.0
BITS2-3	• • • • • • • • • • • • • • • • •				.7
BITS2-4	••••••			, 36	5.8
BITS2-4 CITS2-2	· · · · · · · · · · · · · · · · · · ·	C			58
BITS2-4 CITS2-2 BITS2-2	· · · · · · · · · · · · · · · · · · ·	C			58 59
BITS2-4 CITS2-2 BITS2-2 CITS2-1		C			58 59 59
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1					58 59 59 59 33
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2					58 59 59 33 34
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2			403		58 59 59 33 34
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2			403 ↓		58 59 59 33 34
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2 BITS2-1	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7		58 59 59 33 34
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2 BITS2-1 BITS2-3	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7	434 ↓ GTAACACGTGCAACGCATACGCATGGAC 44	58 59 59 33 34 19
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2 BITS2-1 BITS2-3 BITS2-4	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7		58 59 59 59 59 59 59 59 59 59 59 59 59 59
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2 BITS2-2 BITS2-3 BITS2-4 CITS2-2	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7	434 GTAACACGTGCAACGCATACGCATGGAC 	58 59 59 59 59 59 59 59 59 59 59 59 59 59
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2 BITS2-2 BITS2-3 BITS2-4 CITS2-2 BITS2-2	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7		58 59 53 34 99 17 18 9
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2 BITS2-1 BITS2-3 BITS2-4 CITS2-2 CITS2-1	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG1		59 59 59 59 59 59 59 59 59 59 59 59 59 5
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-1 UITS2-2 BITS2-3 BITS2-3 BITS2-4 CITS2-2 BITS2-4 CITS2-2 UITS2-1	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG1	434 ↓ GTAACACGTGCAACGCATGGAC 44 	58 59 53 34 59 53 34 59 53 34 59 53 34 59 53 34 59 53 34 59 53 34 59 53 34 59 53 34 59 53 34
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-1 UITS2-2 BITS2-2 BITS2-3 BITS2-4 CITS2-2 BITS2-4 CITS2-2 UITS2-1 UITS2-1	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG1	434 ↓ GTAACACGTGCAACGCATACGCATGGAC 444 	59 59 53 34 59 59 33 4 99 59 33 4 99 59 33 4 99 59 33 4 99 59 33 4 99 59 33 4 99 59 33 4
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2 BITS2-2 BITS2-3 BITS2-3 BITS2-4 CITS2-2 BITS2-2 CITS2-2 UITS2-1 UITS2-1 UITS2-2	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7		559 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 533 59 59 533 59 59 533 59 59 533 59 59 533 59 59 533 59 59 533 59 59 533 59 59 533 59 59 533 59 59 533 59 59 533 5 5 59 533 5 5 59 533 5 5 5 5
BITS2-4 CITS2-2 CITS2-2 CITS2-1 UITS2-2 BITS2-2 BITS2-3 BITS2-3 BITS2-3 BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2	GCCTACTAACACCAG		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7		58 59 53 4 99 18 99 18 99 18 99 22 4
BITS2-4 CITS2-2 CITS2-2 CITS2-1 UITS2-2 UITS2-2 BITS2-3 BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2	GCCTACTAACACCAG	473 ↓	403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCGT		58 59 53 34 99 7 89 92 34 99 7 89 92 24
BITS2-4 CITS2-2 CITS2-2 CITS2-1 UITS2-2 BITS2-1 BITS2-3 BITS2-3 BITS2-3 BITS2-3 BITS2-2 CITS2-1 UITS2-2 UITS2-1 DITS2-2	GCCTACTAACACCAG 		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7 TCAAGTGATGTGTGACA <u>ACCCCCTGAATTT7</u>	434 ↓ GTAACACGTGCAACGCATACGCATGGAC 44 	5899334 997899334 997899324
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-2 BITS2-1 BITS2-3 BITS2-4 CITS2-2 CITS2-1 UITS2-2 UITS2-1 BITS2-2 BITS2-2 BITS2-3 BITS2-3	GCCTACTAACACCAG 		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7 TCAAGTGATGTGTGACAA <u>CCCCCTGAATTT7</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5895334 997189934 19971899324
BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-1 UITS2-2 BITS2-3 BITS2-3 BITS2-4 CITS2-2 CITS2-1 UITS2-1 UITS2-1 BITS2-3 BITS2-3 BITS2-4 CITS2-4	GCCTACTAACACCAG 		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCGT	$\begin{array}{c} 35\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	5895334 997899324
BITS2-4 CITS2-2 CITS2-2 CITS2-1 UITS2-2 BITS2-3 BITS2-3 BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-2 BITS2-2 BITS2-1 BITS2-3 BITS2-4 CITS2-2	GCCTACTAACACCAG 458 ↓ CCTACTTGCTTTCCT		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCGT	$\begin{array}{c} 35\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	589934 99789934 19789934
BITS2-4 CITS2-2 CITS2-2 CITS2-1 UITS2-2 BITS2-2 BITS2-3 BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-1 BITS2-3 BITS2-4 CITS2-2 BITS2-2 CITS2-1 CITS2-3 CITS2-3 CITS2-3 CITS2-4 CITS2-2	GCCTACTAACACCAG 458 ↓ CCTACTGCTTTCCT	C C N GCTAGCCGATCCGGGT GGCTAGCCGATCCGGGT 473 ↓ TTCGCATATGTAGGCC	403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCGT	$\begin{array}{c} 35\\ & 434\\ & & & & & & & & & & & & & & & & \\ \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & & \\ &$	589934 99789934 199789934
BITS2-4 CITS2-2 CITS2-2 CITS2-1 UITS2-2 BITS2-3 BITS2-3 BITS2-3 BITS2-3 BITS2-3 BITS2-2 CITS2-2 CITS2-1 UITS2-2 BITS2-2 BITS2-3 BITS2-4 CITS2-2 BITS2-2 CITS2-2 CITS2-2 UITS2-2 UITS2-2 UITS2-2 UITS2-2 UITS2-2	GCCTACTAACACCAG 458 ↓ CCTACTTGCTTTCCT		403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCGT TCAAGTGATGTGTGACAACCCCCTGAATTTZ	$\begin{array}{c} 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\$	589934 99789934 99789934
BITS2-4 CITS2-2 CITS2-2 CITS2-1 UITS2-2 BITS2-2 BITS2-3 BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-2 BITS2-2 CITS2-1 BITS2-4 CITS2-2 BITS2-2 CITS2-1 UITS2-1 UITS2-1 UITS2-1 UITS2-1	GCCTACTAACACCAG 458 ↓ CCTACTTGCTTTCCT	C N GCTAGCCGATCCGGGT GCTAGCCGATCCGGGT 473 ↓ TTCGCATATGTAGGCC	403 ↓ CCAGGGGTTACGCATCATCCGGCCGAGTCG7	$\begin{array}{c} 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 35\\ & & 44\\ & & & & 44\\ & & & & & 44\\ & & & &$	5895334 99789934 99789934

