INTRODUCTION

Poisoning is a common cause of medical emergencies and a threat to public health. In the year 2000, poisoning was the ninth most common cause of death in young adults worldwide and there were more than three million cases of poisoning, with a mortality rate of approximately 8% (Peden et al., 2002). It has been estimated that over 90% of such fatalities occur in developing countries (Peden et al., 2002).

Vietnam is a developing country with approximately 84 million inhabitants. Its population is relatively young, 39% consisting of children and adolescents, while 17% are elderly (Vietnam National Health Report 2006). In general Vietnam is an agricultural country and farmers account for nearly 75% of the population, creating a large market for biocides and other toxic chemicals. As a result of the ready availability of poisons and the lack of an effective control strategy, poisoning has become a major health problem throughout the country. However, reliable data on poisoning patterns in Vietnam are sparse and incomplete, and to our knowledge no study on clinical toxicological issues from this country has been published previously in any international medical journal.

The first Poison Control Center in Viet-
The PCC was started at Bach Mai Hospital in Hanoi in 1998. The PCC consists of four units: a clinical department with 20 beds and intensive care facilities, a toxicological laboratory, a poison information unit, and an antivenom research unit.

The aim of the present study was to investigate the poisoning patterns in northern Vietnam and also the frequency and characteristics of poisoning emergencies admitted to the clinical department of the PCC in Hanoi during its first five years, with special focus on a comparison of the years 1999 and 2003.

MATERIALS AND METHODS

In this retrospective study, the medical records of all patients admitted to the PCC between the years 1999 and 2003 because of poisoning were carefully reviewed.

Poisoning was defined as drug overdose, food poisoning, or exposure to any environmental toxic substance. A study protocol was developed from the existing IPCS-Case/Incident/Request Format (http://www.who.int/ipcs/poisons/Minform-Eng.XLS). The protocol was subsequently refined and covered all pertinent data including demographics, type of poisoning, clinical findings, treatment, and outcome.

The patients either presented directly to the PCC or were referred from other hospitals.

The outcome for each patient was classified into one of three categories: 1. recovery, 2. sequela (an impairment of functioning corresponding to a performance category of 2-4 on the 5-graded Glasgow-Pittsburgh Outcome Scale (Jannett and Bond, 1975; Cummins et al, 1991) on discharge from hospital), or 3. death during hospitalization.

The chi-square test was used for statistical calculations, and differences were considered significant if the p-value was <0.05.

RESULTS

The annual total number of patients admitted to the clinical department of the PCC increased during the five-year period 1999-2003 (Fig 1). However, patients with other diagnoses than poisoning were also treated in the department, especially during its first few years, when the existence of the PCC was not very well known either to the population or to the medical community of Hanoi.

In 1999 the number of patients with poisoning admitted to the PCC was 313 (59.5% of the total number of admissions) and in 2003 the corresponding number was 1,523 (91.3% of the total number of admissions). In 1999, the occupational distribution of the poisoned patients is as follows:

<table>
<thead>
<tr>
<th>Occupation</th>
<th>1999, n=313</th>
<th>2003, n=1,523</th>
<th>Total, n=1,836</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service occupation</td>
<td>57</td>
<td>474</td>
<td>531</td>
</tr>
<tr>
<td>Student</td>
<td>54</td>
<td>358</td>
<td>412</td>
</tr>
<tr>
<td>None</td>
<td>85</td>
<td>256</td>
<td>341</td>
</tr>
<tr>
<td>Agricultural worker</td>
<td>82</td>
<td>250</td>
<td>332</td>
</tr>
<tr>
<td>Industrial worker</td>
<td>24</td>
<td>160</td>
<td>184</td>
</tr>
<tr>
<td>Other or unknown</td>
<td>11</td>
<td>20</td>
<td>36</td>
</tr>
</tbody>
</table>
females accounted for 54.3% of the poisonings, and in 2003 this figure was 48.5%. The largest number of poisoned patients was found in the age-group 15-24 years. The youngest patient treated during these two years was 23 months old and the oldest was 96 years old (Fig 2).

The occupational distribution of the admitted cases of poisoning is presented in Table 1. In the year 1999, unemployed persons and agricultural workers were the most common occupational groups among the poisoned patients. Four years later, students and people working in service occupations increased dramatically.

A finding that did not change during the 5-year period was that a vast majority of the toxic exposures occurred at home (Table 2). Concerning the types of toxic agents causing the poisoning, the most common in 1999 were pharmaceuticals and pesticides. In 2003 food poisoning predominated, followed by pharmaceuticals, toxins from poisonous animals (mostly snake venom), and pesticides (Table 3). The pesticides were a miscellaneous mixture of toxic chemicals, but consisted mainly of insecticides such as organophosphates, carbamates, organochlorines, or pyrethroids, or rodenticides, such as sodium...
monofluoroacetate, zinc phosphide or anticoagulant agents.

