RELATIONSHIP BETWEEN TOTAL THIOL STATUS AND THROMBOCYTOPENIA IN PATIENTS WITH CRIMEAN-CONGO HEMORRHAGIC FEVER

Rahmet Guner1, Mehmet A Tasyaran1, Siran Keske2, Imran Hasanoglu3, Ayse Kaya Kalem3, Derya Yapar4, Tugba Arslan Gulen5, Salim Neselioglu6, Semra Isikoglu6 and Ozcan Erel7

1Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Yildirim Beyazit University, Ankara; 2Department of Infectious Diseases and Clinical Microbiology, Polatli Duatepe State Hospital, Ankara; 3Department of Infectious Diseases and Clinical Microbiology, Ataturk Research and Education Hospital, Ankara; 4Department of Infectious Diseases and Clinical Microbiology, Inebolu State Hospital, Kastamonu; 5Department of Infectious Diseases and Clinical Microbiology, Nigde State Hospital, Nigde; 6Department of Medical Biochemistry, Ataturk Research and Education Hospital, Ankara; 7Department of Medical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey

Abstract. The objective of this study was to investigate the relationship between serum total thiol level and total oxidant status (TOS) and thrombocytopenia among patients with Crimean-Congo hemorrhagic fever (CCHF). Eighty-three subjects and 56 controls were enrolled in the study. Thiol levels were measured with the DTNB method and TOS was measured with the Erel’s method among subjects and controls. Thiol levels were lower in subjects than controls and TOS levels were higher in subjects than controls. There was a significant correlation between total thiol levels and platelet counts \((r=0.84, p<0.0001)\) among subjects. Further investigations are needed into the link between total thiol level and TOS and the pathogenesis of hemorrhage in CCHF.

Keywords: Crimean-Congo hemorrhagic fever, aPTT, TOS, thiol, thrombocytopenia

INTRODUCTION

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral disease. The mortality rate with CCHF has been reported to be between 5% and 30% (Gale et al, 2010; Leblebicioglu, 2010; Maltezou et al, 2010). The pathogenesis of CCHF remains unclear due to the lack of a suitable animal model to study the disease. The high virulence of CCHF requires its study to be performed under Biosafety Level 4 conditions (Bente et al, 2010). Most of what is known today about CCHF is derived from human case studies and some in vitro experiments. Much is extrapolated from what is known about other viral hemorrhagic fevers (Bodur et al, 2010).

The virus is thought to damage the host’s immune response by affecting the
cells which initiate the antiviral response; it also causes endothelial dysfunction (Bodur et al, 2010; Ozturk et al, 2010; Saksida et al, 2010).

Thrombocytopenia is a consistent finding with CCHF (Onguru et al, 2008; Yilmaz et al, 2008; Tasdelen Fisgin et al, 2009; Hatipoglu et al, 2010; Onguru et al, 2010;). The cause of thrombocytopenia in CCHF is unclear but thought to be due to reactive hemophagocytosis, deficient marrow production of thrombocytes, and sequestration of thrombocytes in infected organs (Schnittler et al, 2003; Karti et al, 2004; Yilmaz et al, 2008).

Thiols are a class of organic sulfur derivatives characterized by the presence of a sulfhydryl group (-SH) at their active site (Sen and Packer, 2000; Moriarty-Craige and Jones, 2004). There is a strong relationship between platelet function and thiol status (Bayele et al, 2002). Protein disulfide isomerase enzyme found in platelets cannot function properly in thiol deficiency and is associated with a decrease in platelet number and function (Jordan et al, 2005; Jordan and Gibbins, 2006). Since thiols play an important role in the intrinsic coagulation pathway, low levels of thiol are associated with prolonged aPTT values (Bayele et al, 2002).

Thiol deficiency is seen in some viral and bacterial diseases. In some infectious diseases it has been reported that oxidant levels increases; as a response, thiol is oxidated and TOS levels increase while thiol level is decreasing (Markovic et al, 2004; Dulger et al, 2011; Duygu et al, 2012; Usta et al, 2012). Thiol and total oxidant status (TOS) levels in CCHF are unknown. We studied thiol and TOS levels and platelet counts among patients with CCHF to determine if an association exists between them.

MATERIALS AND METHODS

Eighty-three subjects and 56 controls were enrolled in the study. All the subjects included in the study were treated for CCHF at the Ankara Ataturk Education and Research Hospital, Department of Infectious Diseases and Clinical Microbiology. CCHF was diagnosed by either detection of CCHF viral RNA with reverse transcriptase-polymerase chain reaction (RT-PCR) or by detecting IgM antibodies to CCHF. The tests were conducted at the reference Virology Laboratory of Refik Saydam Hygiene Central Institute, Ankara, Turkey. Tests for other possible infectious agents were carried out on all 83 subjects for Leptospira spp, Rickettsia spp, Brucella spp, Toxoplasma spp, Coxiella burnetii, agents of Lyme disease, malaria, rubella, herpes viruses, cytomegalovirus and hepatitis A, B and C viruses. No other agents were found. The control group consisted of healthy volunteers. The study was carried out after approval by the ethics committee of Ankara Ataturk Education and Research Hospital.

Biochemical and hematological methods

Blood samples for hematological, biochemical and microbiological analysis were taken. The blood was centrifuged at 1,800g for 10 minutes and stored at -80°C until analysis. Platelet counts were determined with a Beckman Coulter LH850 automatic hemocounter. Activated partial thromboplastin time (aPTT) values were determined with a Dade Behring BCS. Total serum thiol levels were measured with a commercially available kit (Rel Asssay Diagnostic, Turkey) based on DTNB reduction (Costa et al, 2006). Serum TOS levels were determined using a commercial available kit (Rel Asssay Diagnostic, Turkey) based on a ferrous ion xylenol orange assay (Erel, 2005).
Descriptive statistics were conducted on all studied variables. The data were analyzed using the Kolmogorov–Smirnov test. Normally distributed data were analyzed with the Student’s t-test, and those without normal distribution were analyzed with the Mann-Whitney U test. Relationships among parameters were determined by a correlation analysis test.

