CARBAPENEM RESISTANCE DUE TO $\text{bla}_{\text{OXA-48}}$ AMONG ESBL-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE ISOLATES IN A UNIVERSITY HOSPITAL, TURKEY

Hasan Nazik¹, Betigul Ongen¹, Mehmet Ilktac¹, Selda Aydin², Nuray Kuvat¹, Aysegul Sahin¹, Mucahit Yemisen², Bilgil Mete², Mehmet Sait Durmus³, Ilker Inanc Balkan², Ismail Yildiz³ and Yakup Ergul³

¹Department of Microbiology and Clinical Microbiology, Istanbul Medical Faculty, ²Department of Infectious Diseases and Clinical Microbiology, Carrahpasa Medical Faculty, ³Department of Pediatrics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey

Abstract. Bacterial isolates producing Class D OXA-48 carbapenemase may be missed in routine laboratory testing, allowing them to spread undetected. The purpose of the present study was to detect $\text{bla}_{\text{OXA-48}}$ among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolates collected from a university hospital, Turkey. Ninety-two ESBL-producing isolates (66 E. coli, 26 K. pneumoniae) were obtained in 2010. Antibiotic susceptibility tests were performed using the disc diffusion method and VITEK 2 system. Carbapenemase activity was screened using modified Hodge test. Beta-lactamase genes were detected by PCR and $\text{bla}_{\text{OXA-48}}$-positive amplicons were sequenced. Genetic relatedness among K. pneumoniae isolates was investigated by pulsed-field gel-electrophoresis (PFGE). Carbapenemase activity was detected in 1 E. coli and 9 K. pneumoniae isolates and 8 of the K. pneumoniae plus the E. coli isolates were resistant to ertapenem. Three K. pneumoniae and 1 E. coli isolates were resistant to imipenem. All 10 isolates were susceptible to meropenem. $\text{bla}_{\text{OXA-48}}$ was present in all 10 isolates. Additionally, 9 isolates contained at least one beta-lactamase gene, including bla_{SHV}, $\text{bla}_{\text{CTX-M}}$, and bla_{VEB} type. PFGE revealed different karyotypes among 9 K. pneumoniae isolates suggesting that the dissemination of $\text{bla}_{\text{OXA-48}}$ gene was not spread by a single K. pneumoniae clone. Thus OXA-48-producing isolates found in carbapenem-susceptible strains according to CLSI guidelines.

Keywords: Klebsiella pneumoniae, carbapenemase, OXA-48, VEB, ESBL, carbapenems

INTRODUCTION

Carbapenems are valuable antibiotics which are often used as the last choice for treating infections especially due to ESBL-producing strains. The spread of carbapenemase-producing enterobacte-
ria isolates is a significant threat to the management of nosocomial infections, especially in intensive care units (Aktas, et al, 2008; Livermore, et al, 2009).

According to the Ambler classification, carbapenem-hydrolyzing enzymes can belong to class A, B (metallo-β-lactamases), or D (oxacilinases) (Queenan and Bush, 2007). The resistance of Enterobacteriaceae to carbapenems could also be related to a dual mechanism associating an outer membrane permeability defect with beta-lactmases, such as AmpC cephalosporinase and ESBLs, particularly with the presence of CTX-M types (Pasteran et al, 2011). The class A carbapenemases, encoded by bla_{KPC} are present in Klebsiella pneumoniae strains and they are increasingly widespread (Pitout, 2008). This type of carbapenemases has been reported in various Enterobacteriaceae spp from several parts of the world, including USA, Europe, South America, Asia and the Middle East (Pitout, 2008). Plasmid-encoded class B metallo-β-lactamases, such as IMP and VIM types, are also distributed globally (Toraman et al, 2004; Queenann and Bush, 2007). Class D OXA-48 was first reported in a K. pneumoniae from Turkey in 2004, and since then several enterobacterial isolates producing OXA-48 have occasionally been reported mostly from Turkey. However, in recent years, it has been reported more frequently, not only from Turkey but also countries such as Belgium, Lebanon, United Kingdom, India and Argentina (Poirel et al, 2004; Cuzon et al, 2008; Livermore, 2009; Carrer et al, 2010; Hawser et al, 2011; Ktari et al, 2011; Lahlaoui et al, 2011; Moquet et al, 2011).

