WHOLE GENOME SEQUENCES OF H5N1 INFLUENZA A VIRUS ISOLATED FROM A LITTLE GREBE IN THAILAND

Nikhom Naksupan^{1, 4}, Donruedee Sanguansermsri¹, Rosarin Wongvilairat¹, Pannika R Niumsup¹, Sutatip Pongcharoen², Pornchai Chamnanpood³, Chanpen Chamnanpood³ and Phanchana Sanguansermsri¹

¹Faculty of Medical Sciences, ²Faculty of Medicine, Naresuan University, Phitsanulok; ³Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok; ⁴School of Medical Sciences, Naresuan University at Phayao, Phayao, Thailand

Abstract. This is the first report of the whole genome sequence of influenza A virus in an aquatic resident bird of Thailand. It was categorized into genotype Z according to its characteristics of a 20 amino acid deletion in neuraminidase and a five amino acid deletion in the non-structural protein. The indicator for a highly pathogenic trait of the virus is the presence of a polybasic amino acid sequence at the cleavage site of HA0. The feature of resistance to the antiviral drug amantadine is found at the 31st amino acid position of M2 (serine to asparagine). Phylogenic analyses revealed that virus A/little grebe/Thailand/Phichit-01/2004 (H5N1) is closely related to the chicken and human isolates recovered from Thailand. The high degrees of similarity among the sequences and phylogenic trees indicate there was no difference between the viruses isolated from poultry and aquatic birds in Thailand at the time of study. The results also suggest the source of H5N1 avian influenza virus in the little grebe and others in Thailand may have the same origin.

INTRODUCTION

Influenza A viruses are classified as members of the Orthomyxoviridae family. Their genomes consist of eight segments of linear negative-sense, single-strand ribonucleic acid (RNA). The eight segments of viral RNA encode for ten proteins (Horimoto and Kawaoka, 2005). Influenza A viruses of aquatic birds (wild birds) have been proposed as the ancestors of all influenza A virus subtypes (Horimoto and Kawaoka, 2001). Currently, 16 HA (H1-H16) and 9 NA (N1-N9) subtypes have been identified (Fouchier *et al*, 2005). Avian influenza (AI) viruses preferentially infect cells lining the intestinal tract of birds and are excreted in high concentrations in their feces. While Al viruses are generally nonpathogenic in wild birds, they sometimes cause significant morbidity and mortality upon transmission to other species (Webster et al, 1992; Nicholson et al, 2003). It was found that AI viruses that caused outbreaks in poultry and humans in Thailand, Indonesia and Vietnam are genotype Z (Li et al, 2004). The H5N1 AI viruses isolated from chickens in Thailand (A/Chicken/Nakorn-Pathom/Thailand/CU-K2/2004) were closely related to the RNA segments of influenza A virus H5N1 isolated from humans in Vietnam (A/Vietnam/1196/2004). However, the Thai H5N1 AI viruses were not related to the early Al viruses during the outbreak in 1997, but remarkably resembled the AI viruses in the years 2000-2001(Viseshakul et al, 2004). There were several waves of AI outbreaks in several kinds of poultry in Thailand (Amonsin et al, 2006). The viruses caused deaths not

Correspondence: Phanchana Sanguansermsri, Faculty of Medical Sciences, Naresuan University, Phitsanulok 65000, Thailand. Tel: 66 (089) 7088384; Fax: 66 (055) 261197 E-mail: phanchana@hotmail.com

only in humans but in other mammalian species, including tigers, leopards, cats, and dogs (Keawcharoen *et al*, 2004; Songserm *et al*, 2006a,b; Witayathawornwong, 2006).

Tachybaptus ruficollis or the little grebe (common name) is classified into the Podicipedidae family. It is the smallest duck-like bird, with a thin, pointed bill and a truncated, tailless appearance. In Thailand, the little grebe is a common resident birds and can be found in marshes, ponds, lakes and canals (Lekagul and Round, 1991). After the start of the epidemic of bird flu, some little grebes in Phichit Province Thailand were infected with H5N1 Al virus resulting in death.

In this study, the entire genome sequences of the AI virus isolated from a little grebe in Thailand are described. The viral genome was analyzed and compared to the H5N1 influenza viruses isolated from humans and poultry during previous H5N1 outbreaks in Thailand to determine the likely evolutionary origin of these viruses as well as their relationships to each other.

MATERIALS AND METHODS

Virus

Influenza virus was isolated from a little grebe (*Tachybaptus ruficollis*) from Phichit Province, Thailand (kindly provided by the Northern Veterinary Research and Development Center, Phitsanulok). The virus was isolated by chicken egg embryo inoculation. Hemagglutination inhibition (HI) and neuraminidase inhibition (NI) assays were used for subtype identification (OIE, 2004).

