RESEARCH NOTE

PREVALENCE AND SPECIES IDENTIFICATION OF CRYPTOSPORIDIUM FROM FECAL SAMPLES OF HORSES IN TAIWAN

Peir-Fen Guo1,2, Tina Tu-Wen Chen3, John Chin Tsaihong1, Gen-der Ho4, Po-ching Cheng5, Yu-chuan Tseng6 and Shih-yi Peng7

1Department and Institute of Tropical Medicine, National Yang-Ming University; 2Taipei City Animal Protection Office, Taipei; 3Institute of Medical Sciences, Tzu Chi University, Hualien; 4Effpha Pharma Management Corporation, Taipei; 5Department of Parasitology and Center for International Tropical Medicine, College of Medicine, Taipei; 6Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien; 7Department of Biochemistry, College of Medicine, Tzu Chi University, Hualien, Taiwan

Abstract. Cryptosporidiosis is a zoonotic disease caused by the protozoan parasite Cryptosporidium. A total of 436 horse fecal samples were collected from 19 farms, and acid-fast staining method was used for primary screening. Cryptosporidium oocysts were found in 161 samples, among which 33 positive sample were selected for nested PCR, restriction fragment length polymorphism analysis and DNA sequencing of 18 S rDNA, showing 31 samples to be bovine C. parvum and 2 C. felis. The methods employed in this study should be useful as tools to identify cryptosporidiosis genotypes and species of livestock.

Keywords: Cryptosporidium, genotype, horse, nested PCR, RFLP, Taiwan

INTRODUCTION

Cryptosporidium is a zoonotic pathogen, which can be transmitted from animals to humans or from humans to animals. Cryptosporidium infects a large number of vertebrates, including humans, horses, cats (Felis catus) and dogs (Canis familiaris). Livestock is often considered a source of environmental source of Cryptosporidium (Xiao et al, 2004). Cryptosporidium genus currently comprises at least 24 valid species and more than 40 genotypes, most of which are host-adapted and have a narrow host range (eg, C. canis, C. felis and C. hominis in dogs, cats and humans, respectively) (Thompson et al, 2008; Xiao and Fayer, 2008). Some species or genotypes, most notably C. parvum and C. cervine, have a broader host range that includes ruminants and humans (Xiao and Fayer, 2008; Xiao and Feng, 2008).

Cryptosporidiosis was first identified in immunocompromised Arabic foals
and was observed to cause severe diarrhea (Snyder et al, 1978). Cryptosporidium infection in horses with normal immune function was first identified by Gajadhar et al (1985). Since then, there have been occurrence of Cryptosporidium in horses with normal immune function, suffering from similar symptoms of diarrhea (Coleman et al, 1989; Xiao and Herd, 1994; Netherwood et al, 1996; Olson et al, 1997).

Some cases are primary infections without other enteropathies (Coleman et al, 1989). Xiao and Herd (1994) reported the rate of positive Cryptosporidium infection in horses with diarrhea is 54% and in horses without diarrhea, ie, having no clinical signs, 14% (Xiao and Herd, 1994).

Polymerase chain reaction (PCR) method has been used to identify pathogenic Cryptosporidium spp (Laxer et al, 1991). Although many sequences of Cryptosporidium spp have been reported, but Cryptosporidium spp infection in horses was not identified (Morgan and Thompson, 1998; Sulaiman et al, 1998; Bornay-Linares et al, 1999) until the nucleic acid sequence of Cryptosporidium in horses was first reported by Ryan et al (2003). Cryptosporidiosis in horses has been identified as C. parvum by oocyst morphological characteristics, but it is important to use molecular biology techniques to be able to more accurately classify the species and to understand its role in human public health.

The role of horse-infected Cryptosporidium in zoonotic diseases is unknown. The Cryptosporidium animal manager survey conducted by Mahdi and Ali (2002) indirectly showed that horses may be a significant source of zoonotic infection, and moreover, no information is available regarding Cryptosporidium epidemiology in horses in Taiwan. Thus, it is necessary to determine the prevalence of Cryptosporidium infection in horses in Taiwan.

