SCREENING FOR MOSQUITO LARVICIDAL ACTIVITY OF THAI MUSHROOM EXTRACTS WITH SPECIAL REFERENCE TO STECCHERINUM SP AGAINST Aedes aegypti (L.) (DIPTERA: CULICIDAE)

Damrongpan Thongwat¹,², Urat Pimolsri¹,² and Pradya Somboon³

¹Department of Microbiology and Parasitology, Faculty of Medical Science; ²Centre of Excellence in Fungal Research, Faculty of Medical Science, Naresuan University, Phitsanulok; ³Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Abstract. For over 50 years, biological control of mosquito larvae has depended mainly on plant extracts, fish, bacteria, protozoa, filamentous fungi, viruses or nematodes. In this study, we screened 143 mushroom samples from 44 confirmed species in Thailand for their mosquito larvicidal activity. One g% (w/v) aqueous extracts of dried powdered mushroom samples were tested against 3rd stage Aedes aegypti larvae. Four mushroom species, namely, Thaeogyroporus porentosus, Xylaria nigripes, Chlorophyllum sp and Stecherinum sp, and two unidentified species showed larvicidal mortality ranging from 10% - 70% and 18% - 90% for 24- and 48-hour exposure time, respectively. Stecherinum sp aqueous crude extract, after 48-hour exposure, did not show any larvicidal activity at 1,000 ppm, whereas that from ethanol, after 24-hour exposure, had 50% and 90% lethal concentration of 203 ppm and 412 ppm, respectively, with higher levels of mortality after 48-hour exposure. This is the first report of mosquito larvicidal properties of Thai mushroom extracts.

Keywords: Aedes aegypti, Stecherinum sp, crude extract, larvicide, mushroom

INTRODUCTION

Aedes aegypti (L.) (Diptera: Culicidae) is the main vector of dengue virus, the cause of dengue and dengue hemorrhagic fevers worldwide (Ratnam et al., 2013). In Thailand, to limit the disease outbreak, temephos (chemical larvicide) has been widely used for a long time against Aedes larvae (Chareonviriyaphap et al., 1999). Although temephos has very good efficacy, its contamination in the environment might be toxic to non-target organisms, including humans. Moreover, resistance to temephos has been reported (Jirakanjanakit et al., 2007; Sornpeng et al., 2009). Therefore, biological control offers an alternative safer method.

Biological agents can kill mosquito larvae in two ways: 1) they are parasites of the larvae, and 2) they are larvicidal substances. As regards the later approach, much attention has been paid to larvic-
Larvicidal activity of mushroom extracts against Ae. aegypti

Vol 46 No. 4 July 2015

Dal substances from living organisms, especially from plants, mostly herbs. Microbial organisms, mostly fungi, produce toxic metabolites against mosquito larvae, viz., metabolites from Aspergillus flavus, Chrysosporium lobatum, Penicillium sp and Podospora sp show larvicidal activity against Culex quinquefasciatus, Anopheles stephensi, Ae. aegypti and Anopheles gambiae mosquitoes, respectively (Govindarajan et al, 2005; Geris et al, 2008; Mohanty and Prakash, 2009; Matasyoh et al, 2011).

In the Fungus Kingdom, mushrooms, mainly belonging to subdivision Basidiomycotina, consist of more than 14,000 species (Lindequist et al, 2005) and traditionally, mushrooms have been used for medical purposes because of their antibacterial (Bender et al, 2003; Lindequist et al, 2005), anti-fungal (Smania et al, 2003), anti-viral (Brandt and Piraino, 2000), anti-tumor (Zaidman et al, 2005; Zhang et al, 2007), anti-allergy (Min et al, 2001), anti-inflammatory (Kim et al, 2003; 2004), and anti-oxidant (Ajith and Janardhanan, 2007) properties. In addition, cordycepin (3′-deoxyadenosine) from fruiting body of Cordyceps militaris has been reported to kill 3rd instar of diamondback moth, Plutella xylostella (Kim et al, 2002). However, few studies have been conducted on mosquito larvicidal activity from mushrooms. A secondary metabolite, (oxiran-2-yl) methylpentanoate, from Cyptotrama asprata mushroom kills Ae. aegypti larvae with LC50 and LC90 values of 1.50 and 1.90 ppm, respectively (Njogu et al, 2009). More recently, Bucker et al (2013) reported larvicidal activity from Pycnoporus sanguineus mushroom against Ae. aegypti and An. nunezovari with LC50 value of 156.8 and 87.2 ppm, respectively. Wild mushroom species, viz, Amanita phalloides, Boletus sp, Lactarius densifolius, Lactarius gymnocarpoides, Russula cellulata and Russula kivuensis demonstrate larvicidal activities against Ae. aegypti, Culex quinquefasciatus and An. gambiae (Chelela et al, 2014).