Fig 3–Alignment of the ITS2 and flanking 5.8S and 28S regions of rDNA of *Anopheles aconitus* Form B, Form C and an unidentified form (data from GenBank). Dots indicate sequence identity with BITS2-1; dashes represent gaps introduced to maximize overall sequence similarity. The target sequences for PCR primers that flank the region analyzed are double-underlined. Arrows at 96 and 473 delineate the ITS2. Other arrows indicate positions of repeat elements described in the text. Asterisks (*) indicate positions of nucleotide deletion. Sequence names are defined in Table 2.

CTTTC at position 458 were also noted. Within 9 isolines of An. aconitus Form B, 4 different sequences (BITS2-1, BITS2-2, BITS2-3 and BITS2-4) were detected. Variation in the length of the isolines of Form B was present due to base deletion at positions 280 (A) and 281 (G) in BITS2-4. For Form C, 2 different sequences (CITS2-1, and CITS2-2) were obtained from 3 isolines. CITS2-2 was 1 nucleotide shorter than CITS2-1 as 2 bases were deleted at position 280 (A) and 281(G), and 1 base was inserted at position 298 (C). It is interesting to note that at position 436, Form B isolines showed mixed G/ C/T, whereas Form C isolines showed mixed G/ C. Sequence variation between the two forms was very low, ranging from 0.3 to 0.8% (1 to 3 base substitutions including sites of insertion and deletion).

Sequence analysis of the D3 region

Two different D3 sequences were obtained from 5 isolines of *An. aconitus* Form B (BD3-1 and BD3-2) and one D3 sequence from 4 isolines of Form C (CD3). Sequence alignment of the D3 region is shown in Fig 4. All D3 sequences of *An. aconitus* were 312 bp long, located between positions 43 and 354. BD3-1 and CD3 sequences were 100% identical. Compared to BD3-2, one nucleotide substitution at position 72 (C) was detected (variation rate = 0.3%). This position was a common site for base substitution in all the sequences compared.

