SURVEY IN IRAN OF CLARITHROMYCIN RESISTANCE IN HELICOBACTER PYLORI ISOLATES BY PCR-RFLP

Nourkhoda Sadeghifard¹, Teimour Seidnazari¹, Sobhan Ghafoorian¹,², Mohammad Soleimani², Abbas Maleki¹, Mostafa Akbari Qomi¹ and Zamberi Sekawi³

¹Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam; ²Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran; ³Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Malaysia

Abstract. The aims of this study were to assess primary resistance of H. pylori strains isolated from adult patients of Ilam, Iran to antibacterial agents (amoxicillin, clarithromycin, metronidazole and tetracycline) and detection of clarithromycin, azithromycin, clarithromycin, metronidazole and tetracycline resistance by disc diffusion. Fifty biopsies were taken from gastric mucosa of the antrum and body regions of adult patients by gastroscopy, and were cultured on Helicobacter pylori selective medium. The susceptibility of H. pylori strains showed that 44, 6, 6, 4 and 16% were resistance to metronidazole, amoxicillin, tetracycline, azithromycin, and clarithromycin, respectively. Polymerase chain reaction-restriction fragment length polymorphism analysis showed that all clarithromycin resistance isolates had A2143G mutation and PCR amplicons from these strains upon digestion by BsaI restriction enzyme resulted in 319 and 106 base pair fragments. Because most of physicians in Ilam do not use amoxicillin in triple therapy of H. pylori infection, isolates showed low rate of resistance to amoxicillin.

Keywords: clarithromycin resistance, H.pylori, PCR-RFLP, Iran

INTRODUCTION

Helicobacter pylori is a gram-negative spiral gastroduodenal pathogen that colonizes the human stomach and is found in more than half of the world’s population. Although most of H. pylori infections are asymptomatic, but it can also cause severe gastro-duodenal diseases including chronic gastritis, peptic ulcer disease, and increase the chance of development of gastric cancer (Agudo et al, 2010; De Francesco et al, 2011; Tanih et al, 2011).

It is suggested that H. pylori infection in patients with symptoms must be eradicated (Agudo et al, 2010). Standard therapy combines a proton pump inhibitor (PPI) or ranitidine bismuth citrate and two antibiotics, chosen from among amoxicillin, clarithromycin, and metronidazole (Agudo et al, 2010). Although these triple-drug regimens are usually effective in eradication of H. pylori infection, increase of resistance, especially to clarithromycin and metronidazole among clinical H. pylori strains, is able to sharply decline the treatment rate of H. pylori infection and is one of the major factors responsible for the failure of eradication (Cerqueira et al,
Prevalence of *H. pylori* resistance varies around the world, and it has been related to rate of antibiotic consumption in the general population (De Francesco *et al*, 2010a). However, clarithromycin is the key drug of triple therapies and several studies have demonstrated that primary resistance to clarithromycin has become one of the most important reasons for treatment failure (Agudo *et al*, 2010). The rate of *H. pylori* resistance to clarithromycin varies among different countries, such as 16% in Japan, 1.7% to 23.4% in Europe and 10.6% to 25% in North America (Agudo *et al*, 2010). Clarithromycin is a macrolide antibiotic, acts by binding to the peptidyltransferase region of 23S rRNA and inhibits protein synthesis. The resistance to clarithromycin in *H. pylori* has been shown to be due to distinct point mutations within the peptidyltransferase region encoding in domain V of *H. pylori* 23S rRNA gene (Agudo *et al*, 2010; Ben-Mansour *et al*, 2010; De-Francesco *et al*, 2011). The most common mutation is an A-to-G transition at position 2143 (A2143G), but other mutations, A2142G, A2144G, A2142C, and T2182C, have been demonstrated. Other mechanisms of resistance, such as methylase production, the action of macrolide-inactivating enzymes, and active efflux pumps, have been reported in several bacteria (Ben-Mansour *et al*, 2010; De-Francesco *et al*, 2011). One method for detecting 23S rRNA gene mutations is based on the generation of restriction sites for restriction enzymes (Versalovic *et al*, 1996; Taylor *et al*, 1997; Sevin *et al*, 1998).

The aim of this study was to assess primary resistance of *H. pylori* strains isolated from adult patients of Ilam, Iran to antibacterial agents (amoxicillin, clarithromycin, metronidazole and tetracycline) and detection of clarithromycin resistance gene mutation by PCR-RFLP.