The undetected spreading of bla_{OXA-48} gene is of concern due to the inability of routine laboratory to detect OXA-48 producing strains. The purpose of the present study was to detect bla_{OXA-48} gene among ESBL-producing K. pneumoniae and Escherichia coli isolates in Turkey.

MATERIALS AND METHODS

Samples
A total of 92 ESBL-producing isolates (66 E. coli, 26 K. pneumoniae) were obtained from the Microbiology Laboratories of Istanbul Medical Faculty, Turkey, a 1,750-bed tertiary care teaching hospital, from 1 April to 31 August 2010. The isolates were from clinical specimens and identified by conventional methods (Garcia and Isenberg, 2010) and by PCR for identification of strains positive for bla_{OXA-48} using VITEK 2 System (bioMérieux, Marcy l’Etoile, France).

Antimicrobial susceptibility and synergy tests
The Kirby-Bauer disc diffusion method was employed for susceptibility testing (CLSI, 2011). The double disc synergy test was used for screening the ESBL production. Carbapenemase activity was screened using the modified Hodge test (CLSI, 2009). OXA-48-producing Citrobacter freundii Lut strain from the previous study (Nazic et al, 2005) and E. coli ATCC 25922 were used as control strains. Minimum inhibitory concentration (MIC) of isolates was determined by VITEK 2 System (Pasteran et al, 2011). Ten positive isolates by modified Hodge test (CLSI, 2009) were included for further experiments.

Detection of bla_{OXA-48} and related β-lactamase genes
DNA extraction was performed as described previously (Mammeri et al, 2005; Nazik et al, 2011b). In brief, colonies were boiled in distilled water and supernatants used as DNA templates for polymerase chain reaction (PCR). Supernatants were
stored at -20°C prior to subsequent DNA amplification (Mammeri et al, 2005; Nazik et al, 2011b). PCR amplification for blaOXA-48 was performed using OXA-48A (5’-TTGGTGGCCATCGATTATCGG-3’) and OXA-48B (5’-GAGCACTTCTTTTGATGCC-3’) producing 743 bp amplicons, in a 50 µl volume containing 10x PCR buffer (5 µl), 2 mM deoxynucleoside triphosphates, 3.5 pmol of each primer, 2.5 mM MgCl₂ (5 µl), 1 U Taq DNA polymerase and 1 µl of genomic DNA of the test strain. A thermal cycler (Takara Thermal Cycler TP600, Takara Bio, Shiga, Japan) was used under the following conditions: 94°C for 5 minutes; 35 cycles of 94°C for 60 seconds; 55°C for 45 seconds, and 72°C for 60 seconds, and a step of 72°C for 7 minutes (Aktas et al, 2008; Nazik et al, 2011b). blaTEM, blaSHV, blaCTX-M, blaVIM-1, blaIMP-1, blaIMP-2 and blaKPC were investigated by PCR as described previously (Poirel et al, 2004, 2005; Mammeri et al, 2005; Pallecchi et al, 2007; Queenan and Bush, 2007). PCR amplicons were separated by 1.5% agarose gel-electrophoresis, stained with ethidium bromide and visualized under UV light. 174 Hae III fragments were used as DNA size markers (MBI Fermentas; St Leon-Rot, Germany). After OXA-48 PCR amplification, amplicon was purified using High-Pure Purification kit (Roche Diagnostics, Castle Hill, NSW, Australia) and sequenced in both directions in an Applied Biosystems sequencer (ABI 377) (Applied Biosystems, Foster City, CA). The nucleotide and deduced protein sequences were analyzed with software at the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov).

Pulsed-field gel electrophoresis (PFGE)

Genetic relatedness of the K. pneumoniae isolates was determined by PFGE following extraction of genomic DNA and digestion with XbaI (Carrer et al, 2010). CHEF DR2 unit (Bio-Rad Laboratories, Nazareth, Belgium) was used for performing PFGE and the macrorestriction patterns were analysed with GelCompar II software (Version 6.0) (Applied Maths, Sint-Martens-Latem, Belgium). Relatedness was calculated using the unweighted pair group method with mathematical averaging (UPGMA). Cluster designation was determined according to criteria described previously (Tenover et al, 1995). According to the criteria of Tenover et al (1995), the strains categorized as being: indistinguishable, closely related, possibly related or different.