RNA extraction, PCR and DNA sequencing

Viral RNA was extracted from the allantoic fluid of an inoculated egg using RNeasy Mini-Kit as described by the manufacturer (Qiagen, Santa Clarita, Calif). Reverse transcription was performed with the Omniscritpt-Reverse Transcriptase kit (Qiagen, Santa Clarita, Calif) using uni12 primer as previously

Table 1 Sequencing primers.

	Sequencing primers.
Sequencing primers	Nucleotide (5 ⁻ - 3) sequence
PB2-F578	CAATAACGAARGAGAAGAAGAAGA
PB2-F1044	GAAGGAAGAGGAAGTGCTTACAGGC
PB2-F1455	AGGAGTAAGAGTTAGTAAARTGGGA
PB2-F1937	CTGTGAATGTGAGAGGCTCWGGAAT
PB2-R373	TGTAAACCTTTGGATAATGRACTGC
PB2-R1310	AATCTTTGGTTTGCTCTGTTTACGA
PB1-F426	TATGACTGGACATTGAAYAGAAACC
PB1-F861	GGAGGGAATGAGAAGAAGGCTAAAT
PB1-F1364	CCWATCCTCTGATGATTTCGCTCTC
PB1-F1876	ARTGGGARTTGATGGATGAAGATTA
PB1-R524	TCCYGAYTCATTGGCTGTTAGACCG
PB1-R1035	ATTCWGGYTGGTTCCTTGTGATGTA
PB1-R1633	TTTATCACTGTAACWCCAATGCTCA
PA-F426	AAGCYAACAAGATAAAATCCGAGAA
PA-F869	TTCTTGCTGATGGATGCYCTKAAAT
PA-F1344	GTATGAGAAGGAACTAYTTYACAGC
PA-F1748	ATGAAATGGGGSATGGAAATGAGGC
PA-R515	CAAGGGTGTAGTCMGCTTTRGTGGC
PA-R1098	TTTGTTTTTGGGATTTTMTCCTCAT
HA5-F228	GCTCCTCGGGAACCCAATGTGTGAC
HA5-F611	CAAGACTCTATCAAAACCCAACCAC
HA5-F931	CACCCTCTCACYATCGGRGAATGCC
HA5-F1387	CTTTACGACAAGGTCCGACTACAGC
HA5-F1645	GCTGGTCTATCTTTATGGATGTGCT
HA5-R-515	GCACTGTTCTTTKTGATAAGCCATA
HA5-R1298	AATCCGTCTTCCATCTTCTTGTTTA
NP-F450	TGCTGGTCTTACCCACCTGATGATA
NP-F876	TAAGTCCTGCTTRCCTGCTTGTGTG
NP-R556	GAGAGCACATCCTKGGGTCCATTCC
NP-R1115	ACTCTTGTCCCTCTGATGAAACTTG
NA-F407	CAAAGACAGAAGCCCTCACAGAACA
NA-F925	TCGGAGAYAATCCACGCCCCAATGA
NA-R413	GTCTTTGACAGTCCCRTTGGAGTGC
NA-R962	ACTACCKGTTCCATCATTGGGGCGT
M-F520	GGCRACTAYCACCAACCCACTAATC
M-R549	TGYCTGATTAGTGGGTTGGTGRTAG
NS-F503	AATCTCACCATTRCCTTCCCTTCCA
NS-R320	TGATGACTTTATCCATTATTGCCTG

reported (Hoffmann *et al*, 2001). PCR amplification of the full length of the viral gene segment was performed employing specific primers (Hoffmann *et al*, 2001). The PCR products

Segment	Gene	Note	Length of amino acids	Accession numbe	
1	PB2	Polymerase basic protein 2	760	DQ407243	
2	PB1	Polymerase basic protein 1	758	DQ407244	
3	PA	Polymerase acidic protein	717	DQ407245	
4	HA	Hemagglutinin	569	AY553802	
5	NP	Nucleoprotein	499	DQ407246	
6	NA	Neuraminidase	450	AY553832	
7 ^a	M1	Matrix protein 1	253	DQ407247	
	M2	Matrix protein 2	98		
8 ^b	NS1	Nonstructural protein	226	DQ407248	
	NS2 (NEP)	Nuclear export protein	122		

Table 2The length of the predicted amino acid sequences of A/little grebe/Thailand/Phichit-01/2004(H5N1) obtained from the study.

^aRNA segment 7 encoded for two proteins: M1 and M2 ; ^bRNA segment 8 encoded for two protein: NS1 and NS2

were purified using the QIAquick PCR Purification Kit (Qiagen). The DNA sequences were determined by cycle sequencing (Big Dye Terminator V. 3.1 Cycle Sequencing Ready Reaction) using specific sequencing primers as shown in Table 1 on the ABI-Prism 310 Genetic analyzer (Perkin Elmer, Norwalk, CT).