**MATERIALS AND METHODS**

**Horse fecal samples**

Fresh fecal samples from 436 horses at 19 ranches (10 in northern, 5 in central and 4 in the southern Taiwan) (Fig 1) from September 2001 to October 2003 were mixed with 2.5% potassium dichromate solution in a ratio of 1:1 and stored at 4°C. Samples were washed in 0.85%
normal saline before microscopic examination and DNA extraction. Positive control was *C. parvum* oocysts from a sick sheep at Taihung, Taiwan and a hamster subculture from our laboratory, which was confirmed the infection by acid-fast staining, PCR and gene sequencing. The nucleotide sequence of the positive control was determined using the ABI DNA automatic sequencer (Model 3730; Applied Biosystems, Foster City, CA) and accession number: AF093490.

**Microscopic examination**

Stool consistency of all samples was recorded, and samples were checked for the presence of *Cryptosporidium* oocysts under a light microscopy (200x magnification). Each sample was examined using a modified Ziehl-Neelsen acid-fast stain for *Cryptosporidium* oocysts according to Henriksen (1981).

**PCR identification**

DNA was extracted from oocysts using an UltraClean Soil DNA Isolation Kit (Mo Bio Laboratories, Solana Beach, CA) and stored at -20°C prior to analysis. The 18S rDNA of *Cryptosporidium* was amplified using nested PCR (Xiao et al, 1999). PCR amplicon (834 bp) was first generated using primers All-1 (5’-GGA AGG GTT GTA TTT ATT AGA TAA AG-3’) and All-2 (5’-AAG GAG TAA GGA ACA ACC TCC A-3’), and subsequently an amplicon of 585 bp using primers 18SiCF1 (5’-CCT ATC AGC TTTAGA CGG TAG-3’) and 18SiCR1 (5’- TCT AAG AAT TTC ACC TCT GAC TG-3’) (Ryan et al, 2003). Thermocycling conditions of PCR (Bio-Rad Laboratories, Hercules, CA) were as follows: 94°C for 5 minutes; 35 cycles of 94°C for 45 seconds, 59°C (for the first PCR) or 56°C (for the second PCR) for 45 seconds, 72°C for 60 seconds; followed by a final heating at 72°C for 10 minutes. An aliquot of the PCR solution was digested for 2 hours at 37°C with 10 U XapI, VspI and DraI (Gibco/Life Technologies, Grand Island, NY). Undigested controls and digested samples were separated by 2% agarose gel-electrophoresis at 100 V for 0.5 hour in buffer containing ethidium bromide (0.5 µg/ml) and visualized under UV light.

**DNA sequence analysis**

PCR amplicons were sequenced by Tri-I Biotech, Taiwan, and the sequences were analysed using BioEdit software (Hitachi Software Engineering, Tokyo, Japan; http://www.mbio.ncsu.edu/BioEdit/bioedit.html). These sequences (samples 1-33) were 99.7-100% identical with GenBank accession number AF093490 or AF108862.

**RESULTS**

Red or pink oval oocysts measuring 3-6 µm were observed in 161 (37%) cryptosporidiosis-positive specimens of 436 samples, with positive rate in northern, 38% (10 ranches), 32% (5 ranches), 40% (4 ranches), and 37% (19 ranches) in northern, central, and southern Taiwan, respectively (Table 1).
central and southern Taiwan of 38 (244 specimens), 32 (113) and 40% (79), respectively (Table 1).

Oocysts from 33 samples (containing an average of >100 oocysts per 5 fields) were subjected to PCR and DNA sequencing analysis. Nested PCR of all samples revealed the presence of 585 bp amplicons, which were digested by VspI into 530 bp and 55 bp fragments (data not shown) indicative of either bovine C. parvum or C. felis. The 605 bp fragment of C. felis can be digested by Dral into 2 fragments of 361 bp and 244 bp, which was obtained in 2 samples, which were considered as C. felis (data not shown).

DNA sequence analysis of the putative 31 bovine C. parvum 585 bp fragment showed 100% identity with bovine C. parvum standard strain AF093490 from GenBank (Fig 2). The DNA sequences of the 2 putative C. felis samples were 99.7% identical (2 bases different) with C. felis standard strain in GenBank (accession no. AF108862) (Fig 2).