A receiver operating characteristic curve was determined, and the area under the curve was estimated. SPSS version 11.5 (SPSS, Chicago, IL) and MedCalc version 10.0.2.0. (MedCalc, Mariakerke, Belgium) were used for the calculations.

RESULTS

The mean age of the 83 subjects was 47 years old; 36 patients (43.3%) were male. The most common symptoms reported were fatigue (90.4%), fever (85.1%), myalgia (80.9%) and headache (72.3%). The median duration between onset of symptoms and admission to the hospital was 3 (1-7 days) days. Hemorrhagic findings were present in 56 of 83 subjects (67.5%); the CCHF mortality rate was 6.4% (6 of 83 cases).

The mean total thiol level among subjects was considerably lower than controls (Table 1). The maximum thiol value among subjects was lower than the minimum level in the control group (Fig 1). The sensitivity and specificity levels for CCHF using a total thiol level of 435 µmol/l were 100% for both and the area under the curve (AUC) was 1.0 (Fig 2). A strong positive correlation was seen between thiol level and the platelet count among subjects (Fig 3). A significant negative correlation was seen between the total mean thiol level and the mean TOS level. The thiol level fell as the aPTT increased (Table 2).

DISCUSSION

In this study the total serum thiol level among CCHF subjects was considerably lower than among controls. The total serum thiol level had a strong positive correlation with the platelet count.

The cause of the decrease in total serum thiol level among patients with CCHF is unclear. In most infectious diseases, as a part of the host’s immunochemical defense mechanism, oxidants generally increase and antioxidants generally decrease (Araujo et al, 2008; Cepins-
Celik et al (2010) found a ten-fold increase in the activity of xanthine oxidase, a source of oxidant molecules for superoxide and hydrogen peroxide and Tütüncü et al (2010) found high nitric oxide levels among CCHF patients.

Thiols constitute the main part of the non-enzymatic antioxidant system in the blood and are the first molecules to oxidize in response to a rise in oxidant molecules (Erel, 2004). In this study a significant negative correlation was found between TOS and total thiol levels (Table 2).

For fusion between the virus envelope and host cell to occur the thiol level should be appropriate (Jain et al, 2009). When chemical agents that oxidize the reduced thiols in the medium, such as DTNB and p-mercuribenzoic acid, are introduced, viruses are not able to merge with the host cell (Ryser et al, 1994). Protein disulfide isomerase (PDI) enzyme, located on the surface of the cell, regulates the oxidized/reduced thiol status of the integral proteins. Fusion of the virus is inhibited when the PDI enzyme is inhibited with protein disulfide isomerase antibody (Jain et al, 2007).

PDI activity in patients with CCHF has not been reported before. In our opinion, in this viral disease, in addition to the increase in oxidants and decrease in thiols, the PDI enzyme may play an important role.
The increase in oxidants does not explain the amount of thiol oxidation; therefore, some other enzymatic factor may be responsible. PDI, in our opinion, is a strong candidate. Further studies are required to explain our pathogenetic hypothesis.

Platelets are involved in primary hemostasis, aggregating at sites of vascular damage to form a hemostatic plug and promoting the cessation of bleeding. In platelets, reagents that react with cell surface sulfhydryl groups are capable of blocking a number of functional responses, including integrin-mediated aggregation, adhesion and granule secretion (Jordan et al., 2005; Manickam et al., 2011; Margaritis et al., 2011). In the majority of these studies, specific functions have been inferred following the inhibition of PDI activity.

We found a strong correlation between total serum thiol level and platelet count among CCHF patients \((r=0.84, \ p<0.001\) (Fig 3 and Table 2). Besides the low number of platelets, their functional degradation may also be responsible for the low levels of serum thiol.

There also are interactions between coagulation mechanisms and thiol status.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Relationships among measured parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Platelet count</td>
</tr>
<tr>
<td>Total thiol level in (\mu\text{mol/l})</td>
<td>(r = 0.84)</td>
</tr>
<tr>
<td></td>
<td>(p < 0.0001)</td>
</tr>
<tr>
<td></td>
<td>(n = 139)</td>
</tr>
<tr>
<td>Platelet count/(\mu\text{l})</td>
<td>(r = -0.426)</td>
</tr>
<tr>
<td></td>
<td>(p < 0.0001)</td>
</tr>
<tr>
<td></td>
<td>(n = 139)</td>
</tr>
<tr>
<td>Total oxidant status in (\mu\text{mol H}_2\text{O}_2\text{ equiv/l})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 3–Relationship between total thiol levels and platelet counts.
While factors II (prothrombin), VII, IX, XII and XIII are insensitive to oxidation, factors I (fibrinogen), V, VIII and X are inactivated by oxidation (Stief, 2000). The negative correlation between prolonged aPTT and total thiol status may be related to these interactions (Table 2).

In conclusion, the total thiol status significantly decreased in patients with CCHF. Besides its occurrence as a response to the increased oxidants in this disease, it may also be related to thiol/disulfide homeostasis moving to the oxidative side as part of the host’s immunological response to the viral disease. Further investigation is needed into the link between these levels and the pathogenesis of hemorrhage in CCHF.

REFERENCES

Jain S, McGinnes LW, Morrison TG. Role of thiol/disulfide exchange in Newcastle
Thiol Status and Thrombocytopenia in CCHF
Usta M, Aras Z, Tas A. Oxidant and antioxidant