Sequences analysis

The nucleotide sequences were compared with published sequences in GenBank by BioEdit v. 7.0.7 (<u>http://www.mbio.ncsu.edu/</u><u>BioEdit/bioedit.html</u>). The phylogenic tree was drawn using PHYLIP v. 3.66 (<u>http://evolution.genetics.washington.edu/phylip.html</u>) and TreeView v. 1.6.6 (<u>http://taxonomy.zoology.gla.ac.uk/rod/treeview.html</u>).

RESULTS

Genetic characterization

The Al virus isolated from the little grebe in this study was named A/little grebe/Thailand/Phichit-01/2004 (H5N1) according to its type, host, country of origin, specific number, the year of isolation, and subtype of hemagglutinin (HA: H5) and neuraminidase (NA: N1), respectively. The genome of the virus had eight RNA segments as follows: polymerase B2 (PB2), polymerase B1 (PB1), polymerase A (PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix (M), and nonstructural (NS). All nucleotide sequences were deposited at the NCBI Database with the GenBank accession numbers: AY553802, AY553832, and DQ407243 to DQ407247. The length of the predicted amino acid sequences and accession numbers of the database are shown in Table 2. Sequence comparisons between A/little grebe/Thailand/Phichit-01/2004 (H5N1) and other H5N1 AI viruses in Thailand, such as chicken, human and cat, are presented in Table 3. Compared with previous records, all genes of the AI viruses revealed 99.1-100% similarity with both nucleotide and amino acid sequences.

Phylogenic trees analysis

Phylogenic analysis of HA and NA genes revealed that the A/little grebe/Thailand/ Phichit-01/2004 (H5N1) was closely related to the chicken, tiger, and human isolates recovered in Thailand and Vietnam during 2004 and 2005 (Figs 4 and 5). The remaining gene segments (PB2, PB1, PA, NP, M, and NS) followed a similar pattern (data not shown).

Table 3
Percent nucleotide (amino acid) similarity between A/little grebe/Thailand/Phichit-01/2004
and some H5N1 AI viruses isolated in Thailand.

	Nontaburi: A/Ck/Th/ Non/CK-162/05 ^a	Phichit: A/Ck/Th/ PC-168/06 ^b	Nakhon Phanom: A/Ck/ Th/NP-172/06 ^c
PB2	99.2 (99.2; I260V, L512F, S629N)	99.1 (98.6; M11I, T106A, V338I, V560M, V649I)	97.5 (97.4; A105T, A108T, I147T, E208D, D254E, K339T, R368Q, D390N, I616V, V667I)
PB1	99.3 (98.9; R211K, K331E, L384I, T400A)	99.2 (98.4; M171I, E177D, K331E, I552V, V591I, V719M)	97.8 (98.9; K215R, K331E, V644I, K653R)
PA	99.5 (99.7; 1690V)	99.3 (99.2; I330V, A369T, A404T)	93.5 (95.6; D27N, S58G, E101D, T129I, K204R, L261M, K339R, S388G, R391K, S400P, A404S, V554I, N614T, G631S, A669V, A712T)
HA	99.1 (98.3; V102A, T175I, R341K, T544A, S558F)	99 (97.9; K3R, K38R, Q154L, R513K, T554A, +569K, +570L)	96.7 (91.0; F8L, A9G, V102A, D110N, S140D, L145S, K156T, S157P, S171N, V190I, P197S, N209R, R228K, A230H, E243D, I248M, T279A, L285V, M298I, R326K, Q338L, I529T, K345-, V539A, T544A, +569K, +570L, +571E, +572S, +573E
NP	99.3 (99.2; S34G, I217M)	99.7 (99.4; A366S)	98.3 (98.8; D290N, F338L, V363I)
NA	99.7 (97.4; H36R, H44Q, V63A, A118S, N305T, D396N)	99.3 (99.0; T128S, S180N)	98.5 (91.0; K5Q, T17I, M19I, L29M, H39Q, K45Q, S50R, K58N, K64T, N75R, Y80H, S180N, H233Y, D250N, T269I, S320P, V326I, E362G, S366N, V369M, G434S)
M (M1) NS (NS1)	99.7 (99.2; A83S) 99.3 (96.5; Q25R, R188Q, I193L, D204N)	99.4 (99.2; K27R) 98.9 (98.2; E71D, A81T)	98.5 (98.4; 114V, 1205V) 98.2 (95.7; K75E, A81T, V122T, 1124L, T190S)

