DETECTION OF *EHRlichia canis* IN CANINE BLOOD SAMPLES BY REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) PCR AND MELTING CURVE ANALYSIS

Amornmas Kongklieng¹,², Tongjit Thanchomnang²,³, Pewpan M Intapan¹,², Thidarut Boonmars¹,², Penchom Janwan²,⁴, Oranuch Sanpool²,³, Viraphong Lulitanond²,⁵, Piyanan Taweethavonsawat⁶, Sudchit Chungpivat⁶, Nimit Morakote⁷ and Wanchai Maleewong¹,²

¹Department of Parasitology, ²Research and Diagnostic Center for Emerging Infectious Diseases, ³Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen; ⁴Department of Medical Technology, School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat; ⁵Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok; ⁶Parasitology Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok; ⁷Department of Parasitology, Faculty of Medicine, Chaing Mai University, Chaing Mai, Thailand

Abstract. *Ehrlichia canis* is a small pleomorphic gram-negative, coccoid, obligatory intracellular bacterium and the cause of canine monocytic ehrlichiosis. A real-time fluorescence resonance energy transfer polymerase chain reaction (real-time FRET PCR) coupled with melting curve analysis was established for detection of *E. canis* infection in canine blood samples. The *VirB9* gene was amplified using one pair of primers and the melting curve analysis was generated by heating the hybridizing probes and amplified products. Eight *E. canis*-infected dog blood samples were initially identified using the Giemsa staining/microscopic method followed by conventional PCR (cPCR)/Sanger sequencing for confirmation. The sensitivity and specificity of the real-time FRET PCR detection were 87.5% and 100%, respectively and the limit of detection was 6.6×10^3 copies of positive *E. canis* control plasmids. The real-time FRET PCR with melting curve analysis reported here is better than microscopic visualization or cPCR because the method is not affected by the false bias inherent in the microscopic method. Furthermore, many samples can be processed rapidly at the same time. This convenient tool is beneficial as an alternative assay for the epidemiologic study of canine ehrlichiosis as well as for eradication of these organisms in prevention and control programs in endemic areas.

Keywords: *Ehrlichia canis*, detection, real-time FRET PCR, melting curve analysis