The clearly predominating route of exposure was ingestion. Bites and stings from poisonous animals were also relatively common. Injection of heroin and inhalation of toxic gases were examples of less common routes of exposure (Table 4).

Compared with accidental toxic exposures, the number of deliberate poisonings...
Table 6
Poisoning Severity Score (PSS) on admission to the PCC.

<table>
<thead>
<tr>
<th>Severity of poisoning (PSS)</th>
<th>1999, n=313</th>
<th>2003, n=1,523</th>
<th>Total, n=1,836</th>
</tr>
</thead>
</table>
| None (0) | 58 | 77 | 135 | 7.4%
| Minor (1) | 163 | 1,051 | 1,214 | 66.1%
| Moderate (2) | 39 | 259 | 298 | 16.2%
| Severe (3) | 53 | 135 | 188 | 10.2%
| Fatal (4) | 0 | 1 | 1 | 0.1%

Table 7
The distribution of specified poisoning-induced symptoms recorded at the PCC.

<table>
<thead>
<tr>
<th>Poisoning-induced symptoms</th>
<th>1999, n=313</th>
<th>2003, n=1,523</th>
<th>Total, n=1,836</th>
</tr>
</thead>
</table>
| Reduced level of consciousness\(^a\) | 83 | 235 | 318 | 17.3%
| Respiratory failure | 64 | 83 | 147 | 8.0%
| Hypotension (systolic BP <90 mm Hg) | 33 | 96 | 129 | 7.0%
| Rhabdomyolysis | 12 | 111 | 123 | 6.7%
| Seizures | 15 | 73 | 88 | 4.8%
| Bradycardia (heart rate <50) | 5 | 28 | 33 | 1.8%
| Ventricular arrhythmia\(^b\) | 13 | 19 | 32 | 1.7%
| Acute renal failure | 10 | 18 | 28 | 1.5%
| Acute hepatic failure | 3 | 16 | 19 | 1.0%
| Gastrointestinal hemorrhage | 2 | 15 | 17 | 0.9%

\(^a\)Glasgow Coma Scale score <13
\(^b\)Including 26 patients with frequent ventricular extrasystoles and 6 with ventricular tachycardia.

was larger in 1999 and smaller in 2003. In total, these two types of the toxic exposure were approximately equally common. Suicidal poisoning constituted approximately one third of all cases of poisoning (Table 5).

A majority of the poisoned patients displayed mild symptoms (PSS grade 1) on admission to the PCC. However, more than a quarter of the total number of poisoned patients showed pronounced clinical signs of poisoning and some had life-threatening symptoms. During the year 1999, the relative proportion of patients with severe poisoning (PSS grades 3-4) was higher than during 2003 (16.9% and 8.9%, respectively, p<0.001) (Table 6).

The occurrence of specified poisoning-induced symptoms recorded during the hospital stay is shown in Table 7. The most common signs of serious poisoning were a reduced level of consciousness, respiratory failure, hypotension, rhabdomyolysis, and seizures.

The poisoning-specific treatments most commonly used during the study years were decontamination measures, such as administration of cathartics, activated charcoal, gastric lavage and skin decontamination. Intensive care measures, such as mechanical ventilation and dialysis, were used less frequently. Specific antidotes were given in approximately 5% of all cases (Table 8).
The mean stay in the PCC was 2.10 ± 0.99 days. Of the total of 1,836 poisoned patients, 1,322 (72.1%) were discharged within 24 hours. However, 140 patients (7.6%) required hospitalization for more than one week. The longest treatment duration was 62 days.

The main outcomes among the poisoned patients treated at the PCC during 1999 and 2003 is shown in Table 9. The hospital mortality rate was higher in 1999 (1.9%) than in 2003 (1%), but the difference was not statistically significant. The fatalities mainly resulted from poisoning by hypnotic pharmaceuticals (phenobarbital in 5 cases), heroin overdose and some very toxic pesticides (Table 10).

DISCUSSION

The annual number of admitted cases of poisoning increased rapidly during the initial years of the first PCC in Vietnam. Similar findings were reported from Thailand during the same period (Wananukul et al, 2007), and probably reflect an increasing awareness of the existence of the PCC among members of the medical society and the population at large. Another explanation may be an increasing awareness of the need of specialized care of these emergencies.

From studies in Turkey, the female-to-male ratio of poisoning-related emergencies was reported to be 3:1. A majority of the poisoned patients in that country were younger than 25 years of age (Özköse and Ayoglu, 1999; Tüfekçi et al, 2004). Studies in Malaysia (Fathelrahman et al, 2005) and India (Singh and Unnikrishnan, 2006) also showed approximately the same demographic characteristics.
of poisoned patients. In the present study, the female-to-male ratio was almost 1:1. The higher rate of unintentional poisonings in this study may explain the difference.

The present study found the most common location for toxic exposures was the patient's home. This finding may provide a basis for intervention measures and steps towards an improved poisoning prevention strategy in Vietnam.

