REVIEW

SEROLOGICAL AND MOLECULAR TOOLS TO DETECT NEUROLOGIC PARASITIC ZOONOSES IN RURAL CAMEROON

Agathe Nkouawa1,2,a, Yasuhito Sako1, Roger Moyou-Somo2,3 and Akira Ito1,a

1Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan; 2Medical Research Center, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, Yaoundé; 3Department of Parasitology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaoundé, Cameroon

Abstract. Parasitic helminthiases, such as toxocariasis, cysticercosis and paragonimiasis are a public health threat, since they can affect the brain leading to neurological disorders. Epilepsy and paragonimiasis are common in southwestern Cameroon. We reviewed the literature for studies using antigens to diagnose toxocariasis, cysticercosis, and paragonimiasis. Serology revealed that 61 (36.3%), 26 (15.5%) and 2 (1.2%) of 168 persons examined [78 males (15.2 ± 8.2 years old), 90 females (12.9 ± 5.9 years old), 143 persons < 20 years old] had antibody responses to toxocariasis, paragonimiasis and cysticercosis, respectively. Of the 14 people with epilepsy, 5 were seropositive for \textit{Toxocara} antigens and 1 was positive for both \textit{Toxocara} and \textit{Paragonimus} antigens. Two children were serologically confirmed to have cysticercosis. Serologic screening for cysticercosis may be feasible to detect asymptomatic cysticercosis in children in endemic areas leading to early treatment. The causative \textit{Paragonimus} species was confirmed to be \textit{P. afric anus} by molecular sequencing. Education, screening and confirmation test for these diseases may be needed for control in Cameroon.

Keywords: epilepsy, parasitic zoonoses, toxocariasis, paragonimiasis, cysticercosis, immuno- and molecular-diagnosis, Cameroon

INTRODUCTION

Parasitic zoonotic infections have a potentially serious impact on human health and economy. Paragonimiasis, cysticercosis and toxocariasis represent a public health threat in developing countries, since they can affect various tissues and organs including the brain leading to neurological disorders, such as epilepsy (Nicoletti \textit{et al}, 2002; Ito \textit{et al}, 2006b; Garcia and Modi, 2008). Cysticercosis has been considered to be a major cause of the late-onset epilepsy in developing countries (Zoli \textit{et al}, 2003; Montano \textit{et al}, 2008).
2005; Villaran et al, 2009). Other helminthic diseases such as toxocariasis, paragonimiasis, and onchocerciasis and protozoan diseases, such as malaria and toxoplasmosis, can also cause neurological disorders and idiopathic epilepsy (Bachli et al, 2004; Akyol et al, 2007; Garcia and Modi, 2008; Kaiser et al, 2008; Ngoungou and Preux, 2008). Therefore, early detection of these pathogens in humans using immunological and molecular tools is important for early treatment and prevention of the neurological sequelae (Ito, 2002; Ito and Craig, 2003; Margono et al, 2003; Ito et al, 2006b).

In general, ELISA using crude antigens is suitable for screening and the immunoblot using crude antigens or semi-purified antigens is for confirmation in the diagnosis of these helminthes. With pure antigens the ELISA and immunoblot may have a better specificity. Both these tools might be used to screen and confirm infections in endemic areas (Ito et al, 1998, 1999; Sako et al, 2000; Sato et al, 2003, 2006).

Tombel Health District, Southwest Province, Cameroon is endemic for paragonimiasis and epilepsy is common (Moyou-Somo et al, 2003; Moyou-Somo and Tagni-Zukam, 2003). However, there is a paucity of information about the role of parasitic zoonoses among people with neurological disorders in this area. There is little information about cysticercosis in children, although cysticercosis is relatively common in adults and epileptic patients (Nguekam et al, 2003; Zoli et al, 2003). There is no data regarding the prevalence of toxocariasis in human in Cameroon, although toxocariasis is prevalent in dogs (Komtangi et al, 2005). Paragonimiasis is diagnosed by the detection of eggs in the sputum but control of this disease has only been partially successful.

We reviewed the literature regarding the prevalence of toxocariasis, paragonimiasis and cysticercosis, and their association with neurological diseases among children in southwestern Cameroon using immunological techniques.

