CHARACTERIZATION OF RECOMBINANT FLAGELLIN B PROTEIN FROM *LEPTOSPIRA INTERROGANS*

Uraiwan Kositanont1, Waraporn Wanna1, Galayanee Duangchawee2 and Chanwit Tribuddharat1

1Department of Microbiology, Faculty of Medicine Siriraj Hospital; 2Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand

Abstract. Symptoms of the early phase leptospirosis often are non-specific and can be a major problem in making a diagnosis of febrile illnesses. Rapid diagnosis of leptospirosis is of extreme importance, because antibiotic treatment provides greatest benefit when administered in early stage of the disease. Recombinant flagellin B (FlaB) gene (*flaB*) of *Leptospira interrogans* serovar Autumnalis strain Akiyami A was heterologously expressed and purified. The 35 kDa recombinant FlaB was 99% similar to the reference strain in GenBank. Rabbit polyclonal anti-recombinant FlaB antibodies recognized using immunoblotting yielded 35-36 kDa doublet from one saprophytic and eight pathogenic *Leptospira* serovars. Western blot assay showed that recombinant FlaB could distinguish leptospirosis from non-leptospirosis sera. This recombinant FlaB can be used in serodiagnosis of leptospirosis and identification of *Leptospira* spp.

Keywords: *Leptospira*, flagellin B, recombinant protein, serodiagnosis

INTRODUCTION

Leptospirosis is a zoonosis encountered worldwide and is caused by infection with pathogenic *Leptospira* species. Humans become infected through either direct or indirect contact with urine of an infected animal (Faine, 1988; Levett, 2001). Symptoms of infection vary from subclinical to potentially fatal with multiorgan involvement. Although leptospirosis is a self-limiting disease in 85%-90% of cases, mortality remains significant (Trevejo *et al.*, 1998). In the early phases of the disease, because the symptoms are usually nonspecific, it is difficult to distinguish leptospirosis from other undifferentiated febrile illnesses, such as dengue, influenza, hantavirus, Nipah or Hendra virus infection, malaria, rickettsioses, and plague. Leptospirosis can become especially dangerous if not properly treated, potentially leading to kidney damage, meningitis, liver failure, and respiratory problems, with pulmonary hemorrhage as the major lethal outcome. Early diagnosis is the most important factor in treatment of patients with the severe form of leptospirosis because leptospires are usually sensitive to antimicrobial agents (Ressner *et al.*, 2008) and as demonstrated in a previous report (Murray and Hospenthal, 2004) that most of 24 antimicrobial agents have excellent *in vitro* activity against 26 *Leptospira* serovars. In addition, antimicrobial agents are widely used in treatment in
clinical practice (Suputtamongkol et al, 2004).

Laboratory diagnosis of leptospirosis has been performed conventionally by demonstration of antibodies to leptospires. However, the traditional microagglutination test (MAT), has the disadvantage that it is tedious to test against a large battery of serovars (Faine, 1988; Levett, 2001). Other serologic tests have been performed to diagnose leptospirosis, such as IgM-specific dot enzyme-linked immunosorbent assay and immunofluorescence antibody test (Pappas et al, 1985; Watt et al, 1988; Appassakij et al, 1995). Dark field microscopy is not recommended because it requires more than 10^4 cells/ml (Turner, 1970) and technical skill to exclude contaminating fibrin proteins. Leptospiral isolation is difficult, time consuming, and potentially biohazardous (Faine, 1988). PCR-based methods have been developed for the specific diagnosis of leptospirosis (Merien et al, 1992; Zuerner et al, 1995; Smythe et al, 2002; Levett et al, 2005; Kositanont et al, 2007a), but serological diagnosis is still the conventional method.

Recently, recombinant leptospires proteins have been utilized as alternative reagent for detecting specific anti-leptospires antibodies in the diagnosis of leptospirosis. Recombinant proteins with high diagnostic potentials include the outer membrane lipoproteins LipL21 (Cullen et al, 2003; Joseph et al, 2012), LipL32 (Bomfim et al, 2005), and LipL41 (Mariya et al, 2006); porin OmpL1 (Haake et al, 1993), heat shock proteins DnaK (Ballard et al, 1998) and GroEL (Ballard et al, 1993) and flagellin (Lin et al, 1999).