A variety of mushroom species commonly are found in tropical rain forests, but little is known concerning mosquito larvicide-producing mushrooms in Thailand. This study reports the screening of aqueous extracts of mushrooms in Thailand for mosquito larvicidal substance, and the evaluation mosquito larvicidal efficacy of aqueous, hexane and ethanol extracts of selected mushroom species against the Ae. aegypti mosquito.

MATERIALS AND METHODS

Mushroom collection and identification

One hundred and forty-three fresh mushroom samples were collected from Chiang Mai, Krabi, Lampang, Nakhon Ratchasima, Nakhon Sawan, Pathum Thani, Phichit, Phitsanulok, Phuket, Pra-chuap Khiri Khan, Sukhothai, Surat Thani and Tak Provinces, Thailand and transferred to the Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, where voucher specimens were deposited. Mushroom samples were identified macroscopically and microscopically following mushroom taxonomic keys (Largent and Thiers, 1977; Largent et al, 1977; Stuntz, 1977; Watling, 1977; Largent, 1986; Largent and Baroni, 1988). Samples were dried at 45°C for 24 hours, then ground into powder using a blender (Single Speed Blender 800G; MRC, Holon, Israel) at 22,000 rpm and stored at 4°C until used.

Mosquito rearing

Laboratory strain Ae. aegypti originally collected from Mueang District, Phitsanulok Province, Thailand was rearred as previously described (Thongwat
et al., 2014). In brief, larvae were reared in tap water, at 25 ± 2°C with 10:14 light:dark photoperiod, and fed with powdered dog biscuits (Adult Complete Nutrition, PEDIGREE®; Mars Petcare, Franklin, TN). After pupation, pupae were transferred to a mosquito cage (30x30x30 cm) and emerging adults were provided with a 5% sugar solution containing 5% multi-vitamin syrup (SEVEN SEAS®; OLIC, Feltham, Middlesex, UK). Five- to 7-day-old females were given a blood meal using an artificial membrane feeding method (Rutledge et al., 1964). Gravid females were allowed to lay eggs on a wet filter paper (Whatman No. 1) and eggs were air-dried for 3 days, then kept in a humidity controlled glass jar until used.

Larvicidal activity screening

Two grams of each mushroom powder were suspended in 200 ml of distilled water and agitated at 180 rpm for 24 hours on a rotary shaker (Innova™ 2300; NEW BRUNSWICK SCIENTIFIC, Edison, NJ) at room temperature. Then each suspension was filtered through a fine net cloth and added to 25 3rd instar *Ae. aegypti* larvae. Mortality rate was examined after 24- and 48-hour exposures with no feeding. Experiments were performed in four replicate. Controls contained distilled water.

Preparation of Steccherinum mushroom crude extracts

Ten grams of powdered *Steccherinum* sp, sample CKW03, were suspended in 100 ml of hexane and then continuously stirred at 180 rpm for 24 hours on a rotary shaker and filtered as described above. The residue was then extracted with ethanol followed by distilled water as described above. The hexane and ethanol extracts were dried in a rotary the evaporator (BÜCHI Rotavapor® R-205 equipped with BÜCHI Vac® V-500; BÜCHI, Flawil, Switzerland), while water extract was dried by evaporation and lyophilization (Lyotrap LF/LYO/01/1; LTE SCIENTIFIC, Oldham, UK).