TOXOCARIASIS

Toxocariasis is a zoonotic infection of humans caused by dog and cat roundworms, *Toxocara canis* and *Toxocara cati*, respectively. Humans become infected by ingestion of embryonated eggs from contaminated sources. Children often become infected because they put objects in their mouths or eat dirt. This disease can be found in developed and developing countries (Hayashi et al, 2005; Fernando et al, 2007; Nicoletti et al, 2008; Yoshikawa et al, 2008; Zarnowska et al, 2008). We expect *T. canis* infections are more common than *T. cati* infections due to the defecation habits of dogs, but there is no information about this disease in humans in Cameroon. The prevalence of this disease in dogs is high in Cameroon (Komtangi et al, 2005). We expected the prevalence of this infection in children might also be high especially in rural areas where risk factors are common in Cameroon.

Toxocariasis affecting the organs is called visceral larva migrans, and the disease restricted to the eye and the optic nerve is called ocular larva migrans (Logar et al, 2004; Yoshikawa et al, 2008). Neurological disorders, especially epilepsy have been associated with toxocariasis (Bachli et al, 2004; Moreira-Silva et al, 2004; Akyol et al, 2007; Nicoletti et al, 2008). Epilepsy is common in southwestern Cameroon. Serology using a recombinant antigen of *T. canis* second-stage larvae (Yamasaki et al, 2000) was performed on serum samples collected from children in Southwest
Table 1
Clinical and serological results of individuals investigated.

<table>
<thead>
<tr>
<th>Clinical/immunological diagnosis of persons with symptoms</th>
<th>Age/gender (male/female)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-10 years (31/49)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-20 years (35/28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 21 years (14/11)</td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>64 (31/33)</td>
<td>135 (80.3)</td>
</tr>
<tr>
<td>Headache</td>
<td>49 (22/27)</td>
<td>106 (63.0)</td>
</tr>
<tr>
<td>Eye disorder</td>
<td>7 (3/4)</td>
<td>30 (17.8)</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>2 (2/0)</td>
<td>14 (8.3)</td>
</tr>
<tr>
<td>Chest pain</td>
<td>33 (15/18)</td>
<td>80 (47.6)</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>8 (3/5)</td>
<td>18 (11.3)</td>
</tr>
<tr>
<td>Crab eaten</td>
<td>60 (26/34)</td>
<td>137 (81.5)</td>
</tr>
<tr>
<td>Pork eaten</td>
<td>64 (26/38)</td>
<td>135 (80.3)</td>
</tr>
</tbody>
</table>

Microscopy for *Paragonimus* spp eggs

<table>
<thead>
<tr>
<th></th>
<th>Sputum</th>
<th>Feces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 (2/7)</td>
<td>0 (0/0)</td>
</tr>
</tbody>
</table>

ELISA and/or immunoblot

<table>
<thead>
<tr>
<th></th>
<th>Paragonimiasis</th>
<th>Toxocariasis</th>
<th>Cysticercosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13 (4/9)</td>
<td>31 (13/18)</td>
<td>0 (0/0)</td>
</tr>
</tbody>
</table>

aThe eggs were later confirmed to be *P. africanus* using molecular tools.

Cameroon. ELISA results showed that 61 persons (36.3%) exhibited antibody response to this antigen (Table 1) (Nkouawa et al, 2010a). It suggests that children are the most exposed people (Hayashi et al, 2005; Fernando et al, 2007; Zarnowska et al, 2008; Sviben et al, 2009). Among the 14 persons with epilepsy, 5 were seropositive for specific *Toxocara* antigen (Fig 1). More epidemiological data of toxocariasis are needed to determine its association with epilepsy in this area, and in other regions in Cameroon to determine the distribution of this disease.