Leptospiral motility is mediated by two periplasmic flagella composed of a basal body, hook and filament. The filament comprises two distinct proteins, FlaA and FlaB (Goldstein and Charon, 1988). Monoclonal antibodies have identified a strong immunoreactive 35 kDa protein of *L. interrogans* serovar Pomona, subsequently identified as a flagellin, a class B polypeptide subunit (FlaB) of the periplasmic flagella (Lin et al, 1997). Recombinant FlaB has been used in serodagnosis of leptospirosis employing fluorescence polarization assay (Bughio et al, 1999; Lin et al, 1999). Among the immunoreactive proteins reacting with IgM and IgG from patients with leptospirosis, FlaB proteins (flagellin and flagellar core proteins) have been shown to have potential roles in clinical diagnostics and vaccine development (Kositanont et al, 2007b). Recombinant LipL32 antigen has been used for detecting leptospiral antibodies from human and dog samples by a rapid recombinant antigen-based latex agglutination test (Dey et al, 2007). Recombinant antigen-based serological tests may achieve higher sensitivity and specificity than other tests because of the purity of the immunodominant antigens and the lack of non-specific moieties present in whole-cell preparations (Dey et al, 2007).

In this study, recombinant flagellin B from *L. interrogans* serovar Autumnalis, heterologously expressed in *Escherichia coli*, was determined for its antigenic characteristics using western blot analysis for use in serodagnosis of leptospirosis.

MATERIALS AND METHODS

Leptospiral strains and culture conditions

Nine serovars (Autumnalis, Australis, Bataviae, Bratislava, Copenhageni, Icterohaemorrhagiae, Pomona, Patoc and Zanoni) of *Leptospira* reference strains were obtained from the National Institute of Health and the National Institute of Animal Health, Thailand. Leptospires were
grown for 7 days at 29°C in Ellinghausen-McCullough-Johnson-Harris (EMJH) medium (BD Biosciences, San Diego, CA).

Heterologous expression of the recombinant flaB of L. interrogans serovar Autumnalis

Genomic DNA of *L. interrogans* serovar Autumnalis in culture was isolated using QIAamp® DNA mini kit (Qiagen, Valencia, CA). Primers specific for *flaB* of *L. interrogans* serovar Autumnalis strain Akiyaki A (GenBank accession number AF064055) were Up flaB (5’ CACCATGATTATCAAYCAYGC 3’) containing CACC at 5’ end for use in directional cloning and Down flaB (5’ TCAGACTGCTGAGAYTYTG 3’) (R = puRine: A or G and Y = pYrimidine: C or T). PCR amplicon of *flaB* was inserted into the expression pET200/D TOPO® vector (Invitrogen, Carlsbad, CA), named pAN and then was preceded to transform into One Shot® TOP10 chemically competent *E. coli* (Invitrogen, Carlsbad, CA). Transformants were selected on LB medium containing 50 µg/ml of kanamycin. Presence of pAN plasmid was confirmed by digestion with EcoRV. Correct insertion and orientation of the *flaB* gene sequence was confirmed by DNA sequence analysis using T7 forward primer (5’-TACATGCTAGCTACATAGGG-3’) and T7 reverse primer (5’-CTATGCTGATTATTCTGCAAGC 3’) (1st BASE DNA Sequencing Division, Selangor, Malaysia). The purified pAN plasmid was transformed into *E. coli* strain BL21 Star™ (DE3) One Shot® (Invitrogen, Carlsbad, CA). After the pAN plasmid established in BL21 Star™ (DE3) expression *E. coli*, expression of *flaB* gene was induced by the addition 0.5 mM of isopropyl-β-D-thiogalactoside (IPTG) at 37°C for 3 hours. After centrifugation of the induced culture at 8,000g for 20 minutes, the pellet and supernatant were analyzed by 12% SDS-PAGE with Coomassie brilliant blue R-250 staining. The expressed protein expected to be recombinant FlaB protein was compared with the Rainbow molecular weight marker (Amersham Biosciences, Buckinghamshire, England). The recombinant FlaB protein expressed as inclusion bodies form was solubilized with solubilization buffer containing 6 M urea prior to SDS-PAGE analysis.

Purification of recombinant FlaB protein

Recombinant FlaB protein was purified using HisTrap™ HP Kit (Amersham Biosciences, Buckinghamshire, England). The recombinant FlaB protein was analyzed by SDS-PAGE as described above and subjected to MALDI-TOF mass spectrometry (BioService Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand). Protein fingerprinting was analyzed using Mascot software (Matrix Science, London, UK).

Antigenic characterization of recombinant FlaB protein

Antigenic characterization of the recombinant FlaB protein was determined by western blotting using rabbit polyclonal antibodies against recombinant FlaB protein prepared as previously described (Haake et al, 2000) at dilutions of 1:10,000, 1: 20,000 and 1: 40,000, and secondary horseradish peroxidase-conjugated goat anti-rabbit IgG antibodies (DakoCytomation, Copenhagen, Denmark) at 1:2,000 dilution. The reactive protein band was visualized by reaction for 5-10 minutes with chromogenic substrate 3,3-diaminobenzidine (DAB) (Sigma-Aldrich, St Louis, MO). In addition, a total of archival 30 serum samples consisting of 10 serum samples from patients who were clinically and laboratory confirmed to be...
leptospirosis cases using MAT and IgM immunoblot (IgM-IB) test (Duangchawee et al., 2008), 10 serum samples from patients with other non-leptospirosis febrile illnesses, such as or malaria, dengue or hepatitis B infection, and 10 serum samples from healthy subjects were used in the western blot analysis at 1:20 dilution. All archival samples were obtained with permission from Dr Galayanee Duangchawee, to be used only for the development of diagnostic test.

Reactivity of polyclonal anti-recombinant FlaB protein antibodies against native FlaB protein from leptospiral strains

Native FlaB proteins from nine serovars of *Leptospira* (Autumnalis, Australis, Bataviae, Bratislava, Copenhageni, Icterohaemorrhagiae, Pomona, Patoc and Zanoni) were determined for immunoreactivity against polyclonal anti-recombinant FlaB protein antibodies using western blotting. One ml aliquot of each leptospiral culture was centrifuged at 8,000 g for 10 minutes and the pellet was heated at 95°C for 5 minutes before being subjected to western blotting using rabbit polyclonal anti-recombinant FlaB protein antibodies as described above. Recombinant FlaB protein was used as positive control.

RESULTS

PCR amplicon of 856 base pairs (bp) of *L. interrogens* serovar Autumnalis flaB was cloned in pET200/D TOPO® vector named recombinant pAN. After digestion with EcoRV, digested products of 2,390 and 4,207 bp were obtained compared with 1,534 and 4,207 bp of similarly digested empty pET200/D TOPO® expression vector. DNA sequence of pAN showed the correct orientation and in-frame insertion of the complete flaB insertion with 94% identity when compared with flaB gene *L. interrogans* serovar Autumnalis (Fig 1A). The deduced amino acid sequence of FlaB was of a 283 amino acid protein with a calculated molecular mass of 31.23 kDa and a predicted pl of 8.71. When compared with the sequence of reference *L. interrogans* serovar Autumnalis, the cloned FlaB showed 99% identity (Fig 1B). Nine different base positions of pAN were compared with the reference strain. However, only three positions showed different amino acids as I90V (ATC > GTC), N104S (AGT > AAT) and W218R (TGG > AGG) were observed.

Affinity purification of heterologously expressed His-tagged FlaB protein yielded a protein of 35 kDa as determined by SDS-PAGE (data not shown). Fingerprint of the purified recombinant protein obtained from MALDI-TOF mass spectrometry matched flagellin protein of *Leptospira* spp with score of 80 and coverage 67% for the whole sequence (data not shown).

Western blotting of 1 µg of purified recombinant FlaB protein with in-house rabbit polyclonal antibodies demonstrated immunoreactivity even at 1: 40,000 dilution of antibody (Fig 2A). The rabbit anti-recombinant FlaB antibodies also reacted specifically with native FlaB protein antigens prepared from whole cells of nine *Leptospira* serovars as determined by immunoblotting (Fig 2B). However, immunoreactive doublet of 35-36 kDa bands were observed for serovars of both pathogenic and saprophytic *Leptospira* spp.

The antigenicity of recombinant FlaB protein was examined by western blotting against 10 serum samples from patients with leptospirosis, from patients with non-leptospirosis with febrile illnesses (such as malaria, dengue, hepatitis B infection and syphilis) and from healthy subjects, respectively. Recombinant FlaB protein
flaB
ATGGTCGGGAATCTCTCGGATAGCTCGAGACGAAATCTCCATCTCCCTGCTGCTGAC

Insertion of flaB gene

flaB
CAGCTCTGCGGTGGGAGAGGCTAACGACGTGATCGGTCTGGCAGATGCTGCCCTTACGAAG

Stop codon
Characterization of L. interrogans recombinant flagellin B

Autumnalis pAN (this study)
MIINHNLSAVNAHRSLKFNELAVDKTMKALSSGMRSNASADASGLAVSE
MIINHNLSAVNAHRSLKFNELAVDKTMKALSSGMRSNASADASGLAVSE

Autumnalis pAN (this study)
KLRTQVNGLRQAEINQDSNSTDGMSFIQTAEGFLEQTSNIIQRVILAIQTSNG
KLRTQVNGLRQAEINQDSNSTDGMSFIQTAEGFLEQTSNIIQRVILAIQTSNG

Autumnalis pAN (this study)
IYSNEDRQLVQVEVSLQVEVSLQVEVSVAEFNFKLFEQFARGFARGSFASVMW
IYSNEDRQLVQVEVSLQVEVSLQVEVSVAEFNFKLFEQFARGFARGSFASVMW

Autumnalis pAN (this study)
FHMGPNQNQRFRFYGTMTSKALLVKADGPIAIASSPGEANDVIGLADA
FHMGPNQNQRFRFYGTMTSKALLVKADGPIAIASSPGEANDVIGLADA

Autumnalis pAN (this study)
SLTTKQILVQSGTMALQANMKPSNVLKLLQHI
SLTTKQILVQSGTMALQANMKPSNVLKLLQHI

B

<table>
<thead>
<tr>
<th>Position of base difference</th>
<th>Position of amino acid</th>
<th>Amino acid (aa)</th>
<th>Change of amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>T15C</td>
<td>5</td>
<td>H</td>
<td>no</td>
</tr>
<tr>
<td>T18C</td>
<td>6</td>
<td>N</td>
<td>no</td>
</tr>
<tr>
<td>G201A</td>
<td>67</td>
<td>E</td>
<td>no</td>
</tr>
<tr>
<td>A268G</td>
<td>90</td>
<td>I to V</td>
<td></td>
</tr>
<tr>
<td>A311G</td>
<td>104</td>
<td>N to S</td>
<td></td>
</tr>
<tr>
<td>G336A</td>
<td>112</td>
<td>V</td>
<td>no</td>
</tr>
<tr>
<td>G624A</td>
<td>208</td>
<td>G</td>
<td>no</td>
</tr>
<tr>
<td>T652A</td>
<td>218</td>
<td>W to R</td>
<td></td>
</tr>
<tr>
<td>A834G</td>
<td>278</td>
<td>K</td>
<td>no</td>
</tr>
</tbody>
</table>

E, Glutamic acid; G, Glycine; H, Histidine; I, Isoleucine; K, Lysine; N, Asparagine; R, Arginine; S, Serine; V, Valine; W, Tryptophan

Fig 1–Pair wise base sequence alignment (A) and deduced amino acid sequence (B) of Leptospira interrogans serovar Autumnalis strain Akiyami A flaB in pAN plasmid and flaB of reference L. interrogans serovar Autumnalis (GenBank accession no. AF064055). A. *, identical base. B. **, identical amino acid.

DISCUSSION

In the present study, immunoreactive heterologously expressed and affinity purified recombinant periplasmic flagellin (FlaB) from L. interrogans serovar Autumnalis strain Akiyami A specifically recognized antibodies from leptospirosis human sera and not those from sera of other non-leptosporosis diseases or of healthy controls. The recombinant FlaB recognized specific antibodies in leptospirosis sera only (Fig 3).
Fig 2–Western blot analysis of rabbit polyclonal anti-recombinant FlaB protein antibodies. Western blotting was conducted as described in Materials and Methods. A. Recombinant FlaB (1µg). Lane M, Rainbow (Amersham Biosciences) molecular weight markers; lane 1, 1: 10,000 dilution; lane 2, 1: 20,000 dilutions; lane 3, 1: 40,000 dilutions. B. Whole cell extracts from nine Leptospira serovars. Lanes 1-8, L. interrogans serovars Autumnalis, Australis, Bataviae, Bratislava, Copenhageni, Icterohaemorrhagiae, Pomona and Zanoni; lane 9, L. biflexa serovar Patoc; lane P, positive control (recombinant FlaB).

Fig 3–Western blot assay of immunoreactivity of recombinant FlaB against human sera. Western blotting was conducted as described in Materials and Methods. A. Lanes 1-6, individual leptospirosis serum samples; lane P, positive control (rabbit polyclonal anti-recombinant FlaB antibodies). B. Lanes 1-2, sera from malaria infection; lanes 3-4, sera from dengue infection; lanes 5-6, sera from hepatitis B infection; lanes 7-8, sera from syphilis infection; lanes 9-10, sera from healthy controls; lane P, positive control (rabbit polyclonal anti-recombinant FlaB antibodies).

(35 kDa based on SDS-PAGE) is larger than the predicted size (31.23 kDa based on the deduced sequence of the cloned FlaB). However, the strong band of 35 kDa in this study was consistent with the strong immunoreactive protein of 35 kDa of FlaB protein in L. interrogans serovar Pomona (Lin et al, 1997). This may be attributed to the presence of the His-tag with 840.85 Da in recombinant FlaB. In vivo FlaB of serovar Autumnalis flagellin as well as other serovars is N-glycosylated.
Characterization of *L. interrogans* recombinant flagellin B

at Asn-X-Ser/Thr site located 6-8 amino acid residues from the N-terminus (Lechner and Wieland, 1989; Mitchison et al, 1991; Lin et al, 1997).

In-house rabbit polyclonal anti-recombinant FlaB reacted with native FlaB proteins from both pathogenic (serovars Autumnalis, Australis, Bataviae, Bratislava, Copenhageni, Icterohaemorrhagiae, Pomona and Zanoni) and saprophytic (serovar Patoc) *Leptospira* spp. Western blot analysis coupled with immunoblotting showed immunoreactive 35-36 kDa doublet bands from all nine *Leptospira* serovars. The data here were consistent with those reported of IgM reactivity showing 35-36 kDa doublet in human leptospirosis sera with *L. interrogans* serovars Pomona, Hardjo, Copenhageni, Illini and Patoc (Kelson et al, 1988). Immunoblotting sera from leptospirosis patients with *L. interrogans* serovar Hardjo (Chapman et al, 1988), serovar Copenhageni (Chapman et al, 1991) and serovar Pomona (Lin et al, 1997) showed that IgM antibody reacted strongly with a 34.5-35 kDa doublet as previously reported as flagellar protein. The p35-p36 doublet might include at least two antigen moieties that could not be consistently distinguished in the SDS-PAGE and immunoblotting analyses. This observation demonstrated that the recombinant FlaB protein was similar to native proteins conserved among all leptospiral species and serovars. In this study, only one immunoreactive band of 35 kDa from recombinant FlaB with leptospirosis sera suggested that recombinant FlaB had high purity with strong antigenicity to react with specific antibodies.

In summary, recombinant periplasmic flagellin (FlaB) from *L. interrogans* serovar Autumnalis strain Akiyami A was heterologously expressed and purified. Antigenic characterization of this recombinant FlaB suggests that it can be useful for serodiagnosis of leptospirosis.

ACKNOWLEDGEMENTS

This work was partly supported by a thesis grant, Faculty of Graduate Studies, Siriraj Graduate Thesis Scholarship and the Chalermphrakiat Grant, Faculty of Medicine Siriraj Hospital, Mahidol University. The authors gratefully acknowledge Prof Paul N Levett, Ms Renee L Galloway, and Dr Roger E Morey, Centers for Disease Control and Prevention, Atlanta, Georgia, USA for providing technical training, Dr Lee D Smythe, WHO/FAO/OIE Collaborating Centre for Reference and Research on Leptospirosis, Centre for Public Health Sciences, Queensland Health Scientific Services, Australia for serotyping *Leptospira* isolates, Mrs Pimjai Naigowit and Dr Duangchai Suwanchareon, National Institute of Health and National Institute of Animal Health, Thailand for providing reference *Leptospira* strains, Mrs Montana Suksuwan, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University for technical assistance, and Mr Surachai Amornchaloemwitt, Medical Education Technology Center, Thailand for assistance in preparing the figures.

REFERENCES

Ballard SA, Segers RPAM, Bleumink-Pluym N,