^aA/chicken/Thailand/Nontaburi/CK-162/2005 from Nonthaburi (accession number. DQ334773-80) ^bA/chicken/Thailand/PC-168/2006 from Pichit (accession number. DQ999879-86) ^cA/chicken/Thailand/NP-172/2006 from Nakhon Phanom (accession number. DQ999871-78)

DISCUSSON

To our knowledge, this is the first study of the whole genome sequence of H5N1 AI virus isolated from a wild aquatic bird in Thailand. A/little grebe/Thailand/Phichit-01/2004 contained an amino acids sequence RERRRKKR*GLF at the cleavage site in the HA0 precursor of HA. The series of basic amino acids which are cleaved by proteases

	30	40	50	60	70	80	90
				levelered			
A/Gs/Gd/1/96				TYENNIWVNO			
A/C%/NP/THA/CU-K2/04							
A/Ck/THA/CH-2/04							
A/Ck/THA/73/04							
A/Ck/THA/1/04							
A/Ck/THA/9.1/04							
A/Dk/THA/71.1/04							
A/Gm/THA/9/04		Contraction of the second s					
A/Ck/THA/73/04							
A/Ck/SR/THA/CU-1/04							
A/Ck/BK/THA/CU-3/04							
A/Dk/CB/THA/CU=5/04							
A/Ck/BK/THA/CU-6/04							
A/Ck/CB/THA/CU-7/04							
A/Ck/FCB/THA/CU-8/04	QIGNLISIWI:	SHSINTGNON	IKAEP		ISNTNI	PLTERAVASVK	LAGNES
A/Ck/SR/THA/CS-9/04	QIGNLISIMV	SHSINTGNOR	HKAEP		ISNTNE	FLTERXVASVK	LAGNES
A/Ck/CS/THA/CU-10/04	QIGNLISIMV	SHSIRTGNOR	HRAEP		ISNTNS	FLTERAVAPVE	LAGNES
A/Ck/CS/THA/CU-11/04	QIGNLISIWV	SHSIRTGNOR	HKAEP		IENTNE	FLTERAVASVK	LAGNES
A/Ck/NM/THA/CU-12/04	QIGNLISIWV	SHSIRTGNQS	HEAEP		ISNTNE	PLTERAVASVE	LACNES
A/Ck/NM/THA/CU-13/04	QIGNLISIWV:	SHSTHTENO	IKAEP		ISNTNI	LTERAVASVE	LAGNES
A/Ck/NF/THA/CU-14/04	QIGNLISIWV	SHEIFTGNGS	KAEP		ISNTNE	FLTERAVASVK	LAGNES
A/Ck/SB/THA/CU-17/04	QIGNLISIWV:	SHSIFTGNOR	HRAEP		ISNTNS	LTERAVASIE	LAGNES
A/Ck/BK/THA/CU-20/04	QIGNLISIWV	SHSIRTGNOR	INAEF		ISNTNE	PLIEKAVASVK	LAGNES
A/Ck/AY/THA/CU-24/04	QIGNLISIWV	SHSINTGNOR	HKAEP		ISNTNI	LLTEKAVASVK	LAGNES
A/Ck/SB/THA/CU-27/04	QIGNLISIMV	SHSINTENDE	KAEP		ISNTNO	LLTEKAVASVK	LAGNES
A/Ck/LB/THA/CU-38/04	QIGNLISIWV	SHSIRTGNOR	IKAEP		ISNTNE	LTERAVASVK	LAGNES
A/Ck/NM/THA/CD-39/04	QIGNLISIWV:	SHRIFTGNOR	HKAEP		ISNTNE	PLTERAVASVE	LAGNES
A/Ck/RB/THA/CU-68/04	QIGNLISIWV	SHSIHTGNOG	KAEP		ISNTNS	LTERAVASVK	LAGNES
A/D%/THA/HU-RPS/04	QIGNLISIWV	SHSIFTGNOR	HEAEP		ISNTNE	LTERAVASVE	LAGNES
A/LG/THA/PH-01/04	QIGNLISIWV	SHSIRTGNOS	HKAEP		ISNTNI	FLTERAVASVK	LAGNES

Fig 1–Alignment comparison of deduced amino acid sequences of the NA protein showed the Thai Al viruses exhibited a 20-amino acid deletion in the NA stalk region at the position 49-68.