PARAGONIMIASIS

Paragonimiasis is a parasitic disease of humans and other mammals caused by *Paragonimus* spp (lung flukes). Humans are infected after ingestion of raw or undercooked fresh water crabs harboring the metacercariae. Pulmonary paragonimiasis is the most common, but cerebral paragonimiasis is not rare. Since both paragonimiasis and epilepsy are highly prevalent in the Southwest Province of Cameroon, it is necessary to investigate the correlation between epilepsy and paragonimiasis in this area. Microscopic examination of eggs in feces is generally the most reliable direct method. However, *Paragonimus* eggs were mostly found from sputa but not from fecal samples collected in Southwest Cameroon (Nkouawa et al, 2009a). This might be due to the people’s attitude to vomit sputa rather than swallowing them. Therefore, the diagnosis of paragonimiasis in Cameroon by detecting *Paragonimus* eggs from feces lacks sensitivity (Ripert et al, 1992; Ollivier et al, 1995; Moyou-Somo et al, 2003; Moyou-Somo
and Tagni-Zukam, 2003). Furthermore, it is not possible to detect eggs during pre-patent period, in single infections, or extra-pulmonary paragonimiasis. Serological tests, which have been confirmed to be useful for detection of paragonimiasis in Asia and Latin America (Ikeda et al, 1996; Kong et al, 1998; Blair et al, 2007), are more sensitive than detection of eggs in the sputum for diagnosis of paragonimiasis in Cameroon (Nkouawa et al, 2009a). A positive antibody responses to crude antigens of \(P. \) africanus adult worms were observed in \(14.8\% \) \((n = 25)\) and \(15.5\% \) \((n = 26)\) of 168 sera collected from persons living in Southwest Cameroon by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis, respectively (Table 1). Sera from other parasitic infections (schistosomiasis haematobium, schistosomiasis japonicum, fascioliasis, clonorchiasis, cysticercosis and sparganosis) showed weak cross-reaction to crude antigens (Nkouawa et al, 2009a). Immunodominant bands of 33- and 35-kDa of \(P. \) africanus antigens recognized by most patients’ sera were similar to those of \(P. \) westermani adults exhibiting strong reactions with IgG4 (Kong et al, 1998). Crude antigens of Paragonimus spp are useful for detection of paragonimiasis, since these antigens appear to be genus specific (Kong et al, 1998). Sera from persons infected with \(P. \) africanus showed strong antibody response to the Japanese \(P. \) westermani and \(P. \) miyazakii adult antigens, and vice versa sera from persons infected with the Japanese \(P. \) westermani and \(P. \) miyazakii strongly cross-reacted with the antigens of \(P. \) africanus adult (Nkouawa et al, 2009a). This indicates that differentiation of Paragonimus species cannot be achieved serologically. Since at least ten Paragonimus species have been reported to infect

\[
\begin{align*}
&\text{Fig 1–ELISA results modified from Nkouawa et al (2010a) for paragonimiasis (Pa), cysticercosis (Ts) and toxocariasis (Tc) from 208 persons [168 and 20 (Nc) with and without symptoms from Cameroon, respectively and 20 from Japan (Nj)]. O, samples with Paragonimus eggs in the sputum. Serology could detect more than all cases with eggs in the sputum and was expected to be more sensitive for detection of paragonimiasis including immature adult stage (Nkouawa et al, 2009a). \bigcirc, positive against the recombinant antigen 100\% specific to cysticercosis by immunoblot (Sako et al, 2000). \bigtriangleup, patients with history of seizures were positive to \(P. \) africanus somatic antigen and to recombinant antigen of \(T. \) canis second-stage larvae. The broken line denotes the respective cut-off value for each disease.}
\end{align*}
\]
humans in endemic areas in Asia (Sripa et al, 2010), antigens from any species are expected to provide reliable results.

In Cameroon, immunological tests detected more paragonimiasis cases (15.4%) than microscopic examination of eggs in the sputum (3.0-9.6%) (Ripert et al, 1992; Ollivier et al, 1995; Moyou-Somo et al, 2003; Moyou-Somo and Tagni-Zukam, 2003). Therefore, we adopted immunological tests for the surveillance of this disease. Although the number of cases has decreased in adult populations in endemic areas in Southwest Cameroon (Moyou-Somo et al, 2003; Moyou-Somo and Tagni-Zukam, 2003), our data have demonstrated that children, especially those < 10 years old are still highly infected with *P. africanus* due to their food eating habits and poor hygiene and sanitation (Table 1). Therefore, control measures including mass screening by immunological method and education of children are an urgent task to prevent this disease. Out of 14 epileptic patients, only one showed positive antibody responses to antigens specific to paragonimiasis (Fig 1), this suggests that paragonimiasis might not be the major cause of epilepsy in this area.

