ISOLATION AND CHARACTERIZATION OF NEW DELHI METALLO-β-LACTAMASE 1-PRODUCING ENTEROBACTER CLOACAE CLINICAL STRAIN IN CHONGQING, CHINA

Jinqiu Zhao, Yatang Chen, Qiu Sun, Fangjing Shi, Junjun Yang and Wenxiang Huang

Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Abstract. Carbapenem resistance is an increasing clinical problem worldwide. From a total of 299 Enterobacter cloacae isolates collected from patients at the First Affiliated Hospital of Chongqing Medical University, Chongqing, China between 2007 and 2012, E. cloacae strain 413 from sputum of a 67-year-old female demonstrated carbapenemase production based on a modified Hodge test and contained a plasmid (pNDM-1) carrying bla_{NDM-1} encoding New Delhi metallo-β-lactamase 1. This was confirmed by both Southern blotting and direct DNA sequencing. Production of metallo-β-lactamase was determined by imipenem-EDTA E-test. PCR-based assay showed pNDM-1 also carried aac(6’)-Ib-cr, blaCTX_{M-14}, qnrA, qnrS, and rmtA, consistent with resistance of E. cloacae 413 to amoxicillin, cefoperazone, ceftazidime, penicillin, and piperacillin-tazobactam. E. cloacae 413 was sensitive to fosfomycin and polymyxin B. Pulsed-field gel-electrophoresis of XbaI-digested DNA revealed pNDM-1 belonged to B type. The plasmid could be transferred to Escherichia coli J53, conferring the same antibiogram profile. These findings highlight the spread of NDM-1-carrying bacteria and the necessity for rational use of antibiotics.

Keywords: Enterobacter cloacae, carbapenem, carbapenemase China, New Delhi metallo-β-lactamase 1

INTRODUCTION

With the wide clinical use of carbapenem antibiotics, carbapenem-resistant strains of pathogenic bacteria have gradually emerged. This resistance is becoming of high concern in China, particularly in Enterobacteriaceae species such as Klebsiella pneumoniae and Escherichia coli (Nordmann et al, 2011), and also in Salmonella (Huang et al, 2013) and Acinetobacter baumannii (Chang et al, 2015). In Klebsiella pneumoniae, resistance to carbapenem antibiotics was reported in 7.4% of isolates in two hospitals in China (Zhang et al, 2015). In Shanghai, the prevalence of carbapenem-resistant K. pneumoniae and imipenem-resistant Citrobacter freundii strains dramatically increased from 0.91% and 11.11%, respectively, in 2005, to 12.87% and 33.3%, respectively, in 2009 (Hu et al, 2012).

Carbapenemases belong to the β-lactamase family of enzymes with a broad
range of β-lactam substrates (Queenan and Bush, 2007; Walsh, 2010). In Enterobacteriaceae, class A carbapenemase includes GES, KPC, SME, and IMI/NMC-A enzymes; Class B carbapenemase can inactivate penicillin, cephalosporins and carbapenems but not aztreonam, and is inhibited by metal chelators such as EDTA; Class D consists mainly of OXA and PSE enzymes (Queenan and Bush, 2007; Walsh, 2010). Thus far, acquired metallo-β-lactamases (MBLs) fall into 11 main categories, namely, AIM-1, DIM-1, FIM-1, GIM-1, IMP family, KHM-1, NDM, SIM-1, SPM-1, TMB, and VIM family (Queenan and Bush, 2007; Walsh, 2010). In addition, MBLs are found in Pseudomonas aeruginosa, Acinetobacter spp, Enterobacteriaceae, and other common clinical pathogens (Queenan and Bush, 2007; Walsh, 2010).

New Delhi metallo-β-lactamase-1 (NDM-1) is a class B MBL that confers bacterial resistance to a broad range of β-lactam antibiotics, including carbapenem family, which currently form the backbone of treatment regimens for antibiotic-resistant bacterial infections (Kumarasamy et al, 2010; Bushnell et al, 2013). NDM-1 was first detected in K. pneumoniae (KP05-506) and E. coli (NF-NDM-1) isolated from urine and feces of a Swedish patient of Indian origin in 2008 (Yong et al, 2009). NDM-1 was later detected in bacteria present in environmental and clinical samples in 13 countries in Europe as well as in Asia, Australia and North and South America (Walsh et al, 2011). NDM-1 is most frequently identified in gram-negative bacteria such as Acinetobacter spp, E. coli, Enterobacter spp, and K. pneumoniae, and less frequently in Citrobacter freundii, Enterobacter cloacae, K. oxytoca, Proteus mirabilis, and Providencia spp (Thomson, 2010). Recently, carbapenemase-producing gram-negative bacteria were reported in Brazil and Russia, including 18 strains (17 K. pneumoniae and 1 Acinetobacter nosocomialis) and 11 isolates (9 Enterobacter cloacae and 2 Morganella morganii), raising concerns about the impact of resistance to this antibiotic on public health (Ageeves et al, 2014; Rozales et al, 2014). At present, such bacteria are susceptible only to polymyxins and tigecycline (Fomda et al, 2014).