Sequence analysis of COII

Fig 5 shows an alignment of COII and the flank region tRNA^{Leu} and tRNA^{Lys} of *An. aconitus* Form B and Form C. The COII genes of these

	43 72	
	\downarrow \downarrow	
BD3-2	GACCCGTCTTGAAACACGGACCAAGAAGTCTATCTTGCGCGCAAGCCAATGGGTATTGGGCGGTACGCCGCCTCGAACTGGTAACCCACA	90
UD3-1		62
BD3-1	· · · · · · · · · · · · · · · · · · ·	90
CD3	· · · · · · · · · · · · · · · · · · ·	90
UD3-2		63
BD3-2	GGCGAAGACAAATCGAGTGTTGCGGGGATTACGGGTTCGGCCGATGGCGCAAGCCTTCGTCGGGCCCCTCCATCCCAGGGTGTTCCGTTAC	180
UD3-1		152
BD3-1		180
CD3		180
UD3-2		153
BD3-2 UD3-1 BD3-1 CD3 UD3-2	GGGTGCTTGCACCCAGTGGACATCCCCGGAGTGCGTATGATGTGACCCGAAAGATGGTGAACTATGCCTGATCAGGTCGAAGTCAGGGGA	270 242 270 270 243
	354 ↓	
BD3-2	$\texttt{AACCCTGATGGAGGACCGAAGCAATTCTGACGTGCAAATCGATTGTCAGAGTTGGGCATAGGGGCGAAAGACCAATCGAACCATC\underline{\textbf{TAGTA}}$	360
UD3-1		326
BD3-1		360
CD3		360
JD3−2	······································	319

BD3-2	GCTGGTTCCTTCCGA	375
UD3-1		
BD3-1		375
CD3		375
1103-2		

Fig 4–Alignment of the D3 region of 28S rDNA of *Anopheles aconitus* Form B, Form C and an unidentified form (data from GenBank). Dots indicate sequence identity with BD3; dashes represent gaps introduced to maximize overall sequence similarity. The target sequences for PCR primers that flank the region analyzed are double-underlined. Arrows at 43 and 354 delineate the D3 region. Sequence names are defined in Table 2. Y = C and T; M = A and C.

			64 ↓		
BCOII-1	ATATGGCAGATTAGTGCA	ATGAATTTAAGCTTCATATAT	AAAGATTTTATCTTTGGTTAGAAAATGGCAACATGAGCAAATTTAGGA	CTA 90	
UCOII			· · · · · · · · · · · · · · · · · · ·	90	
BCOII-2				90	
UCOII-2				T 27	
BCOII-1 CCOII	CAAGATAGATCATCTCCT	TTAATAGAACAATTAAATTTT	TTTCATGATCATACATTATTAATTTTAACAATAATTACAATTTAGTT	GGA 180 180	
UCOII-1 BCOII-2 UCOII-2	C			117 180 117	
BCOII-1	TATATTATAGGAATATTA	ATATTTAATAAATTTACTAAC	CGATATTTATTACACGGACAAACTATTGAAATTATTTGAACTGTATTA	CCA 270	
CCOII	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	270	
UCOII-1	•••••		• • • • • • • • • • • • • • • • • • • •	207	
UCOII-2				207	
BCOII-1	GCAATTATTTTAATATTT	ATTGCATTCCCTTCTCTACGA	CTTTTATATTTAATAGACGAAATTAATACTCCTTCTATTACTTTAAAA	TCA 360	
CCOII				360	
UCOII-1	••••••	•••••	•••••••••••••••••••••••••••••••••••••••	297	
UCOTT-2				360	
00011 2					
BCOII-1	ATTGGACATCAATGATAT	TGAAGTTATGAATATTCTGAT	TTTTTAAATTTAGAATTTGATTCTTATATAATTCCAACAAATGAATTA	GAA 450	
UCOTI-1	••••••		•••••••••••••••••••••••••••••••••••••••	387	
BCOII-2				450	
UCOII-2			•••••••••••••••••••••••••••••••••••••••	387	
BCOII-1	ATAAACGGATTTCGTTTA	TTAGATGTAGATAATCGAATT	gttttacctataaataatcaaattcgaattttagttactgcaactgat	GTT 540	
CCOII	• • • • • • • • • • • • • • • • • • • •			540	
UCOII-1	••••••	•••••	•••••••••••••••••••••••••••••••••••••••	477	
UCOII-2				477	
			· · · · · ·		
BCOII-1	TTACATTCATGAACAGTT	CCTTCCTTAGGAGTAAAAGTA	GATGCAACTCCTGGACGTTTAAATCAAATTAATTTTTTTAATTAA	CCA 630	
UCOTT-1			• • • • • • • • • • • • • • • • • • • •	630	
BCOII-2				630	
UCOII-2		G	C	567	
BCOII-1	GGTTTATTTTTGGACAA	TGTTCAGAAATTTGTGGAGCA	AATCATAGATTTATACCAATTGTAATTGAAAGAATTCCTATAAATTAT	TTT 720	
UCOTT-1	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	/20	
BCOII-2				720	
UCOII-2					
		748 ↓			
BCOII-1	ATTAAATGAATTACTTCT	ATAACTAATT <u>CATTAGATGAC</u>	TGAAAGCAAGT 770		
CCOII			770		
UCOII-1	••••••	· · · · · · · · · - 	683 770		
UCOII-2		·····	683		
-					

Fig 5–Alignment of the COII region of mtDNA of *Anopheles aconitus* Form B, Form C and an unidentified form (data from GenBank). Dots indicate sequence identity with BCOII-1; dashes represent gaps introduced to maximize overall sequence similarity. The target sequences for PCR primers that flank the region analyzed are double-underlined. Arrows at 64 and 748 delineate the COII sequence. Sequence names are defined in Table 2.

mosquito species were 685 bp in length. They had an ATG codon for initiation (A at position 64) and only the T at position 748 that potentially encodes the entire terminator. Two different COII sequences were obtained from 4 isolines of *An. aconitus* Form B (BCOII-1 and BCOII-2) and one COII sequence from 4 isolines of Form C (COII). Three COII sequences, BCOII-1, COII and UCOII-1, were the same. However, BCOII-2 and UCOII-2 showed 0.15% (1 base substitution) and 0.6% (4 base substitution) variation, respectively when compared with BCOII-1.

DISCUSSION

An. aconitus is one of the six members of the An. minimus group of Anopheles subgenus Cellia in the Myzomyia Series (Harrison, 1980). Based on metaphase karyotype studies, at least three karyotypic forms of An. aconitus (Forms A, B and C) have been reported sympatrically from Mae Taeng district, Chiang Mai Province, northern Thailand, whereas Form D (X_3, X_4, Y_4) has been incriminated in Java, Indonesia only (Baimai et al, 1996). Over the period of this study, no An. aconitus Form A was found. One possible explanation is that the Y₁ chromosome of An. aconitus consists of a small submetacentric figure, thus having a low amount of constitutive heterochromatin, and may have been lost from the population. The heterochromatin on eukaryotic chromosomes has a significant role in the regulation and concerted evolution of the genome. This may serve similar functions in the An. aconitus chromosomes. Therefore Form A might have become lost from the population, as Y₂ and Y₃ have extra block(s) of heterochromatin on the short and long arms of their chromosomes making males of Form B and Form C dominant in the population.

Previously intra- and inter-specific molecular variations have been investigated in four members of the Minimus group of *Anopheles* subgenus *Cellia: An. aconitus, An. varuna, An. minimus* A and C. DNA sequence divergence between these species at a mtDNA locus (COII) and at three nuclear loci (ITS2 and the D3 regions of rDNA and guanylate cyclase) has been reported (Sharpe *et al*, 2000). However, the DNA sequence data for An. aconitus is limited; only 24 sequences have been previously submitted to the GenBank database. These were derived from an unidentified form of An. aconitus. In this study, we isolated and sequenced the ITS1, ITS2 and D3 regions of the rDNA and COII genes for An. aconitus Form B and Form C. The consensus sequences of all loci were identical to those determined by Sharpe et al (2000). Sequence comparison of these four loci within and between the two forms showed great similarity with variation rates = 0.15 to 0.8%. These results correspond to those obtained in attempts to distinguish cryptic taxa in An. gambiae s.s. in West Africa. Four chromosomal forms of An. gambiae s.s. from West Africa were reported and DNA sequence variation in the ITS of rDNA, mtDNA and five unlinked single-copy nuclear loci were examined for evidence of reproductive isolation (della Torre et al, 2001; Favia et al, 2001; Gentile et al, 2001; Mukabayire et al, 2001). Although three sites in the ITS region distinguish the Mopti chromosomal form for Savanna and Bamako in Mali and Burkina Faso, outside these two countries the association between chromosomal form and DNA type does not always hold. In addition, two sequence-tagged random amplified polymorphic DNA (RAPD) loci, R15 and R37, have been reported as discriminating between Mopti and other chromosomal forms. However, neither loci has diagnostic value, and are not recommended as tools in the recognition of fieldcollected An. gambiae chromosomal forms. Their data suggest that gene flow among populations of this species is restricted and the molecular markers may not have the sensitivity required to detect recently established taxa of An. gambiae S.S.

The complete ITS1 sequence of *An. aconitus* is reported for the first time in this study. The region showed high variation (approximately 55%) compared to the closely related species *An. minimus* C. Detailed investigations of genetic divergences in this locus within the mosquitoes in the Minimus group remain to be undertaken.

The result of analysis of the ITS2 consensus sequence of *An. aconitus* is consistent with those of other studies that indicate a low frequency and variance of spacer mutants in the genus Anopheles. Although no intraindividual variation was detected, intrapopulation variations were present with polymorphic sequences in some forms of each region, for example, ITS2rDNA. Indels in regions of single-base repeats and simple repeat motifs account for most of the sequence variation observed and suggest their role as a major cause of divergence in the evolution of this spacer. In An. aconitus, sequence repeats, which may be subject to slipped-strand mis-pairing (SSM), are found at positions 280 and 281 of the ITS2 in the BITS2-4 and CITS2-2 sequences. Levinson and Gutman (1987) propose that the process of SSM is more likely to be a major factor in the initial expansion of short repeat motifs, which are subsequently predisposed to further expansion by unequal crossing-over. The rapid rate of fixation of such mutations in tandemly repeated genes may subsequently distinguish closely repeated species.

Williams et al (1987) analyzed the overall length and organization of the X- and Y-linked rDNA nontranscribed spacers of Drosophila melanogaster obtained from five continents and provided strong evidence that the X-linked rDNA arrays were under selective constraints. In An. petragnani, An. hispaniola (Marchi and Pili, 1994), An. gambiae (Kumar and Collins, 1994) and An. stephensi (Redfern, 1981), the rDNA genes were located on the sex pair, mainly within heterochromatic regions (C-banding) or adjacent to them. Recently, an rDNA (pDm 238 - D. melanogaster) probe has been used to determine the relationship between the nucleolar organizer region (NOR) and constitutive heterochromatin (C-banding) in An. darlingi and An. nuneztovari. This probe mapped the X (X1 and X₂) and Y chromosomes, whose gene sites coincided with the constitutive heterochromatin (Cbanding) in the pericentromeric region and showed a conspicuous association with the NOR of both species. The gene sites agree with the data for X₁ acrocentric chromosomes of An. darlingi from Manaus and Macapa. In these chromosomes, the constitutive heterochromatin was located in the centromeric region, which extended to 1/3 of this chromosome, whereas the X₂ chromosomes showed fewer signals. In An. *nuneztovari* from Manaus, the intraspecific variations in the heterochromatic block signals in the submetacentric X_1 (longer) and the X_2 (shorter) chromosomes were the same as those of *An. nuneztovari* from Macapa (Rafael *et al*, 2003). In the case of *An. aconitus*, the location of rDNA in the chromosomes of each form should be examined, as the information could be useful for further study of the evolution of this species.

The gene for COII in the mtDNA has been frequently used in phylogenetic and population genetic studies. Sharpe et al (2000) combined D3 and COII data in the reconstruction of phylogenetic relationships of the Minimus group, because a phylogeny based on a single locus tree may not be the correct hypothesis, particularly for closely related taxa with large effective population sizes. The COII data for An. aconitus Form B and Form C was nearly identical (only 1 base substitution). But An. aconitus COII from the slightly allopatric area (Kanchanaburi Province, Thailand) showed a 4 base substitution (0.6% variation). It will be interesting to examine the COII in An. aconitus Form D as the form is only found in Indonesia. Different consensus sequences might be found in populations that inhabit different ecological zones, are separated by major geographic barriers, or are quite distant from each other. When geographically distant populations are found to differ in sequence, then the divergence is minimal and limited to regions that are prone to high rates of mutation.

Further analyses of rDNA, mtDNA and other genetic markers, including RAPDs, microsatellites of *An. aconitus* Form B, Form C and Form D, should provide information important to molecular taxonomy, evolutionary systematics, population genetics, genetic mapping, and the investigation of defined phenotypes for this species. However, the present ITS1, ITS2, D3 and COII data suggest that *An. aconitus* Forms B and C in Chiang Mai, Thailand are conspecific.

ACKNOWLEDGEMENTS

We sincerely thank the Thailand Research Fund (TRF: BRG/14/2545) and the Thailand Research Fund through the Royal Golden Jubilee PhD Program (Grant No. PHD/0044/2546) for financial support of this research project, the Faculty of Medicine Endowment Fund for Research Publication for financial support to defray publication costs, and Professor Supot Wudhikarn, Dean of the Faculty of Medicine, Chiang Mai University, for his interest.

REFERENCES

- Baimai V, Kijchalao U, Rattanarithikul R. Metaphase karyotypes of *Anopheles* of Thailand and Southeast Asia: V. Myzomyia series, Subgenus *Cellia* (Diptera: Culicidae). *J Am Mosq Control Assoc* 1996; 12: 97-105.
- Beebe NW, Saul A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am J Trop Med Hyg 1995; 53: 478-81.
- Choochote W, Sucharit S, Abeywickreme W. A note on adaptation of *Anopheles annularis* Van Der Wulp, Kanchanaburi, Thailand, to free mating in a 30x30x30 cm cage. *Southeast Asian J Trop Med Public Health* 1983; 14: 559-60.
- Choochote W, Pitasawat B, Jitpakdi A, *et al.* The application of ethanol-extracted *Gloriosa superba* for metaphase chromosome preparation in mosquitoes. *Southeast Asian J Trop Med Public Health* 2001; 32: 76-82.
- Collins FH, Mendez MA, Rasmussen MO, *et al.* A ribosomal RNA gene probe differentiates member species of the *Anopheles gambiae* complex. *Am J Trop Med Hyg* 1987; 37: 37-41.
- Collins FH, Porter CH, Cope SE. Comparison of rDNA and mtDNA in the sibling species *Anopheles freeborni* and *An. hermsi. Am J Trop Med Hyg* 1990; 42: 417-23.
- Cornel AJ, Coetzee M, Van Rensburg AJ, *et al.* Ribosomal DNA-polymerase chain reaction assay discriminates between *Anopheles quadriannulatus* and *An. merus* (Diptera: Culicidae). *J Med Entomol* 1997; 34: 573-7.
- Cornel AJ, Porter CH, Collins FH. Polymerase chain reaction species diagnostic assay for *Anopheles quadrimaculatus* cryptic species (Diptera: Culicidae) based on ribosomal DNA ITS2 sequences. *J Med Entomol* 1996; 33: 109-16.
- de Merida AM, Palmieri M, Yurrita M, *et al.* Mitochondrial DNA variation among *Anopheles albimanus* populations. *Am J Trop Med Hyg* 1999; 61: 230-9.

- della Torre A, Fanello C, Akogbeto M, *et al.* Molecular evidence of incipient speciation within *Anopheles gambiae s.s.* in West Africa. *Insect Mol Biol* 2001; 10: 9-18.
- Fairley TL, Renaud TM, Conn, JE. Effects of local geographic barriers and latitude on population structure of *Anopheles punctipennis* (Diptera: Culicidae). *J Med Entomol* 2000; 37: 754-60.
- Favia G, Lanfrancotti A, Spanos L, *et al.* Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of *Anopheles gambiae s.s. Insect Mol Biol* 2001; 10: 19-23.
- Foley DH, Bryan JH, Yeates D, *et al.* Evolution and systematics of *Anopheles*: insights from a molecular phylogeny of Australasian mosquitoes. *Mol Phylogenet Evol* 1998; 9: 262-75.
- Gentile G, Slotman M, Ketmaier V, Powell, *et al.* Attempts to molecularly distinguish cryptic taxa in *Anopheles gambiae s.s. Insect Mol Biol* 2001; 10: 25-32.
- Hackett BJ, Gimnig J, Guelbeogo W, *et al.* Ribosomal DNA internal transcribed spacer (ITS2) sequences differentiate *Anopheles funestus* and *An. rivulorum*, and uncover a cryptic taxon. *Insect Mol Biol* 2000; 9: 369-74.
- Harrison BA. Medical entomology studies: XIII. The Myzomyia series of *Anopheles* (*Cellia*) in Thailand, with emphasis on intra-interspecific variations (Diptera: Culicidae). *Contrib Am Entomol Inst* 1980; 17: 1-195.
- Higgins DG, Thompson JD, Gibson TJ. Using CLUSTAL for multiple sequence alignments. *Methods Enzymol* 1996; 266: 308-402.
- Kumar V, Collins FH. A technique for nucleic acid *in situ* hybridization to polytene chromosomes of mosquitoes in the *Anopheles gambiae* complex. *Insect Mol Biol* 1994; 3: 41-7.
- Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. *Mol Biol Evol* 1987; 4: 203-21.
- Manonmani A, Townson H, Adeniran T, *et al.* rDNA-ITS2 polymerase chain reaction assay for the sibling species of *Anopheles fluviatilis*. *Acta Trop* 2001; 78: 3-9.
- Marchi A, Pili E. Ribosomal RNA genes in mosquitoes: localization by fluorescence *in situ* hybridization (FISH). *Heredity* 1994; 72: 599-605.
- McLain DK, Wesson D, Oliver JH, et al. Variation in ribosomal DNA internal transcribed spacers I among eastern populations of *Ixodes scapularis*

(Acari: Ixodae). J Med Entomol 1995; 32: 351-60.

- Mukabayire O, Caridi J, Wang X, *et al.* Patterns of DNA sequence variation in chromosomally recognized taxa of *Anopheles gambiae*: evidence from rDNA and single-copy loci. *Insect Mol Biol* 2001; 10: 33-46.
- Norris DE. Genetic markers for study of the anopheline vectors of human malaria. *Int J Parasitol* 2002; 32: 1607-15.
- Porter CH, Collins FH. Phylogeny of nearctic members of the *Anopheles maculipennis* species group derived from the D2 variable region of 28S ribosomal RNA. *Mol Phylogenet Evol* 1996; 6: 178-88.
- Phuc HK, Ball AJ, Son L, *et al.* Multiplex PCR assay for malaria vector *Anopheles minimus* and four related species in the Myzomyia series from Southeast Asia. *Med Vet Entomol* 2003; 17: 423-8.
- Rafael MS, Tadei WP, Recco-Pimentel SM. Location of ribosomal genes in the chromosomes of *Anopheles darlingi* and *Anopheles nuneztovari* (Diptera: Culicidae) from the Brazilian Amazon. *Mem Inst Oswaldo Cruz* 2003; 98: 629-35.
- Redfern CP. Satellite DNA of *Anopheles stephensi* Liston (Diptera: Culicidae). Chromosomal location and under-replication in polytene nuclei. *Chromosoma* 1981; 82:561-81.
- Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the *Anophele gambiae* complex by the polymerase chain reaction. *Am J Trop*

Med Hyg 1993; 49: 520-9.

- Sharpe RG, Hims MM, Harbach RE, *et al.* PCR-based methods for identification of species of the *Anopheles minimus* group: allele-specific amplification and single-strand conformation polymorphism. *Med Vet Entomol* 1999; 13: 265-73.
- Sharpe RG, Harbach RE, Butlin RK. Molecular variation and phylogeny of members of the Minimus Group of *Anopheles* subgenus *Cellia* (Diptera: Culicidae). *Syst Entomol* 2000; 25: 263-72.
- Van Bortel W, Trung HD, Roelants P, *et al.* Molecular identification of *Anopheles minimus s.l.* beyond distinguishing the members of the species complex. *Insect Mol Biol* 2000; 9: 335-40.
- Walton C, Handley JM, Kuvangkadilok C, *et al.* Identification of five species of the *Anopheles dirus* complex from Thailand, using allele-specific polymerase chain reaction. *Med Vet Entomol* 1999; 13: 24-32.
- Williams SM, Furnier GR, Fuog E, *et al.* Evolution of the ribosomal DNA spacers of *Drosophila melano-gaster*: different patterns of variation on X and Y chromosomes. *Genetics* 1987; 116: 225-32.
- Xu X, Xu J, Qu F. A diagnostic polymerase chain reaction assay for species A and D of *Anopheles dirus* (Diptera: Culicidae) species complex based on ribosomal DNA second internal transcribed spacer sequence. J Am Mosq Control Assoc 1998; 14: 385-9.