Since four species, *P. africanus*, *P. uterobilateralis*, *P. westermani*-like and *Euparagonimus* sp, are distributed in Cameroon (Voelker and Sachs, 1977; Cabaret et al, 1999), it is necessary to confirm the parasite species causing paragonimiasis by molecular tools. Adult worms recovered from the lungs of a cat after experimental infection with metacercariae collected from crabs in Southwest Cameroon were identified as *P. africanus* by sequence data from the internal transcribed spacer 2 (ITS2) region and cytochrome c oxidase subunit 1 (cox1) genes (Nkouawa et al, 2009a). Therefore, molecular sequencing can be used to detect *P. africanus*, the causative agent of paragonimiasis in Southwest Cameroon. PCR using specific primer designed from *P. africanus* ITS2 and cox1 sequences was also used to detect target DNA from fecal samples. It is more sensitive than microscopic examination of eggs in feces (Nkouawa et al, 2009a).

Detection of target DNA in the sputum provides more sensitive results, especially to identify the *Paragonimus* species, since eggs are often found in cases of pulmonary paragonimiasis. This method cannot be applied for extra-pulmonary cases or cerebral paragonimiasis.

CYSTICERCOSIS

Cysticercosis caused by *T. solium* larvae is one of the most serious diseases in many developing countries (Schantz et al, 1998; Murrell, 2005; Ito et al, 2006a). Previous studies have focused on adult population and pigs in the western and northwestern regions of Cameroon (Pouedet et al, 2002; Vondou et al, 2002; Nguekam et al, 2003; Shey-Njila et al, 2003; Zoli et al, 2003), and on swine cysticercosis in the North Province (Assana et al, 2010). There is little or no information from other regions, especially where epilepsy is relatively high and where the risk factor of this disease such as pig farming with free access of pigs to human feces remains. For human cysticercosis, detection of antibody responses has been combined with clinical criteria and/or imaging figures (Ito et al, 2006c; Willingham et al, 2010). As the CT or MRI is too expensive and is not affordable to many people in developing countries, immunodiagnosis using specific antigens is the method of choice for screening of cysticercosis due to its simplicity and reliability.

Among several characterized specific antigens for *T. solium*, the glycoproteins...
(GPs) have been widely used for serodiagnosis of cysticercosis (Ito et al., 1998; Sako et al., 2000; Wandra et al., 2003; Ito et al., 2006c; Li et al., 2006; Sato et al., 2006; Wandra et al., 2006). We applied GPs and recombinant antigen (Sako et al., 2000; Li et al., 2006; Sato et al., 2006; Anantaphruti et al., 2010) for diagnosis of cysticercosis in serum samples collected in Southwest Cameroon (Nkouawa et al., 2010a). More than half of epileptic adult patients in West and North West provinces of Cameroon exhibited strong antibody responses. It suggested that cysticercosis was the major causative agent of the late-onset epilepsy in this area (Zoli et al., 2003). However, out of 168 samples including 143 persons < 20 years old, collected from Southwest Cameroon, 1 girl aged 4 years old and 2 boys aged 11 and 13 years old without symptoms or any history of seizures exhibited antibody responses against GPs by ELISA. Immunoblot using the same GPs and recombinant antigens of T. solium revealed that the 2 boys were seropositive. Therefore, these 2 children are asymptomatic cysticercosis (Nkouawa et al., 2010a). As it has been shown that cysticercus of T. solium can survive for many years in patient’s body (Yanagida et al., 2010), it is necessary to follow up these two children.