Larvicidal bioassay

Dose-mortality bioassay against *Ae. aegypti* larvae was conducted following protocols of WHO (2005). In brief, 1 g% (w/v) stock solutions in dimethylsulfoxide (DMSO) of the crude ethanol and hexane extracts or in water for the aqueous extract were serially diluted in water and 200 ml aliquots were added to 25 healthy 3rd instar *Ae. aegypti* larvae. After 24 and 48 hours, mortality rates were recorded. Controls contained either 1% (v/v) DMSO or distilled water alone.

Data analysis

The 50 (LC₅₀) and 90% (LC₉₀) lethal concentrations and were determined using Probit analysis (Finney, 1971) with LdP Line® software (Plant Protection Research Institute, Cairo, Egypt). The 95% confidence intervals (CI) of upper and lower fiducial limits were also calculated. Statistical significance is accepted when a p-value is < 0.05.

RESULTS

Of 143 mushroom samples, 136 were identified into 46 genera with at least 44 confirmed species. The remaining 7 samples were unidentifiable because of limitation in quantity and incomplete morphology of the specimens. Larvicidal activity of all mushroom aqueous extracts [(1g% (w/v)] showed that 4 identified [*Chlorophyllum* sp (NU01), *Steccherinum* sp (CKW03), *Thaeogyroporus porentosus* (PHK27), and *Xylaria nigripes* (PW03)] and 2 unidentified (CKW05 and GSW04) specimens displayed larvicidal efficacy ranging from 10% - 70% and 18% - 90% lar-
Larvicidal Activity of Mushroom Extracts Against *Ae. aegypti*

Fig 1–Graph showing LC$_{50}$ values of ethanol and hexane crude extracts of *Steccherinum* sp mushroom against *Ae. aegypti* 3rd instar stage ($n = 25$) at 24- and 48-hour exposure. X-axis denotes extract concentration in ppm. Statistically significant differences are indicated by different letters (upper right).

Fig 2–Graph showing LC$_{90}$ values of ethanol and hexane crude extracts of *Steccherinum* sp mushroom against *Ae. aegypti* 3rd instar stage ($n = 25$) at 24- and 48-hour exposure. X-axis denotes extract concentration in ppm. Statistically significant differences are indicated by different letters (upper right).

Val mortality after 24- and 48-hour exposure, respectively (Table 1). For 24-hour exposure, the highest activity was found from *Th. porentosus* (PHK27) extract with 70% mortality rate, following with *Steccherinum* (CKW03), *X. nigripes* (PW03) and GSW04 sample demonstrated 66%, 64% and 52% mortality, respectively, and after 48-hour exposure, larval mortality of 90%, 88%, 88%, and 70% mortality was obtained for *Steccherinum* sp (CKW03), *X. nigripes* (PW03), GSW04 and *Th. porentosus* (PHK27), respectively. Lower larvicidal activities (10% and 18% mortality for 24- and 48-hour exposure, respectively) were found with *Chlorophyllum* sp (NU01) and CKW05 samples, and the other 135 samples showed only 0 - 1% and 0 - 2% larval mortality after 24- and 48-hour exposure, respectively.

Based on the above data *Steccherinum* sp (CKW03) (10 g dried powder) was chosen for serial extraction with hexane, ethanol and water, producing a crude extract yield of 2.29, 8.58 and 18.59 g,
Table 1