HAU cleavage sequences of recent mailand influenza H5NT viruses.						
Viruses strain	HA0 cleavage site	Accession no.				
A/LG/THA/PH-01/04 ^a	RRRKKR*GLF	AY553802	-			
A/Ck/NP/THA/CU-K2/04 ^b	RRRKKR*GLF	AY590568				
A/Ck/AY/THA/CU-24/04 ^c	RRRKKR*GLF	DQ083569				
A/Ck/KP-2-02/04 ^d	KRRKKR*GLF	DQ017308				
A/Ck/NW-2-07/04 ^e	KRRKKR*GLF	DQ017307				
A/Ck/THA/PL-02/04 ^f	RRRKKR*GLF	AY553793				
A/cat/THA/KU-02/04 ^g	RRRKKR*GLF	DQ236077.1				
A/tiger/SR/THA/Ti-1/04 ^h	RRRKKR*GLF	AY646167.1				
A/THA/1 (KAN-1)/04 ⁱ	RRRKKR*GLF	AY555150.2				
A/leopard/SR/THA/Leo-1/04 ^j	RRRKKR*GLF	AY646175				
A/open-billed Stork/THA/VSMU-15-ATG/05 ^k	RRRKKR*GLF	EF206699.2				
A/pigeon/THA/VSMU-25-BKK/05 ¹	RRRKKR*GLF	EF206698.2				
A/Ck/Th/Non/CK-162/05 ^m	KRRKKR*GLF	DQ334776				
A/Ck/Th/NP-172/06 ⁿ	RRRKR*GLF	DQ999872				

Table 4 HAO cleavage sequences of recent Thailand Influenza H5N1 viruses.

^a A/little grebe/Thailand/Phichit-01/2004; ^b A/Chicken/Nakorn-Pathom/Thailand/CU-K2/2004; ^c A/Chicken/ Ayutthaya/Thailand/CU-24/2004; ^d A/Chicken/Kumphangphet-2-02/2004; ^e A/Chicken/Nakornsawan-2-07/2004; ^f A/Chicken/Phitsanulok-02/2004; ^g A/cat/Thailand/KU-02/04; ^h A/tiger/Supanburi/Thailand/Ti-1/04; ¹ A/Thailand/ 1 (KAN-1)/2004; ^j A/leopard/Suphanburi/Thialand/Leo-1/2004; ^k A/open-billed Stork/Thailand/VSMU-15-ATG/ 2005; ¹ A/pigeon/Thailand/VSMU-25-BKK/2005; ^m A/chicken/Thailand/Nontaburi/CK-162/2005; ⁿA/chicken/ Thailand/Nakorn-Pathom-172/2006

Southeast Asian J Trop Med Public Health

	40	50	60	70	80	90	100	110	120
A/GB/Gd/1/98 A/Cb/NB/TEA/CU-82/04 A/Cb/TEA/1/04 A/Cb/TEA/13/04 A/Cb/TEA/31/04 A/Cb/TEA/31/04 A/Go/TEA/31/04 A/Br/TEA/31/04 A/Br/TEA/31.1/04 A/Cb/TEA/71.1/04 A/Cb/TEA/71.1/04 A/Cb/TEA/71.1/04	II. QKALKORO QKSLRORO QKSLRORO QKSLRORO QKSLRORO QKSLRORO QKSLRORO QKSLRORO QKSLRORO QKSLRORO	NTLGLDIET NTLGLDIET NTLGLDIET NTLGLDIET NTLGLDIET NTLGLDIET NTLGLDIET NTLGLDIET NTLGLDIET NTLGLDIET	ATHEGHILY ATHAGEDIY ATRAGEDIY ATRAGEDIY ATRAGEDIY ATRAGEDIY ATRAGEDIY STRAGEDIY STRAGEDIY ATRAGEDIY	EDILASETN EDILASETN ERILEESS URILEESS ERILEESS ERILEESS ERILEESS ERILEESS ERILEESS		A CONTRACTOR PASSYLTIM PASSYLTIM PASSYLTIM PASSYLTIM PASSYLTIM PASSYLTIM PASSYLTIM PASSYLTIM PASSYLTIM PASSYLTIM PASSYLTIM	II. STEEPISHENYI TLEEPISHENYI TLEEPISHENYI TLEEPISHENYI TLEEPISHENYI TLEEPISHENYI TLEEPISHENYI TLEEPISHENYI TLEEPISHENYI TLEEPISHENYI	LINE AND A CONTRACT OF A CONTR	L.L.H SLAWNAD SLCIMAD SLCIMAD SLCIMAD SLCIMAD SLCIMAD SLCIMAD SLCIMAD SLCIMAD

Fig 2–Alignment comparison of the NS1 protein showed that Thai Al viruses exhibited a 5-amino acid deletion at the position 80-84.