The Chinese Center for Disease Control and Prevention reported that 11,298 NDM-1-producing strains of gram-negative bacilli were detected in 57 different hospitals from 18 provinces nationwide between January 2009 and September 2010, including four NDM-1-producing A. baumannii isolates (Chen et al, 2011). Guangzhou First People’s Hospital isolated four strains of NDM-1-producing bacteria between 2008 and 2010, including one K. ozzaeae and three A. baumannii strains (Yang et al, 2011). In 2012, a strain of NDM-1-producing K. pneumoniae was detected in a child’s sputum specimen in a Hunan general hospital (Zhu et al, 2015). All these patients resided in mainland China and had never been to India.

The gene encoding NDM-1 is a member of a large gene family that encodes several carbapenemases (Trossman, 2014). Pulsed-field gel electrophoresis (PFGE) can be used to analyze the homology of the NDM-1 gene among isolates, and obtain a DNA profile for the strains (Qu et al, 2015; Yang et al, 2015). Horizontal gene transfer is thought to be the primary mechanism of bacterial antibiotic resistance, involving plasmids or integrons (Bercot et al, 2011; Castanheira et al, 2011; Bushnell et al, 2013). A recent study revealed that NDM-1 gene is flanked by short inverted repeat elements, which facilitate transposition and mobilization.
of NDM-1 gene (Poirel et al, 2011a; Sun et al, 2015).

NDM-1-producing *E. cloacae* has been previously reported elsewhere in the world (Sun et al, 2010; Sun and Xue, 2011; Zou et al, 2012), and only very recently found in Shanghai and the Henan Province (China) (Hu et al, 2012; Liu et al, 2015). In this study, a strain of NDM-1-producing *E. cloacae* detected during a carbapenem resistance screening at the First Affiliated Hospital of Chongqing Medical University was subjected to trans-conjugation test, PFGE analysis, Southern blotting, resistance gene analysis, and antibiogram profiling to evaluate the strain’s clinical characteristics and capacity for conjugal transfer. The current study highlights the global spread of NDM-1-carrying bacteria and the necessity for new treatment modalities.

MATERIALS AND METHODS

Bacterial isolation

A total of 299 distinct *E. cloacae* isolates were collected from clinical specimens (sputum, blood, urine, secretions, and bile) from patients in the First Affiliated Hospital of Chongqing Medical University, China, between January 2007 and February 2012. After bacteria were isolated using standard methods (Zhu et al, 2015), a VITEK 2 Compact Automated Bacterial Identification system (bioMérieux, Marcy l’Etoile, France) was used for biochemical identification. *E. cloacae* 413 was isolated from a sputum specimen of a 67-year-old female patient with pneumonia in 2012.

The study was approved by the Institutional Ethics Committee of the First Affiliated Hospital of Chongqing Medical University (approval no. 2017-049). Written consent was obtained from all patients before participation.

Modified Hodge test

A modified Hodge test was used to screen for carbapenemase production (Girlich et al, 2012; Hammoudi et al, 2014). In brief, *E. coli* ATCC 25922, used as an indicator organism, was applied onto a Müller-Hinton (MH) agar plate (Becton Dickinson BBL, Le Pont de Clai, France) (1:10 dilution; original turbidity of 0.5 McFarland unit), and allowed to dry for 3 minutes. A 10-µg meropenem-susceptibility disk (National Institute for the Control of Pharmaceutical and Biological Products, Beijing, China) was placed in the center of the test area. The test organism was streaked from the disk onto the plate edge, and incubated at 37°C for 16-18 hours. Then, the intersection of the test organism and *E. coli* ATCC 25922 was examined within the zone of inhibition of the carbapenem-susceptibility disk; the presence of a cloverleaf-shaped indentation of growth of test versus indicator strain was interpreted as carbapenemase production. *E. coli* ATCC 25922 growth was observed along with the test organism growth within the disk diffusion zone. In addition, *K. pneumoniae* K6 (ATCC 700603) and *E. cloacae* 267 were included as carbapenemase-negative strains.