The follow-up of asymptomatic healthy but serologically positive people for cysticercosis in Papua, Indonesia, revealed that most of them had detectable subcutaneous nodules (Wandra et al., 2003; Ito et al., 2004). However, subcutaneous cysticercosis is not common in Africa as in Asia (Ito et al., 2003). Therefore, follow-up antibody titers may be another indicator to confirm active cysticercosis in Africa. Serology using highly specific antigens is useful for detection of asymptomatic cysticercosis and symptomatic cases in endemic areas.

TAENIASIS

To achieve the control and prevention of cysticercosis, the detection of cysticercosis in humans, pigs, and dogs (Ito et al., 2002) together with the detection of taeniasis carriers are required in endemic areas. Although cysticercosis is still a serious problem in some areas in Asia, Africa and Latin America, the disease has been well controlled (Ito et al., 2005; Garcia et al., 2007; Wandra et al., 2006). Nonetheless, the control in Cameroon is mainly focused on the detection of cysticerci in humans and pigs, which are the end stage of the parasite in the intermediate hosts. There is few information on adult tapeworms and the risk factor for cysticercosis in pigs and humans in many endemic areas. A previous study reported that T. solium taeniasis was diagnosed by microscopic examination of Taenia egg in fecal samples collected from people in endemic areas of West Cameroon (Vondou et al., 2002).

The microscopic examination of Taenia eggs is not sensitive and eggs of all Taenia species are morphologically identical. More reliable molecular tools such as multiplex PCR and loop-mediated isothermal amplification (LAMP) have been introduced for identification of eggs, cysticerci, adult worms and for feces without eggs or proglottids (Nkouawa et al., 2009b; Yamasaki et al., 2004). LAMP is more sensitive to detect taeniasis than multiplex PCR (Nkouawa et al., 2010b) in endemic areas in Cameroon. For future studies in endemic areas in Cameroon and other countries, the detection of adult tapeworms as a screening of taeniasis carriers of T. solium using both copro-ELSIA (Guezala et al., 2009) and copro-DNA methods (Nkouawa et al., 2009b, 2010b; Nakao et al., 2010) is necessary.
CONCLUSION

In this review, highly specific recombinant antigens for both toxocariasis and cysticercosis, and crude antigens of *P. africanus* showing no or little cross-reaction with other helminth infections were used. Toxocariasis (36.3%), paragonimiasis (15.5%) and cysticercosis (1.2%) have been confirmed among surveyed persons. Among the seropositive persons, 11 were found to have dual infections of both *Toxocara* and *Paragonimus*. Of 14 epilepsy cases, 5 were seropositive for toxocariasis and one was simultaneously positive for paragonimiasis. This demonstrated that 1) paragonimiasis among children still remains a serious health problem in this endemic area, 2) asymptomatic cysticercosis cases were detected in 2 children, and 3) toxocariasis was serologically confirmed for the first time in Cameroon with relatively high prevalence. The serological tools are highly useful for screening of these diseases having great consequences on the brain. Therefore, early diagnosis at the early stage is one of the key strategies to control and prevent the spread of these diseases in people, especially in children in endemic areas. For future strategies, detail epidemiological studies to screen young and adult populations for taeniasis/cysticercosis, and pigs for cysticercosis and also other helminthic infections are necessary to establish the correlation between epilepsy and parasitic diseases for the early treatment and prevention of these diseases in this area and other regions in Cameroon and any other countries.

ACKNOWLEDGEMENTS

This work was supported in part by the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan (2010-2012); the International Collaboration Research Fund from the Japan Society for the Promotion of Science (JSPS) (17256002, 21256003) and JSPS-Asia/Africa Science Platform Fund (2006-2011) to AI.

REFERENCES

Garcia HH, Modi M. Helminthic parasites and

Ito A. Serologic and molecular diagnosis of zoonotic larval cestode infections. *Parasitol Int* 2002; 51: 221-35.

Ito A, Craig PS, Schantz PM. Taeniasis/cysticercosis and echinococcosis with focus on Asia and the Pacific. *Parasitol Int* 2006a; 55 (suppl): 1-312.

Montano SM, Villaran MV, Ylquimiche L, et al. Neurocysticercosis: association between...

Schantz PM, Wilkins PP, Tsang VCW. Migrants, imaging, and immunoblots: the emergence of neurocysticercosis as a significant public health problem. In:

