INTRODUCTION

Beriberi is caused by thiamine (vitamin B1) deficiency. In the past it was commonly found in many parts of Southeast Asia. Thiamine deficiency occurs where diets consist mainly of milled white cereal grains, including polished rice and wheat flour, which are very poor sources of thiamine. Thiamine deficiency can develop within two to three months, and clinical beriberi is associated with significant morbidity and mortality (WHO, 1999). With improved nutrition beriberi is no longer a common disease, but it has been noted over the last 20 years in isolated outbreaks in Israel, ethnic Karen refugee camps in Thailand, Cuba, Taiwan, West Africa, and Gambia (Tang et al, 1989; Macias-Matos et al, 1996; De Montmollin et al, 2002; Chen et al, 2003; Luxemzerger et al, 2003; Fattal-Valevski et al, 2005. Beriberi has also been found in some specific risk groups, such as alcoholics, pregnant women, and people engaged in heavy physical exertion (Songchitsomboon et al, 1993; Wilson, 1998; Betrosian et al, 2004).

Beriberi was first described in 1593.
among sailors on a ship traveling from England to Patagonia. Kanehiro Takaki, a surgeon in the Japanese Navy, was one of the first to point out beri beri's association with food intake. In 1882, a vessel returned to Japan from New Zealand with 25 of the crew dead from beri beri. Takaki added meat, vegetables, and dairy products to the sailors' diets. After a repeat voyage to New Zealand, a second vessel returned without a single death (James, 1985; Lonsdale, 2006).

In Thailand, clinical beri beri is rarely reported. However, nutritional surveys conducted in the last 12 years have found that biochemical evidence of thiamine deficiency is fairly common, with 49% of males living in northern Thailand surveyed in 1999 having abnormal thiamine-status level (thiamine pyrophosphate levels of >15%) (Department of Health, 2003). One reported outbreak of infantile beri beri in Amnat Chareon Province, northeastern Thailand from June 2000-September 2001 found 22 beri beri cases, all associated with a history of exclusive breast feeding from mothers with low blood levels of thiamine (Cheungsamarn and Songchitsomboon, 2002). Studies conducted among Karen refugees in Thailand have documented both clinical and biochemical thiamine deficiency in pregnant and lactating women and clinical beri beri in infants (Dolan et al, 1993; Nosten et al, 1994 Luxemberger et al, 2001; McGready et al, 2001). Thiamine deficiency has been long recognized in these camps due to a combination of thiamine-poor foods, such as polished rice, and consumption of foods containing thiaminase, such as betel nut, fermented fish paste and tea leaves, and pregnant women now routinely receive thiamine supplementation (McGready et al, 2001).

On April 6, 2005 the Bureau of Epidemiology, Thai Ministry of Public Health, was notified of a cluster of possible beri beri cases among the crew of an ocean going fishing vessel (Ship A) in Samut Sakhon Province. Twenty-four crew members presented to a private hospital on March 30 and 31, 2005, with generalized pitting edema and dyspnea. An investigation was done sent to confirm the diagnosis, verify the outbreak, and provide recommendations for prevention and control.

MATERIALS AND METHODS

Setting

The index cases were merchant seamen who had worked on a 200-ton ocean-going fishing vessel (Ship A) starting in October 2003. The vessel, which was registered in Thailand, had a crew of 28. It fished in Indopacific waters from the Gulf of Thailand to Australia. The Sriwichai 5 Hospital, which reported the cases, is located in Maha Chai, a major port city on the Gulf of Thailand.

Case definition

We defined a probable case of beri beri as illness occurring in a crew member of Ship A after October 2003, with had at least one of the following symptoms: leg edema, scrotal edema or ascites, dyspnea, chest discomfort, chest pain, extremity numbness, or extremity weakness. Confirmed cases met the probable case definition and had at least one laboratory test indicative of thiamine deficiency [thiamine pyrophosphate effect (TPPE) >15% or erythrocyte transketolase activity (ETKA) <130 IU].