Mushroom species and mortality rates of *Ae. aegypti* 3rd instar larvae (n=25) after exposure to 1% (w/v) mushroom aqueous extracts for 24 and 48 hours.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sample</th>
<th>Mushroom</th>
<th>Mortality (%)</th>
<th>No.</th>
<th>Sample</th>
<th>Mushroom</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UMC 01</td>
<td>Clitocybe sp</td>
<td>0 0</td>
<td>UMC 42</td>
<td>Earliella sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UMC 02</td>
<td>Cantharellus cibarius</td>
<td>0 0</td>
<td>UMC 43</td>
<td>Stereum sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>UMC 03</td>
<td>Lentinus polychrous</td>
<td>0 0</td>
<td>UMC 44</td>
<td>Ganoderma applanatum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UMC 04</td>
<td>Abortiporus sp</td>
<td>0 0</td>
<td>UMC 45</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>UMC 05</td>
<td>Schizophyllum commune</td>
<td>0 0</td>
<td>UMC 46</td>
<td>Earliella sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>UMC 06</td>
<td>Lentinus sp</td>
<td>0 0</td>
<td>UMC 47</td>
<td>NI</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>UMC 07</td>
<td>Lenzites vespacea</td>
<td>0 0</td>
<td>UMC 48</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>UMC 08</td>
<td>Trametes hirsuta</td>
<td>0 0</td>
<td>UMC 49</td>
<td>Polyborus sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>UMC 09</td>
<td>Ganoderma sp</td>
<td>0 0</td>
<td>UMC 50</td>
<td>Scytinopogon anguliformis</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>UMC 10</td>
<td>Lentinus squarrosulus</td>
<td>0 0</td>
<td>UMC 51</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>UMC 11</td>
<td>Macrocybe crassa</td>
<td>0 0</td>
<td>UMC 52</td>
<td>Podoscypha sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>UMC 12</td>
<td>Rigidoporus sp</td>
<td>0 0</td>
<td>UMC 53</td>
<td>Stereum sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>UMC 13</td>
<td>Bjerkandera sp</td>
<td>0 0</td>
<td>UMC 54</td>
<td>Fomes sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>UMC 14</td>
<td>Ganoderma sp</td>
<td>0 0</td>
<td>UMC 55</td>
<td>Ganoderma sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>UMC 15</td>
<td>Pycnoporus sanguineus</td>
<td>0 0</td>
<td>UMC 56</td>
<td>Ganoderma sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>UMC 16</td>
<td>Stereum sp</td>
<td>0 0</td>
<td>UMC 57</td>
<td>Fomes sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>UMC 17</td>
<td>Ganoderma lucidum</td>
<td>1 1</td>
<td>UMC 58</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>UMC 18</td>
<td>Trametes sp</td>
<td>0 0</td>
<td>UMC 59</td>
<td>Ganoderma lucidum</td>
<td>0 1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>UMC 19</td>
<td>Trametes sp</td>
<td>0 0</td>
<td>UMC 60</td>
<td>Lentinus polychrous</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>UMC 20</td>
<td>Microporus xanthopus</td>
<td>0 0</td>
<td>UMC 61</td>
<td>Lentinus polychrous</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>UMC 21</td>
<td>Podoscypha sp</td>
<td>0 0</td>
<td>UMC 62</td>
<td>Astraeus odoratus</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>UMC 22</td>
<td>Laccaria laccata</td>
<td>0 0</td>
<td>UMC 63</td>
<td>Lentinus squarrosulus</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>UMC 23</td>
<td>Macrocybe crassa</td>
<td>0 0</td>
<td>UMC 64</td>
<td>Amanita caesarea</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>UMC 24</td>
<td>Chlorophyllum molybdites</td>
<td>0 0</td>
<td>UMC 65</td>
<td>Russula rosacea</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>UMC 25</td>
<td>Trametes sp</td>
<td>0 0</td>
<td>UMC 66</td>
<td>Amanita princeps</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>UMC 26</td>
<td>Polyborus sp</td>
<td>0 0</td>
<td>UMC 67</td>
<td>Amanita princeps</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>UMC 27</td>
<td>Trametes sp</td>
<td>0 0</td>
<td>UMC 68</td>
<td>Auricularia auricular</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>UMC 28</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td>UMC 69</td>
<td>Lentinus squarrosulus</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>UMC 29</td>
<td>Merulius sp</td>
<td>0 0</td>
<td>UMC 70</td>
<td>Lentinus squarrosulus</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>UMC 30</td>
<td>Lentates sp</td>
<td>0 0</td>
<td>UMC 71</td>
<td>Ganoderma applanatum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>UMC 31</td>
<td>Stereum sp</td>
<td>0 0</td>
<td>UMC 72</td>
<td>Polyborus sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>UMC 32</td>
<td>Ganoderma sp</td>
<td>0 0</td>
<td>UMC 73</td>
<td>Ganoderma applanatum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>UMC 33</td>
<td>Stereum sp</td>
<td>0 0</td>
<td>UMC 74</td>
<td>Ganoderma applanatum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>UMC 34</td>
<td>Lentates elegans</td>
<td>0 0</td>
<td>UMC 75</td>
<td>Ganoderma applanatum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>UMC 35</td>
<td>Ganoderma sp</td>
<td>0 0</td>
<td>UMC 76</td>
<td>Ganoderma applanatum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>UMC 36</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td>UMC 77</td>
<td>Ganoderma applanatum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>UMC 37</td>
<td>Trametes versicolor</td>
<td>0 0</td>
<td>UMC 78</td>
<td>Fomes sp</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>UMC 38</td>
<td>Macrocybe crassa</td>
<td>0 0</td>
<td>UMC 79</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>UMC 39</td>
<td>Trametes sp</td>
<td>0 0</td>
<td>UMC 80</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>UMC 40</td>
<td>Stereum sp</td>
<td>0 0</td>
<td>UMC 81</td>
<td>Ganoderma lucidum</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>UMC 41</td>
<td>Trametes sp</td>
<td>0 0</td>
<td>UMC 82</td>
<td>Pycnoporus sanguineus</td>
<td>0 0</td>
<td></td>
</tr>
</tbody>
</table>
Larvicidal Activity of Mushroom Extracts Against *Ae. aegypti*