	10	20	30	40	50	60	70	80
	·····l····l····	1	.1	I	I	I	.I	lil
A/Ck/NP/THA/CU-82/04	MELLTEVETPTRNE	NECROBOSSI	DPIVVAAN11G	ILHLILWILD	RLPPRCINE	LKYGLKRGEF	TAGVPESHEE	
A/Ck/NP/THA/CU-14/04	RELLTRVETPTORE	MOCHICSDEED	OPTYWAANIIG	TLHETENTER	MLFFMCITRE	LEYGLERGE	TAGVPENNES	STRONG STR
A/Ck/SB/THA/CU-17/04	MELLTEVETPTRNE							
A/Ck/AY/THA/C0-24/04	MELLTEVETPTRNE	WECKCSDSSI	DPIVVAANIIG	ILHLIENTED	RIFFECTER	LKYGLKBSPI	TAGVEESMES	SYROED
A/Ck/SB/THA/CU-27/04	MELL/HEVETPTRNE	WECKCEDESI	OPTVVAANTIG	TLHLILNILD	BLFFRCIYER	LEYGLEBGPI	TACVPESMEN	ETHORS
A/Ck/LB/THA/CU-38/04	MSLLTEVETPTRNE							
A/Ck/NM/THA/CU-39/04	BELL/TEVETPTENK							
A/Ck/RB/THA/CU-68/04	MELLTEVETPTRNE							
A/Dk/NP/THA/CU-71/04	MELLTEVETPTRNE							
A/Ck/CB/THA/CU=73/04	MELLTRVETPTENK							
A/Dk/SB/THA/CU-74/04	MELLTEVETPTRNE							
A/Ck/RK/THA/CU-21/04	MELLTEVETPTRNE							
A/Ck/THA/1/04	MELLTEVETPTRNE							
8/Ck/TH8/73/04	MELLTEVETPTRNE							
A/Ck/THA/9.1/04	HSLL/EVETPTRNE							
A/DK/THA/71.1/04	MELLTEVETPTINE							
A/Gs/THA/79/04	MALLTEVETPTRNE							
A/Ck/AY/THA/CU-23/04	PELLTEVETPTENE							
A/Ck/Bk/THA/CU-3/04	MELLTEVETPTRNE							
A/Dk/CB/THA/CU-5/04	MALLTEVETPTRNE							
A/Ck/CB/TBA/CU-7/04	MILLTEVETFTNNE							
A/Ck/PC/THA/CU-8/04	MALLTEVETPTENE							
A/Ck/CS/THA/CU-10/04	MELLTEVETPTRNE							
A/THA/1(KAN-1)/04	MELLTEVETPTENE							
A/LG/THA/PH-01/04	MELLTEVETPTRNE							

Fig 3-Alignment comparison of M2 protein revealed asparagine instead of serine at position 31.

found in a wide range of organs, such as furin and proprotein convertase 6 (Stieneke-Grober *et al*, 1992; Horimoto and Kawaoka, 2005) resulted in a lethal systemic infection, indicating the highly pathogenic nature of the influenza virus (HPAI) (Horimoto and Kawaoka, 1994). This cleavage sequence has been present in most Al viruses in Thailand found in both avian and mammalian species. (Table 4). The receptor binding region of the HA1 subunit of the HA for A/little grebe/Thailand/ Phichit-01/2004 also possessed Q and G at position 222 and 224, respectively, similar to the H5N1 viruses recently isolated from humans and poultry in Thailand and Vietnam (Li

et al, 2004; Matrosovich et al, 2004).

NA is a sialidase that prevents virion aggregation by removing cell and virion surface sialic acid (Horimoto and Kawaoka, 2001). The NA of A/little grebe/Thailand/Phichit-01/2004 revealed a 20 amino acid deletion at the stalk region (Fig 1) and a 5 amino acid deletion in the nonstructural 1 (NS1) protein (Fig 2), similar to previous studies (Li *et al*, 2004; Viseshakul *et al*, 2004). Deletion in the NA stalk region may be associated with adaptation of influenza viruses to land-based poultry (Matrosovich *et al*, 1999). In contrast, no deletion in NA was found in influenza viruses in 1996. The position of the deletion was similar

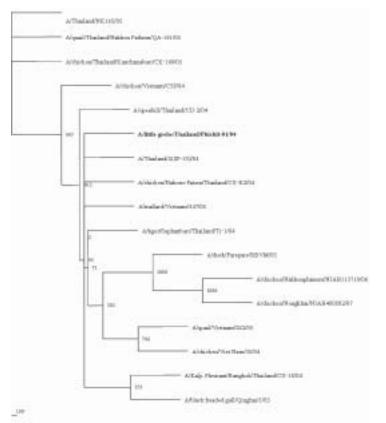
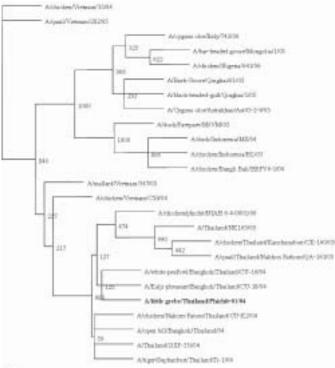


Fig 4–Phylogenic tree analysis of HA gene (nucleotide 5-1716) for H5N1 viruses. Nucleotide sequences were analyzed with a PHYLIP package. The lengths of the horizontal lines are proportional to the minimum number of nucleotide differences required to join the nodes. Numbers at the nodes indicate confidence levels of bootstrap analysis with 1000 replications as a percentage value.

but not identical to the 19 amino acid deletion found in the Hong Kong/1997 viruses (Puthavathana *et al*, 2005).