Among underlying toxic agents in this study, the heterogeneous group “food poisoning” was found to be the most frequent. Pharmaceuticals constituted the second most common group, in conformity with the general pattern of poisoning in the USA and Europe, as well as in developing countries (Hanssens et al, 2001; Fathelrahman et al, 2005). In Vietnam, medications are readily accessible as a consequence of a lack of regulations, which is a great problem, especially concerning suicidal patients and children. This fact constitutes another important issue for the health care system and the government in Vietnam to consider in their attempts to prevent poisoning.

Pesticides have been identified as the agents responsible for a majority of deaths from poisoning in developing countries (Singh and Unnikrishnan, 2006; Wananukul et al, 2007). A study in Zimbabwe showed that pesticides accounted for the largest proportion of deaths from poisoning at both district and provincial hospitals, indicating that mortality from pesticides is a problem both in urban and rural areas (van der Hoek and Konradsen, 2006). In a study in Sri Lanka it was found that easily available pesticides in rural areas, economic problems and family conflicts were the main underlying causes of intentional pesticide poisoning (Eddleston et al, 2006). In the present study, pesticides were responsible for many fatalities and were the chemicals most frequently used by patients from rural areas. This implies that pesticide poisoning should be given special attention and requires intervention measures from health care givers and responsible persons in the community.

Envenomation was the most common cause of poisoning of natural origin in this study and snakebite was the dominating cause in this group. The snakes in northern Vietnam are numerous and some kinds are very poisonous. The magnitude of this problem has also been highlighted from other countries (Batra et al, 2003; Tagwireyi et al, 2006; van der Hoek and Konradsen, 2006). The clinical features recorded in this study included respiratory failure, and approximately 7% of the poisoned patients required

Table 10

<table>
<thead>
<tr>
<th>Toxic agents</th>
<th>Number of fatalities</th>
<th>Total number of fatalities/No. of cases</th>
<th>Case fatality rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypnotic pharmaceuticals</td>
<td>3</td>
<td>7/382</td>
<td>1.8</td>
</tr>
<tr>
<td>Heroin</td>
<td>5</td>
<td>5/85</td>
<td>5.9</td>
</tr>
<tr>
<td>Pesticides</td>
<td>1</td>
<td>4/168</td>
<td>2.4</td>
</tr>
<tr>
<td>Herbal medicines</td>
<td>2</td>
<td>2/29</td>
<td>6.9</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>1</td>
<td>1/15</td>
<td>6.7</td>
</tr>
<tr>
<td>Cyanide</td>
<td>1</td>
<td>1/15</td>
<td>6.7</td>
</tr>
<tr>
<td>Snake venom</td>
<td>1</td>
<td>1/163</td>
<td>0.6</td>
</tr>
</tbody>
</table>
intubation and mechanical ventilation. Similar findings have been reported from Turkey (Goksu et al, 2002). The rate of decontaminating interventions, such as gastric lavage and administration of cathartics, in the present study was higher than that recently reported (Chyka and Winbery, 2006) and recommended (AACT and EAPCCT, 2004) from countries in Europe and the USA. However, the rate of antidote treatment was low, probably due to poor access in Vietnam of these often expensive pharmaceuticals.

The mortality rate in the present study was low compared to reports from some other developing countries (Singh and Unnikrishnan, 2006; Tagwireyi et al, 2006; van der Hoek and Konradsen, 2006; Wananukul et al, 2007). Similar mortality rates of approximately 1% have been reported, however in Turkey (Tüfekçi et al, 2004; Mert and Bilgin, 2006) and Iran (Afshari et al, 2004). Countries with high mortality rates have often reported a high frequency of intake of very toxic agents, such as aluminum phosphide in a study from India (Singh and Unnikrishnan, 2006), and paraquat in a study from Thailand (Wananukul et al, 2007).

In conclusion, despite the hospital-based retrospective design of this study, we consider that the data obtained provide important information on the pattern of poisonings in northern Vietnam. The finding that a vast majority of the poisoning episodes occurred at home is of importance for the poisoning prevention efforts in the country. Moreover, the fact that hypnotic pharmaceuticals, heroin and pesticides were among the most commonly involved toxic agents and that they entailed an increased risk of a fatal outcome, show that more strict regulation and control of these potential toxins is crucial. Finally, the frequently recorded severe toxic symptoms, including coma, respiratory failure, hypotension and seizures, indicate a need for more specialized clinical poisoning units with intensive care facilities in Vietnam.

ACKNOWLEDGEMENTS

We greatly appreciate the dedication of six research assistants, Ms Nguyen Le Hoa, Ms Tran Thu Huong, Ms Dang Thu Hoai, Mr Do Van Minh, Mr Tran Tuan Dat, and Mr Hoang Minh Duc, for implementing the study field work. The financial support of SIDA/SAREC is gratefully acknowledged.

REFERENCES

Hanssens Y, Deleu D, Taqi A. Etiologic and demographic characteristics of poisoning: a prospective hospital-based study in Oman. Clin