MATERIALS AND METHODS

Patients

Fifty patients who presented with dyspepsia were selected for this study. In an outpatient clinic in Ilam city, during January 2009 to March 2010, the patients who underwent gastroscopy were biopsied to obtain specimens from gastric mucosa of the antrum and body regions for culturing of *H. pylori* and testing of drug susceptibility. These patients included 22 men and 28 women. The biopsies for culture were placed into sterile saline solution for transport to Department Microbiology, Ilam University of Medical Sciences. Informed consent was obtained from each patient before being included in this study, which was approved by the Ethics Committee of Ilam University of Medical Sciences, Iran.

Culture of biopsies and antibiotic susceptibility

Biopsy samples were processed in less than 3 hours from the time that the biopsy specimens were obtained. Biopsy samples were cultured on Brucella agar plates supplemented with 10% sheep blood and Skirrow supplement (Oxoid, Cambridge, England) and incubated under microaerobic conditions (5% O\(_2\), 10% CO\(_2\), and 85% N\(_2\)) for 7 days at 37°C. Isolates were identified as *H. pylori* on the basis of the macroscopic appearance of colonies (gray, small, and translucent colonies on blood agar), positive biochemical reactions (oxidase, catalase, and urease), and additionally Gram staining of the colonies to verify gram-negative curved bacteria.

The susceptibilities of *H. pylori* strains to amoxicillin, metronidazole, clarithrom-
mycin, tetracycline and azithomycin were assessed quantitatively by disc diffusion (Fermentas, Mamheim, Germany). Disc diffusion was performed on Muller Hinton agar after inoculation of culture adjusted to 0.5 McFarland turbidity by insertion of each strip on the medium. The results were analyzed after 24 hours.

DNA extraction

The total bacterial genomic DNA of the 50 isolates was extracted using a commercial DNA extraction kit (Fermentas) according to the manufacturer’s instructions, and stored at -20ºC for further analysis.

PCR-RFLP for detection of point mutations in H. pylori 23S rRNA gene

Presence of point mutations in the domain V of H. pylori 23S rRNA gene (A2143G and A2142G) were performed by PCR-RFLP method. PCR amplification using the primers Hp23-1 (5’ CCACAGC-GATGTGGTCTCAG-3’) and Hp23-2 (5’-CTCCATAAGAGCCAAAGCCC-3’) (Pina et al, 1998) flanking a region of 425 bp within the bacterial 23S rRNA peptidyltransferase (Hp23S fragment) was performed with denaturation at 94°C for 5 minutes, followed by 30 cycles according to the following program: 94°C for 1 minute, 67°C for 1 minute, 72°C for 1 minute, and a final heating of 10 minutes at 72°C.

For detection of point mutations, we used BbsI and Bsal enzymes (Fermentas) for detection of A2142G and A2143G mutation, respectively. Finally, digested PCR and non-digested PCR products were visualized under UV-illuminator after electrophoresis in 2% agarose gel stained with ethidium bromide.

RESULTS

Antibiotic susceptibility by disc diffusion

The susceptibility of 50 H. pylori strains showed that 44, 6, 6, 4 and 16% were resistance to metronidazole, amoxicillin, tetracycline, azithomycin, and clarithromycin, respectively (Table 1). Among them, 22 isolates were resistant to metronidazole, which were isolated from 16 women and 6 men. Only 2 and 3 cases were resistance to azithromycin and tetracycline respectively, all isolated from women. Eight isolates resistant to clarithromycin were isolated from 5 women and 3 men. Ten cases were sensitive to all 5 antibiotics, and 40 isolates were resistant to one or more antibiotics tested in this study. Among the resistant isolates, 6 were resistant to both clarithromycin and metronidazole, and 2 were resistance to three antibiotics including amoxicillin, clarithromycin and metronidazole.

Determination of point mutations in H. pylori 23S rRNA gene by PCR-RFLP

After PCR amplification using primers specific for the 23S rRNA gene (Hp23S fragment), and electrophoresis of PCR products by agarose gel stained with ethidium bromide, a 425 bp band was obtained. PCR products were separately digested by BbsI and Bsal enzyme. All clarithromycin resistant isolates had point mutation A2143G, but A2142G and dual (A2143G and A2142G) mutations were not observed (Fig 1).
DISCUSSION

Antibiotic resistance in *H. pylori* strains especially to metronidazole and clarithromycin, two most important antibiotics in eradication of infection of this bacteria, is a worldwide challenge and the level of primary clarithromycin resistance is increasing worldwide. Resistance to clarithromycin, the most common antibiotic against *H. pylori* infections in triple therapies, has an important role in causing failure of eradication. For this reason, detection of susceptibility of *H. pylori* to antibiotics around the world can help to gain a better understanding of the effect of resistance on therapy outcome.