RESULTS

Among the 92 strains, carbapenemase activity was detected in 10 isolates (1 E. coli and 9 K. pneumoniae) using the modified Hodge test and these strains were included for further analysis. blaOXA-48 in these isolates were demonstrated by PCR and sequence analysis. Additionally, except for the E. coli isolate, all 9 K. pneumoniae isolates co-produced at least one ESBL; 3 and 5 of these strains contained blaSHV and blaSHV/blaCTX-M, respectively (Table 1). One K. pneumoniae isolate contained blaCTX-M and blaVEB. PFGE revealed 9 different restriction-types among the K. pneumoniae isolates (Fig 1).

The modified Hodge test-positive isolates were resistant to ertapenem. Three K. pneumoniae isolates and the single E. coli isolate were resistant also to imipenem. All 10 isolates were susceptible to meropenem. Additionally, these 10 isolates were resistant to amoxicillin-clavulanic acid, piperacillin-tazobactam and ceftazolin. Resistance to the third generation cefalosporins was observed in 8 isolates. However, 6 of the isolates remained susceptible to cefepime. The antibiotic resis-
Table 1

Related beta-lactamases and resistance patterns of OXA-48 producing *K. pneumoniae* and *E. coli* clinical isolates.

<table>
<thead>
<tr>
<th>Isolate number</th>
<th>Bacteria species</th>
<th>Related bla genes</th>
<th>MICs for carbapenem (µg/ml)</th>
<th>Antibiotic resistance pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ETP</td>
<td>IMP</td>
</tr>
<tr>
<td>1</td>
<td>E. coli</td>
<td>-</td>
<td>≥8</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>K. pneumoniae</td>
<td>CTX-M, VEB</td>
<td>2</td>
<td>≤1</td>
</tr>
<tr>
<td>3</td>
<td>K. pneumoniae</td>
<td>SHV, CTX-M</td>
<td>≥8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>K. pneumoniae</td>
<td>SHV, CTX-M</td>
<td>≥8</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>K. pneumoniae</td>
<td>SHV</td>
<td>0.5</td>
<td>≤1</td>
</tr>
<tr>
<td>6</td>
<td>K. pneumoniae</td>
<td>SHV, CTX-M</td>
<td>≥8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>K. pneumoniae</td>
<td>SHV</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>K. pneumoniae</td>
<td>SHV, CTX-M</td>
<td>≥8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>K. pneumoniae</td>
<td>SHV</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>K. pneumoniae</td>
<td>SHV, CTX-M</td>
<td>≥8</td>
<td>≤1</td>
</tr>
</tbody>
</table>

ETP, ertapenem; IPM, imipenem; MEM, meropenem; AMC, amoxicillin-clavulanic acid; TZP, piperacillin-tazobactam; CZ, cefazolin; CXM, cefuroxime; CAZ, ceftazidime; CRO, ceftriaxone; FEP, cefepime; LEV, levofloxacin; SXT, trimethoprim/sulfamethoxazole; GM, gentamicin, TEM, *bla*_{TEM}; SHV, *bla*_{SHV}; CTX-M, *bla*_{CTX-M}; VEB, *bla*_{VEB}. aMIC range of antibiotics: for ETP, ≤0.25, susceptible; 0.5, intermediate; ≥1, resistant; for IMP and MEM: ≤1, susceptible; 2, intermediate; ≥4, resistant.

DISCUSSION

In addition to class A and class B carbapenemases, the class D carbapenemase, OXA-48 type, might lead significantly to carbapenem resistance in *Enterobacteriaceae*. We have recently investigated plasmid-mediated quinolone resistance in *K. pneumoniae* and *E. coli* clinical isolates (Nazik *et al.*, 2011b). In this report, we detected *bla*_{OXA-48} more frequently in *K. pneumoniae* (55%) than in *E. coli* (1.5%). In our findings, OXA-48-producing isolates can be susceptible to carbapenems, especially imipenem and meropenem according to the current CLSI breakpoints. Related beta-lactamases and resistance patterns of the strains are presented in Table 1. The antibiotic resistance rates of the 92 test strains are presented in Fig 2. In general, *E. coli* isolates displayed high rates of resistance to cefotaxime, ampicillin-sulbactam, cefoperazone-sulbactam, cephalothin, and gentamicin, while *K. pneumoniae* isolates were detected more frequently in *K. pneumoniae* (35%) than in *E. coli* (1.5%).
Fig 1–PFGE patterns of 9 OXA-48-producing *K. pneumoniae* isolates. The methods used are described in materials and methods.