The NS-specific viral RNA segment of influenza A virus encoded for both NS1 and nuclear export protein (NEP). Unspliced NSspecific mRNA translates into the NS1 protein, while the spliced RNA directs the synthesis of the NEP (O'Neill *et al*, 1998). Previous studies have indicated that the NS1 gene functioned as an antagonist against the host interferon defense system in multiple ways (Garcia-Sastre *et al*, 1998). Additionally, glutamic acid at position 92 in the NS1 protein is associated with increased virulence in pigs (Seo *et al*, 2002). A/little grebe/Thailand/Phichit-01/2004 has aspartic acid at position 92 in the NS1 protein, similar to recent epidemic isolates (Li *et al*, 2004).

The amino acid comparison of matrix 1 (M1) and matrix 2 (M2) proteins showed a conserved sequence (more than 99.5-100% similarity) among the H5N1 AI in Thailand, including A/little grebe/ Thailand/ Phichit-01/2004 (Table 3). It has been demonstrated that amantadine inhibits influenza virus replication by blocking the activity of the M2 ion channel (Lubeck et al, 1978; Hay et al, 1985). Substitution mutations which confer resistance to amantadine have been mapped to amino acid 27 (V \rightarrow A), 30 $(A \rightarrow T \text{ or } V)$, and 31 $(S \rightarrow N)$ of the M2 gene segment (Suzuki et al, 2003). A/little grebe/Thailand/ Phichit-01/2004 revealed single amino acid substitutions at amino acid 31 (S \rightarrow N) (Fig 3) in

the transmembrane region of the M2 protein, which may confer amantadine resistance (Sweet *et al*, 1997; Scholtissek *et al*, 1998; Puthavathana *et al*, 2005). It is possible the use of amantadine on poultry farms in China since late 1990s is responsible for amantadine resistance to influenza viruses. Recent studies by WHO reference laboratories indicate amantadine resistance has been steadily increasing worldwide (Parry, 2005).

An E627K substitution mutation in the PB2 protein has been associated with increasing virulence in H5N1 viruses, resulting in a high mortality rate in mice (Shinya *et al*, 2004).

.201

Fig 5–Phylogenic tree analysis of NA gene (nucleotide 31 to 1358) for H5N1 viruses. Nucleotide sequences were analyzed with a PHYLIP package. The lengths of the horizontal lines are proportional to the minimum number of nucleotide differences required to join the nodes. Numbers at the nodes indicate confidence levels of bootstrap analysis with 1000 replications as a percentage value.

A/little grebe/Thailand/Phichit-01/2004 has glutamic (E) acid (PFAAAPPEQSR) at position 627 in PB2, as found in other avirulent strains. PB2 is a determining of the RNA polymerase. Within PB2, residue 627 is always glutamic acid in avian isolates but lysine in viruses in humans (Subbarao *et al*, 1993). Previously, influenza viruses isolated from three of four humans in Vietnam had lysine at 627 in the PB2 protein (Li *et al*, 2004).

In conclusion, the amino acid sequence analysis of the A/little grebe/Thailand/Phichit-01/2004 (H5N1) revealed a polybasic amino acid at the HA0 cleavage site (RRRKKR*GLF). Amino acid sequences showed a 20 amino

acid deletion in the stalk region and a 5 amino acid deletion in the NS1 protein, which is similar to the H5N1 viruses isolated in the same epidemic classified as genotype Z. Interestingly, the amino acid sequences of the M2 protein of A/little grebe/Thailand/Phichit-01/2004 indicate a substitution of a serine for asparagine at residue 31 which has been known to confer resistance to adamantanes drugs (amantadine and rimantadine). Phylogenic analysis showed that A/ little grebe/Thailand/Phichit-01/2004 (H5N1) isolated from an aquatic bird in Thailand was similar to other H5N1 viruses in the same pandemic. Hence, the AI epidemic in Thailand can be found on the poultry farms and in other avian species, such as aquatic wild birds and resident birds. The high degree of similarity among the sequences and phylogenic trees indicates there is no difference between the viruses isolated from poultry and aquatic birds in Thailand at the time of study. The results also suggest that the sources of H5N1 AI viruses in a little grebe and in others avian species in Thailand may come from the same origin.