DISCUSSION

Previous inspection methods for horse Cryptosporidium included tissue slices (Snyder et al, 1978; Mair et al, 1990), acid-fast stain (Henriksen, 1981; Cole et al, 1998), immunofluorescence analysis (Olson et al, 1997; Cole et al, 1998), and flow cytometry (Arrowood et al, 1995; Cole et al, 1998, 1999). Because manure from herbivorous animals contains large amounts of crude fiber and impurities, we used the concentration precipitation method in order to filter out most of the plant fibers, thereby decreasing interference with microscopy and increasing the positive rate of Cryptosporidium oocyst detection by the acid-fast staining method. Although the sensitivity of acid-fast stain-
vehicles transporting the horses should be thoroughly cleaned and disinfected to prevent Cryptosporidium infection.

Little information is available regarding the epidemiology of Cryptosporidium in Taiwan. Previous studies investigating Cryptosporidium in Taiwanese water sources have mostly used specific fluorescence microscopy (Hsu et al, 1999a,b; Hsu et al, 2001) and have detected an average of 22.1 oocysts/100 liter of water sample. The Cryptosporidium infection rate in feeding animals in Taiwan is 32.6% in cattle (Huang et al, 2012) and 38% (173/460) and 36% (44/123) in cattle and goats, respectively (Watanabe et al, 2005). This study is the first report of Cryptosporidium infection rate and identification of species in Taiwanese horses. Cryptosporidium oocyst shedding in livestock in Taiwan is ubiquitous. As the majority of Cryptosporidium detected in horse feces was bovine C. parvum, its zoonotic potential in causing a human outbreak of cryptosporidiosis should not be ignored. Transmission of Cryptosporidium oocyst from animal to humans through contamination of the environment by animal feces should be
considered.

Horses infected with *Cryptosporidium* spp may have no clinical symptoms of diarrhea (Xiao and Herd, 1994). Among the horse specimens analysed in this survey, only some horses (total infection rate: 15-31%) in one ranch had diarrhea with watery stool for 10-15 days, but the remaining horses had no diarrhea, as described in the literature (Xiao and Herd, 1994).

Some horse ranches conduct horse manure reuse processing, and some ranches sell unfermented horse manure in the form of organic fertilizer (Lin, 2003). Lin (2003) found that manure from fermentation processing contains 4% detectable *Cryptosporidium* spp oocysts, which could be found in fertilizers sold in markets after traditional stack processing. If farmers use such horse manure containing *Cryptosporidium* oocysts in fields or flowerbeds, workers may become infected or agricultural products and the environment may also become contaminated. Therefore, animal wastes should only be used as organic fertilizers after thorough fermentation processing.

In this study, we used acid-fast staining to detect the positive samples of *Cryptosporidium* in horse feces, and then applied nested PCR to detect the actual species in the infected samples. DNA sequencing confirmed the putative genotypes inferred from restriction fragments polymorphism analysis. Thus these methods should be useful as a model reference in investigating *Cryptosporidium* spp or genotypes in horses.

**ACKNOWLEDGEMENTS**

We thank all participants who assisted in the study.

**REFERENCES**


Hsu BM, Huang C, Hsu CL, Hsu YF, Yeh JH. Occurrence of *Giardia* and *Cryptosporidium* in the Kau-Ping River and its watershed in Southern Taiwan. *Water Res* 1999b; 33: 2701-7.

Hsu BM, Huang C, Hsu CL. Analysis for *Giardia* cysts and *Cryptosporidium* oocysts in water samples from small water systems in Taiwan. *Parasitol Res* 2001; 87: 163-8.

Huang CC, Wang LC, Pan CH, Yang CH, Lai CH. Investigation of gastrointestinal
parasites of dairy cattle around Taiwan. *J Microbiol Immunol Infect* 2012; S1684-1182.


Olson ME, Thorlakson CL, Deselliers L, Morck DW, McAllister TA. *Giardia* and *Cryptosporidium* in Canadian farm animals. *Vet Parasitol* 1997; 68: 375-81.