Fig 2–*In vitro* antibiotic resistance rate (%) of 66 *Esherichia coli* and 26 *K. pneumoniae* clinical isolates. Tests were performed using disc diffusion method and VITEK 2 system. AMC, amoxicillin-clavulanic acid; SAM, ampicillin-sulbactam; SCF, cefoperazone-sulbactam; TZP, piperacillin-tazobactam; CAZ, ceftazidime; CTX, cefotaxime; FEP, cefepime; CIP, ciprofloxacin; NOR, norfloxacin; GM, gentamicin; AK, amikacin; FOS, fosfomycin; IMP, imipenem; MEM, meropenem; ETP, ertapenem isolates (Woodford, 2010). The current CLSI breakpoints for ertapenem and imipenem/meropenem, which define nonsusceptibility by a MIC of ≥0.5 µg/ml and ≥2 µg/ml, respectively, increase the detection of carbapenem resistance. However, these updates, especially for ertapenem, also have enhanced the poor ability of the commercial antimicrobial susceptibility system to distinguish carbapenemase-producing isolates with ESBL and/or AmpC combined with porin loss, resulting in poor specificity (Pasteran *et al*, 2011). The presence of dual mechanisms might be important for the high prevalence of CTX-M-type beta-lactamase especially among the *E. coli* and *K. pneumoniae* in Turkey (Nazik *et al*, 2011c,d). Thus recent studies have focused on finding screening methods based on the use of carbapenems other than ertapenem in order to develop a more accurate identification of isolates suspected of producing carbapenemase (Ho *et al*, 2011; Pasteran *et al*, 2011).

The co-existence of $\text{bla}_{\text{OXA-48}}$ together...
Spread of $\text{BLA}_{\text{OXA-48}}$ Gene in Turkey

with the other ESBL types, such as $\text{bla}_{\text{TEM'}}$, bla_{SHV}, and $\text{bla}_{\text{CTX-M'}}$ among nosocomial pathogens is very important due to the restriction of the effectiveness of all β-lactams including carbapenems, which are mostly used as a last resort of therapy against ESBL-producing organisms. In the present study, high rates of resistance to different group of antibiotics, such as gentamicin and quinolones, were detected. In addition to TEM, SHV and CTX-M type (Pitout, 2008) which are widespread worldwide, another type of beta-lactamases (VEB) has emerged in recent years (Poirel et al., 2005). Here, in addition to the older ones, a VEB type β-lactamase was detected in one K. pneumoniae isolate. The presence of $\text{bla}_{\text{OXA-48}}$ together with $\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}}$ or bla_{TEM} has been described among E. coli and K. pneumoniae strains (Martinez-Martinez, et al., 2008). In our previous study, a Citrobacter freundii isolate producing $\text{bla}_{\text{OXA-48}}$ and bla_{VEB} has been reported from the same hospital in Istanbul (Nazik et al., 2005). This finding showed that VEB type β-lactamase persists in microorganisms in Turkey (Nazik et al., 2011a).

Moreover, the present study demonstrated that K. pneumoniae isolates were not clonally related. Thus the dissemination of $\text{bla}_{\text{OXA-48}}$ was not due to a single K. pneumoniae clone although the strains were isolated from same units. This means that several OXA-48-producing clones were distributed in our hospital in Istanbul. This finding has also demonstrated in a few studies previously (Carrer et al., 2008, 2010).

The presence and worldwide dissemination of OXA-48 type carbapenemase together with other ESBLs, such as CTX-M and VEB, in K. pneumoniae and E. coli clinical isolates is of concern by virtue of the extension of the antibiotic resistance spectrum to include carbapenems. Thus, considerable efforts are necessary for the detection of $\text{bla}_{\text{OXA-48}}$ in clinical strains of Enterobacteriaceae.

ACKNOWLEDGEMENTS

This work was presented as a poster at the 4th Eurasia Congress of Infectious Diseases, 1-5 June 2011, Sarajevo-Bosnia and Herzegovina. We would like to thank Barış Otlu for the technical assistance in generating PFGE dendrogram.

REFERENCES

Garcia LS, Isenberg HD. Clinical microbiology