The captain of the ship brought all available crew members to the hospital for clinical examination on March 31, 2005.

Measurements

We interviewed cases regarding clinical signs and symptoms, job responsibilities, daily activities on the vessel and diet. We also reviewed available medical records. The largely Myanmar crew dispersed quickly after landing; we were only able to interview those cases who remained in Thailand.

Laboratory testing

Sera were collected from three subjects
and sent to the Research Center at Ramathibodi University Hospital to confirm thiamine deficiency. ETKA and TPPE were conducted using standard methods (Gradudel et al, 1985).

Data analysis

Data were entered on site into Excel, transferred to Microsoft Access and analyzed by frequency for time, place, and person using Epi Info Version 3.3 (CDC, Atlanta, Georgia).

RESULTS

Descriptive epidemiology

Ship A left Thailand in October 2003 and returned on March 30, 2005. There were 28 crew members (4 Thai, 24 Myanmar), all of whom were healthy men, with a median age of 27 years (range 19 to 45). The captain reported no illness among the crew before the current outbreak.

We interviewed three patients and examined medical records for 24. All crew members had different work roles as seen in Table 1. Two patients died at sea from a condition consistent with beriberi before the ship arrived at port, and two did not report to the hospital for examination. Fifteen of the 28 men met our case definition of probable beriberi (attack rate 53.6%); the denominator includes two men who were not seen at the hospital but who were well according to the Captain. We classified 12 cases as probable and three as confirmed.

The median age of cases was 28 years (range 20 to 45). One of four (25%) Thai and 14 of 24 (53%) Myanmar sailors developed disease. Two cases died (case fatality rate, 13%). Case patients described a history of edema (60%), chest discomfort (54%), and dyspnea (27%). Of the 13 patients physically examined (excluding the two who had died at sea), all were hypertensive, nine had pitting edema, five had ascites, one had rales, and one had jugular venous distension. The three patients who were tested for thiamine deficiency had EKTA results ranging from 62.8-117.7 IU (normal range ≥130 IU) and TPPE results ranging from 28.1-33.3% (normal range <15%). Electrolytes, blood urea nitrogen, creatinine, and serum albumin were all normal. Four of 12 patients whose urine was examined had hematuria, and five had proteinuria. Four patients had roentographic evidence of cardiomegaly and pulmonary congestion. The onset of the first case was in early March. This patient developed fulminant edema, chest pain, abdominal discomfort, dyspnea, and pink-tinged sputum; he died two days after the onset of symptoms. The second case developed the same symptoms six days after the first and died within two days. The other cases developed symptoms one

<table>
<thead>
<tr>
<th>Job position (N=28)</th>
<th>Job description</th>
<th>Sick/N</th>
<th>aAR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captain</td>
<td>Command</td>
<td>0/1</td>
<td>0</td>
</tr>
<tr>
<td>Helmsman</td>
<td>Steering the ship</td>
<td>0/1</td>
<td>0</td>
</tr>
<tr>
<td>Helmsman helper</td>
<td>Helping the steersman, and sometimes dragging the fishing net</td>
<td>2/3</td>
<td>67</td>
</tr>
<tr>
<td>Mechanic</td>
<td>Repairing the engines</td>
<td>1/1</td>
<td>100</td>
</tr>
<tr>
<td>Cook</td>
<td>Cooking 3-4 times a day, sometimes dragging the fishing net</td>
<td>1/1</td>
<td>100</td>
</tr>
<tr>
<td>Worker</td>
<td>Dragging the fishing net and sorting the fish.</td>
<td>11/21</td>
<td>52.4</td>
</tr>
</tbody>
</table>

aAR=attack rate
week later (Fig 1). Three patients were hospitalized and dramatically improved within 24 hours after administration of intravenous thiamine. All others received vitamin B complex orally.

Dietary information

Some foods had been stocked before the ship departed from its last port of call, including white rice, mung bean, fermented fish, palm oil and pork. These stores were supplemented by purchase of pork and vegetables from passing ships about once every two months. All crew members ate the same food items three to four times daily, but the Thais cooked their food by themselves. All denied drinking alcohol on board the ship. First aid and some basic medicines, such as antipyretic drugs, were available, but there were no vitamin supplements.

About five months before returning to Thailand there was a problem with the ship’s license and documentation, and it was not allowed to come into port. The seafarers had limited money to buy meat from the ship’s stores, so they ate only fish that they were able to catch and white rice for the last two months of the voyage.

DISCUSSION

We were able to document a beriberi outbreak among fishermen who had a history of prolonged low thiamine intake. All of the cases were previously healthy young men. The clinical signs and symptoms suggested “wet” beriberi (Wilson, 1998), with substantial edema, chest discomfort, and dyspnea. We also found that the majority of the cases were Myanmar, possibly reflecting different work roles, levels of physical exertion, or prior dietary deficiency.

Thiamine is a heat labile, water-soluble vitamin, and body storage is minimal. In young and healthy non-alcoholic individuals, time to onset of deficiency symptoms varies from 18 days to three months after withdraw of thiamine from the diet (Ziporin et al, 1965; WHO, 1999). A 1996 Thai nutritional survey of construction and factory workers found that those workers had high rates of biochemical, but not clinical, thiamine deficiency (Department of Health, 2003). A food consumption and nutrition survey conducted in refugee camps along the Thai-Myanmar border during July to December 2003 found evidence of clinical and biochemical beriberi in all age groups (range 4.1 to 5.3/1,000 person) (ECHO, 2004). There are no available population-based data on the prevalence of either biochemical or clinical thiamine deficiency in Thailand. However, these two surveys in addition to this outbreak suggest that in some populations in Thailand and Myanmar diets may contain inadequate levels of thiamine possibly combined with increased levels of thiaminases in some foods.

Consistent with the outbreak reported among Chinese immigrants in Taiwan, Gambia and West Africa (Tang et al, 1989; De Montmollin et al, 2002; Chen et al, 2003), we found that this outbreak occurred in a confined environment with a history of prolonged dietary deficiency of thiamine. However, the case fatality rate in this episode was high compared with other outbreaks, possibly because the crew could not reach medical treatment in a timely fashion.

Fig 1–Beriberi cases (n=15) by date of onset, Ship A, Thailand, 2005.
Our investigation was limited because after the ship landed the crew quickly dispersed. We were unable to interview and follow up all crew members and, given the modest crew size, we were unable to conduct a case-control study to identify specific risk factors for disease. Additionally, the crew members we interviewed could not give exact histories of food consumption so we were unable to estimate caloric and vitamin intake. However, given records of available food stores during the voyage, we were able to construct a general picture of the nutritional situation on Ship A and the likely cause of this outbreak.

After the investigation, we provided public information through newspapers as a general reminder about the persistence of this disease. We also recommended that persons who work for extended periods of time at sea take vitamin B complex or multivitamins. The unfortunate situation of Ship A encouraged collaboration among epidemiologists, nutrition experts, public health department staff, and health providers for commercial fishermen. Additional studies are planned, and based on these future studies a strategic plan will be developed to improve health among all commercial fishermen on Thai vessels.

ACKNOWLEDGEMENTS

We wish to thank the staff of Sriwichai 5 Hospital; Drs Yongjua Laosiritaworn, Rapeepan Dejphichai, Nattapon Yampikulsakul, Michael O’Reilly of the Field Epidemiology Training Program Thailand; Dr Nidhikul Tem-iam, Miss Bung-orn Laosatiankit and the staff of the Epidemiology Section, Si Sa Ket Provincial Health Office; Mr Kumsorn Phothiwat and his staff in the Nong Eung Subdistrict Health Center; the Rasi Salai subdistrict Health Office, Srisakes Province; the staff of the Bureau of Epidemiology, Thai Ministry of Public Health; and Drs George Rutherford and Thomas Novotny of the Institute for Global Health, University of California, San Francisco, USA.

REFERENCES

Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamine(e) and its derivatives. eCAM 2006; 3: 49-59.