Table 1 (Continued).

<table>
<thead>
<tr>
<th>No.</th>
<th>Sample</th>
<th>Mushroom</th>
<th>Mortality (%)</th>
<th>No.</th>
<th>Sample</th>
<th>Mushroom</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 h</td>
<td>48 h</td>
<td></td>
<td></td>
<td>24 h</td>
</tr>
<tr>
<td>83</td>
<td>UMC 87</td>
<td>Phaeolus sp</td>
<td>0</td>
<td>2</td>
<td>AM 13</td>
<td>Geastrum saccatum</td>
<td>0</td>
</tr>
<tr>
<td>84</td>
<td>UMC 88</td>
<td>Microporus xanthopus</td>
<td>0</td>
<td>0</td>
<td>AM 15</td>
<td>Dictyophora indusiata</td>
<td>0</td>
</tr>
<tr>
<td>85</td>
<td>PHK 01</td>
<td>Scleroderma polyrhizum</td>
<td>0</td>
<td>0</td>
<td>AM 16</td>
<td>Tremella fuciformis</td>
<td>0</td>
</tr>
<tr>
<td>86</td>
<td>PHK 02</td>
<td>Boletus chromapes</td>
<td>0</td>
<td>0</td>
<td>NU 01</td>
<td>Chlorophyllum sp</td>
<td>10</td>
</tr>
<tr>
<td>87</td>
<td>PHK 03</td>
<td>Lactarius hatsudake</td>
<td>0</td>
<td>0</td>
<td>NU 02</td>
<td>Chlorophyllum sp</td>
<td>0</td>
</tr>
<tr>
<td>88</td>
<td>PHK 04</td>
<td>Boletellus emodensis</td>
<td>0</td>
<td>0</td>
<td>NU 03</td>
<td>Chlorophyllum molybdites</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>PHK 05</td>
<td>Fomitopsis pinnicola</td>
<td>0</td>
<td>0</td>
<td>NU 04</td>
<td>Schizophyllum commune</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>PHK 07</td>
<td>Microporus sp</td>
<td>0</td>
<td>0</td>
<td>CKW 01</td>
<td>Stereum hirsutum</td>
<td>0</td>
</tr>
<tr>
<td>91</td>
<td>PHK 08</td>
<td>Amanita cehnna</td>
<td>0</td>
<td>0</td>
<td>CKW 02</td>
<td>Fomitopsis pinnicola</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>PHK 09</td>
<td>Boletus sp</td>
<td>0</td>
<td>0</td>
<td>CKW 03</td>
<td>Steccherinum sp</td>
<td>66</td>
</tr>
<tr>
<td>93</td>
<td>PHK 13</td>
<td>Laccaria laccata</td>
<td>0</td>
<td>0</td>
<td>CKW 04</td>
<td>Boletus sp</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>PHK 14</td>
<td>Laccaria sp</td>
<td>0</td>
<td>0</td>
<td>CKW 05</td>
<td>NI</td>
<td>10</td>
</tr>
<tr>
<td>95</td>
<td>PHK 17</td>
<td>Termitomyces sp</td>
<td>0</td>
<td>0</td>
<td>CKW 06</td>
<td>NI</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>PHK 21</td>
<td>Hygrocybe sp</td>
<td>0</td>
<td>0</td>
<td>STW 01</td>
<td>Trametes sp</td>
<td>0</td>
</tr>
<tr>
<td>97</td>
<td>PHK 22</td>
<td>Scleroderma sinnamariense</td>
<td>0</td>
<td>0</td>
<td>STW 02</td>
<td>Fomitopsis sp</td>
<td>0</td>
</tr>
<tr>
<td>98</td>
<td>PHK 23</td>
<td>Armillaria sp</td>
<td>0</td>
<td>0</td>
<td>STW 03</td>
<td>NI</td>
<td>0</td>
</tr>
<tr>
<td>99</td>
<td>PHK 24</td>
<td>Polyporus sp</td>
<td>0</td>
<td>0</td>
<td>MPW 01</td>
<td>Cyathus striatus</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>PHK 25</td>
<td>Stereum ostrea</td>
<td>0</td>
<td>0</td>
<td>MPW 02</td>
<td>Mycena sp</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>PHK 26</td>
<td>Russula sp</td>
<td>0</td>
<td>0</td>
<td>MPW 03</td>
<td>Cyathus striatus</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>PHK 27</td>
<td>Thaeogyroporus porenitosus</td>
<td>70</td>
<td>70</td>
<td>MPW 04</td>
<td>Thelephora penicillata</td>
<td>1</td>
</tr>
<tr>
<td>103</td>
<td>AMC 01</td>
<td>Russula rosacea</td>
<td>1</td>
<td>1</td>
<td>PW 01</td>
<td>NI</td>
<td>0</td>
</tr>
<tr>
<td>104</td>
<td>AMC 02</td>
<td>Termitomyces sp</td>
<td>0</td>
<td>0</td>
<td>PW 02</td>
<td>NI</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>AMC 03</td>
<td>Russula alboareolata</td>
<td>0</td>
<td>0</td>
<td>PW 03</td>
<td>Xylaria nigripes</td>
<td>64</td>
</tr>
<tr>
<td>106</td>
<td>AMC 04</td>
<td>Russula cyanoxantha</td>
<td>0</td>
<td>0</td>
<td>GSW 01</td>
<td>Scytinopogon angulisporus</td>
<td>0</td>
</tr>
<tr>
<td>107</td>
<td>AMC 05</td>
<td>Sentinus sp</td>
<td>0</td>
<td>0</td>
<td>GSW 02</td>
<td>Ganoderma sp</td>
<td>0</td>
</tr>
<tr>
<td>108</td>
<td>AMC 06</td>
<td>Amanita vaginata</td>
<td>0</td>
<td>0</td>
<td>GSW 03</td>
<td>Daedaleopsis confragosa</td>
<td>0</td>
</tr>
<tr>
<td>109</td>
<td>AMC 07</td>
<td>Russula densifolia</td>
<td>1</td>
<td>1</td>
<td>GSW 04</td>
<td>NI</td>
<td>52</td>
</tr>
<tr>
<td>110</td>
<td>AMC 08</td>
<td>Amanita princeps</td>
<td>0</td>
<td>0</td>
<td>GSW 05</td>
<td>Thelephora sp</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>AMC 10</td>
<td>Amanita hemibapha</td>
<td>0</td>
<td>0</td>
<td>GSW 06</td>
<td>Ramaria sp</td>
<td>0</td>
</tr>
<tr>
<td>112</td>
<td>AMC 11</td>
<td>Amanita princeps</td>
<td>0</td>
<td>0</td>
<td>GSW 07</td>
<td>Ganoderma sp</td>
<td>0</td>
</tr>
<tr>
<td>113</td>
<td>AMC 12</td>
<td>Russula sp</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMC and UMC samples were collected from Chiang Mai, Krabi, Lampang, Nakhon Ratchasima, Nakhon Sawan, Pathum Thani, Phichit, Phitsanulok, Phuket, Prachuap Khiri Khan, Sukhothai, Surat Thani and Tak Provinces, Thailand. CKW, GSW, MPW, NU, PHK, PW, and STW samples were collected only from Phitsanulok Province. NI, not identified.