ACKNOWLEDGEMENTS

Parts of this work were supported by the Agriculture Research Development Agency (Public Organization). The authors would like to thank Naresuan University Hospital for the automated DNA sequencer.

REFERENCES

Amonsin A, Chutinimitkul S, Pariyothorn N, *et al.* Genetic characterization of influenza A viruses (H5N1) isolated from 3rd wave of Thailand Al outbreaks. *Virus Res* 2006; 122: 194-9.

- Fouchier RA, Munster V, Wallensten A, *et al.* Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from blackheaded gulls. *J Virol* 2005; 79: 2814-22.
- Garcia-Sastre A, Egorov A, Matassov D, *et al.* Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. *Virology* 1998; 252: 324-30.
- Hay AJ, WolstebHolme AJ, Skehel JJ, Smith MH. The molecular basis of the specific anti-influenza action of amantadine. *EMBO J* 1985; 4: 3021-4.
- Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. *Arch Virol* 2001; 146: 2275-89.
- Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. *Nat Rev Microbiol* 2005; 3: 591-600.
- Horimoto T, Kawaoka Y. Pandemic threat posed by avian influenza A viruses. *Clin Microbiol Rev* 2001; 14: 129-49.
- Horimoto T, Kawaoka Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. *J Virol* 1994; 68: 3120-8.
- Keawcharoen J, Oraveerakul K, Kuiken T, *et al.* Avian influenza H5N1 in tigers and leopards. *Emerg Infect Dis* 2004; 10: 2189-91.
- Lekagul B, Round DP. A guide to the birds of Thailand. Bangkok: Darnsutha Press, 1991.
- Li KS, Guan Y, Wang J, *et al.* Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. *Nature* 2004; 430: 209-13.
- Lubeck MD, Schulman JL, Palese P. Susceptibility of influenza A viruses to amantadine is influenced by the gene coding for M protein. *J Virol* 1978; 28: 710-6.
- Matrosovich M, Zhou N, Kawaoka Y, Webster R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. *J Virol* 1999; 73: 1146-55.
- Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. Human and avian influenza vi-

ruses target different cell types in cultures of human airway epithelium. *Proc Natl Acad Sci USA* 2004; 101: 4620-4.

- Nicholson KG, Wood JM, Zambon M. Influenza. Lancet 2003; 362: 1733-45.
- OIE. OIE manual of diagnostic tests and vaccines for terrestrial animals. 5th ed. Paris: OIE, 2004.
- O'Neill RE, Talon J, Palese P. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. *EMBO J* 1998; 17: 288-96.
- Parry J. Use of antiviral drug in poultry is blamed for drug resistant strains of avian flu. *BMJ* 2005; 331: 10.
- Puthavathana P, Auewarakul P, Charoenying PC, *et al.* Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. *J Gen Virol* 2005; 86: 423-33.
- Scholtissek C, Quack G, Klenk HD, Webster RG. How to overcome resistance of influenza A viruses against adamantane derivatives. *Antiviral Res* 1998; 37: 83-95.
- Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. *Nat Med* 2002; 8: 950-4.
- Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. *Virology* 2004; 320: 258-66.
- Songserm T, Amonsin A, Jam-on R, *et al.* Avian influenza H5N1 in naturally infected domestic cat. *Emerg Infect Dis* 2006a; 12: 681-3.
- Songserm T, Amonsin A, Jam-on R, *et al.* Fatal avian influenza A H5N1 in a dog. *Emerg Infect Dis* 2006b; 12: 1744-7.
- Stieneke-Grober A, Vey M, Angliker H, et al. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisinlike endoprotease. *EMBO J* 1992; 11: 2407-14.
- Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. *J Virol* 1993; 67: 1761-4.

- Suzuki H, Saito R, Masuda H, Oshitani H, Sato M, Sato I. Emergence of amantadine-resistant influenza A viruses: epidemiological study. *J Infect Chemother* 2003; 9: 195-200.
- Sweet TM, Maassab HF, Coelingh K, Herlocher ML. Creation of amantadine resistant clones of influenza type A virus using a new transfection procedure. *J Virol Methods* 1997; 69: 103-11.

Viseshakul N, Thanawongnuwech R, Amonsin A,

et al. The genome sequence analysis of H5N1 avian influenza A virus isolated from the outbreak among poultry populations in Thailand. *Virology* 2004; 328: 169-76.

- Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. *Microbiol Rev* 1992; 56: 152-79.
- Witayathawornwong P. Avian influenza A (H5N1) infection in a child. *Southeast Asian J Trop Med Public Health* 2006; 37: 684-9.