In this study a high rate of resistance to metronidazole was obtained. Our results confirmed previous reports on the high prevalence of metronidazole-resistant strains in Iran and other developing countries. Different prevalence of resistance to metronidazole, 23, 40.5, 54 and 73.4%, were reported in previous studies in Iran (Falsafi et al., 2004; Fallahi and Maleknejad, 2007; Abadi et al., 2010; Shokrzadeh et al., 2011). According to reports from around the world, various ranges of resistance especially to metronidazole and clarithromycin have been reported, for example in one study in Kuwait, 70% of isolates were resistance to metronidazole and also high resistance rate was reported in South Korea (Albert et al., 2006; Kim et al., 2006).

In our study, 22 isolates of *H. pylori* were resistant to metronidazole, and these strains were isolated from 16 women and 6 men, indicating a significant association between rate of metronidazole resistant in *H. pylori* strains and sex (*p*<0.05). High resistance to metronidazole can be explained to be due to using metronidazole in eradication of genital infections (parasitic and bacterial infections) in women.

Resistance to amoxicillin was obtained in 6% of isolates, in agreement with the low rate of resistance of 2.4, 6.8,
and 8.33% reported in previous studies in Iran (Fallahi and Maleknejad, 2007; Abadi et al, 2010; Shokrzadeh et al, 2011). In Europe and USA, resistance rates are less than 1%. In contrast, high resistance rates have been reported in South Korea (18.5%) and in Indonesia (19.4%) (Mégraud, 2004; Kim et al, 2004; Kumala and Rani, 2006). However, in one report from Kuwait, amoxicillin-resistant H. pylori was not found (Kim et al, 2006).

In this study, clarithromycin was the second most resistant antibiotic, 8 (16%) of the isolates. Different resistance rates to clarithromycin were reported in Iran, viz 2.4, 4.16, 14.3, 16 and 30% (Sivasoshi et al, 2006; Fallahi and Maleknejad, 2007; Rafeey et al, 2007; Abadi et al, 2010; Shokrzadeh et al, 2011). Reports from developed countries showed that approximately 10% of H. pylori strains were clarithromycin-resistant, but in developing countries, this resistance rate is higher (Alarcon et al, 1999; Bindayna, 2001; Yilmaz and Demiray, 2007). Because of current usage of clarithromycin for treatment of H. pylori in Iran, this resistance may be related to cross resistance from other macrolide antibiotics, such as erythromycin and clarithromycin (Falsafi et al, 2004).

The resistance to clarithromycin in H. pylori occurs due to distinct point mutations in domain V of the H. pylori 23S rRNA gene (Agudo et al, 2010). A review by Mégraud (2004) of several studies worldwide has shown that 81.5% of the mutations in clarithromycin-resistant isolates are the A2142G or A2143C mutation.

Our study is second report of the detection of the point mutations in the 23S rRNA gene of H. pylori in Iran. In this study, all clarithromycin resistant isolates had only the point mutation A2143G, and no point mutations were detected in clarithromycin-susceptible strains of H. pylori. In one study in Iran, 93.7% of H. pylori A2143G mutation was reported (Abadi et al, 2011). In a study from Uruguay all clarithromycin resistant isolates have A2143G mutation (Torres-Debat et al, 2009). In our study resistance to tetracycline was 6%, and resistance to this antibiotic from 0 to 9% were reported in Iran (Fallahi and Maleknejad, 2007; Abadi et al, 2010; Shokrzadeh et al, 2011). It has been reported that primary resistance to tetracycline is rare in H. pylori isolates (Mégraud, 2004).

In summary, we observed a clarithromycin resistant prevalence of 16% in H. pylori strains of Iranian patients with dyspepsia and PCR-RFLP results showed that all clarithromycin resistant isolates continued A2143G mutation in 23S RNA gene.

ACKNOWLEDGEMENTS

This study was supported in part by Ilam University of Medical Sciences, Iran.

REFERENCES

CLARITHROMYCIN RESISTANCE AMONG HELICOBACTER PYLORI ISOLATES