respectively. Ethanol extract shows statistically lower LC$_{50}$ values than hexane extract after 24-hour (203 ppm vs 304 ppm) (Fig 1) and 48-hour (114 vs 218 ppm) exposures (48-hour) (Fig 2 and Table 2). Similar phenomena were observed for LC$_{90}$ values, which are statistically lower than LC$_{50}$ values. However, the aqueous extract lacked larvicidal activity (up to 1,000 ppm) after 48-hour exposure.
Table 2
Larvicidal activities of hexane and ethanol *Steccherinum* sp extracts against *Ae. aegypti* 3rd instar larvae (n=25) after 24- and 48-hour exposure.

<table>
<thead>
<tr>
<th>Steccherinum sp extract (ppm)</th>
<th>24-hour exposure</th>
<th>48-hour exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% mortality (mean±SE)</td>
<td>Larvicidal activity</td>
</tr>
<tr>
<td></td>
<td>Lethal concentration with fiducial limits (ppm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LC$_{50}$</td>
<td>LC$_{90}$</td>
</tr>
<tr>
<td>Hexane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1 ± 1</td>
<td>304</td>
</tr>
<tr>
<td>200</td>
<td>21 ± 3</td>
<td>(239 - 374)</td>
</tr>
<tr>
<td>300</td>
<td>41 ± 2</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>67 ± 2</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>95 ± 2</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1 ± 1</td>
<td>203</td>
</tr>
<tr>
<td>100</td>
<td>9 ± 2</td>
<td>(191 - 215)</td>
</tr>
<tr>
<td>150</td>
<td>25 ± 2</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>51 ± 4</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>72 ± 2</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>77 ± 2</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>85 ± 2</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>92 ± 2</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
DISCUSSION

In this study we show, for the first time to the best of our knowledge, that Thai mushrooms in the genera *Thaeogyroporus* (*T. porentosus*, PHK27), *Chlorophyllum* sp (NU01), *Steccherinum* sp (CKW03) and *Xylaria* (*X. nigripes*, PW03) and 2 unidentified samples (CKW05 and GSW04) contain metabolites with *Ae. aegypti* mosquito larvicidal property. Using sequential extraction with hexane, ethanol and water, the ethanol extract showed superior larvicidal activity over that of hexane, and the aqueous extract lacked activity over the range of time and concentration tested.

Chelela et al (2014) reported that mushrooms in the genera *Amanita* (*A. phalloides*), *Boletus*, *Lactarius* (*L. densifolius*, *L. gymnocarpoides*) and *Russula* (*R. cellulata* and *R. kivuensis*) showed larvicidal activity. However, although we found these genera in our samples but they are of different species and showed little or no toxicity towards *Ae. aegypti* larvae. We did not find *Cryptotrama asprata* earlier reported by Njogu et al (2009).

Ethyl acetate extract of one species of the mushroom genus *Pycnoporus* (*P. sanguineus*) from Manaus, Brazil has a larvicidal activity against *Ae. aegypti* larvae with LC50 value of 156.8 ppm at 24-hour exposure (Bucker et al, 2013). However samples of this species from Phitsanulok, Chiang Mai and Krabi Provinces, Thailand showed no larvicidal activity. It is possible that different extraction techniques and/or different geographical locations and habitats might produce different bioactive components. In addition, whether the same morphologically identical mushroom species have the same genetic characteristics needs further investigation.

ACKNOWLEDGEMENTS

The Thailand Research Fund, the Office of Higher Education Commission, Thailand Ministry of Education and Naresuan University (Ref No MRG5680019) supported this study. In addition, the Excellence Center in Insect Vector Study was supported partially by Diamond Research Grant, Faculty of Medicine and the Research Administration Office, Chiang Mai University.

REFERENCES

Ajith TA, Janardhanan KK. Indian medicinal mushrooms as a source of antioxidant

Larvicide activity of mushroom extracts against Ae. aegypti

Smania EF, Delle Monache F, Smania A Jr, Yunes RA, Cuneo RS. Antifungal activity of sterols and triterpenes isolated from Gano