Detection of metallo-β-lactamase (MBL) and gene

Imipenem-EDTA E-test was employed to detect MBL-producing bacteria (Khosravi et al, 2012). In brief, test bacteria were cultured overnight in MH broth at 37°C, and the culture was adjusted to 0.5 McFarland unit with sterile saline before application onto MH agar plates (Becton Dickinson BBL), which were dried for 10 minutes. An E-test MBL strip containing imipenem/imipenem + EDTA (IP/IPI) (Biomérieux) was placed on the MH agar plate and incubated at 37°C for 16-18 hours. A reduction in minimum inhibitory
concentration (MIC) in presence of EDTA ≥ 8-fold (IP/IPI ≥ 8) was interpreted as indicating MBL activity.

Six pairs of PCR primers designed to amplify the MBL genes were employed in a PCR-based assay (Table 1) (Yamane et al., 2004; Walsh et al., 2011). Plasmid DNA was extracted using Qiagen QIAamp DNA mini kit (Qiagen, Hilden, Germany). PCR mixture (50 µl) contained 25 µl Takara Premix Taq enzyme (Takara, Kyoto, Japan), 4 µl of DNA template, 1 µl of each primer (10 µM), and 19 µl of sterile ultrapure water. Thermocycling was conducted in Thermo Cycle S1000 PCR System (Bio-Rad, Hercules, CA) as follows: 94°C for 10 minutes; 35 cycles of 94°C for 60 seconds, 60°C for 30 seconds and 72°C for 30 seconds; a final step of 72°C for 10 minutes. Amplicons were separated by 1% agarose gel-electrophoresis, stained with ethidium bromide and documented using ChemiDoc XRS gel imaging system (Bio-Rad). Gel-purified amplicons (QIAquick PCR Purification Kit Protocol, Qiagen) were sequenced by Invitrogen (Shanghai, China). DNA sequences were aligned with those in the NCBI database (www.ncbi.nlm.nih.gov) using the BLAST software (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequence (of blaNDM-1) was deposited in GenBank, accession no. JN860195.1. A dendrogram was generated using the DNAMAN software (Lynnon, San Ramon, CA).

Trans-conjugation test

Trans-conjugation test was performed using azide-resistant E. coli J53 Az− (Antibiotics Institute of Shanghai Huashan Hospital, China) as recipient strain and NDM-1 MBL-producing E. cloacae 413 as the donor. Trans-conjugants with plasmid-encoded resistance were selected with sodium azide and ceftazidime. Donor and recipient strains were inoculated separately in 5 ml of LB broth (Sigma-Aldrich, St Louis, MO). After incubation at 37°C overnight, 500 µl each of donor and recipient bacterial cultures were inoculated in 5 ml of fresh LB medium, and cultured at 37°C. After 20 hours, 50 µl aliquot of cell suspension was applied to MH plates (Becton Dickinson BBL) containing sodium azide (100 µg/ml) and ceftazidime (2 µg/ml), and incubated at 37°C overnight. Bacterial colonies growing on plate were re-incubated on plates containing both compounds, and the strain that survived was named E. coli J53 (pNDM-1).

Conjugated E. coli J53 (pNDM-1) and E. cloacae 413 were inoculated separately in 5 ml of LB broth (Sigma-Aldrich), and incubated at 37°C overnight with shaking. Plasmids were extracted using an OMEGA small plasmid extraction kit (Omega Bio-Tek, Norcross, GA) and analyzed by 1% agarose gel-electrophoresis as described above. Extracted plasmids of E. coli J53 (pNDM-1) and E. cloacae 413 were used as templates for PCR amplification of blaNDM-1, whose presence was assessed by electrophoresis and sequencing as described above.

PFGE analysis and Southern blotting

Low melting agarose gel containing total bacterial DNA from donor E. cloacae 413 and conjugated E. coli J53 (pNDM-1) was treated with XbaI for 24 hours and electrophoresed at 6 V/cm) for 22 hours at 14°C in a CHEF-DR II PFGE system (Bio-Rad) with a pulse angle of 120° and pulse time varying from 4 to 40 seconds. After 1 hour staining in ethidium bromide, the gels images were recorded with a ChemiDoc XRS gel imaging system. DNA restriction patterns were analyzed and interpreted according to the criteria proposed by Tenover et al (1995).
Table 1
PCR primers used in the study.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBL gene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla\textsubscript{VIM}\textsubscript{F}</td>
<td>5'-GATGGTGTTTGTCCGCATA-3'</td>
<td>390</td>
</tr>
<tr>
<td>bla\textsubscript{VIM}\textsubscript{R}</td>
<td>5'-CGAATGCGCAGCCCAAAG-3'</td>
<td></td>
</tr>
<tr>
<td>bla\textsubscript{IMP}\textsubscript{F}</td>
<td>5'-CATGGTGGGTTGGTCTTGT-3'</td>
<td>448</td>
</tr>
<tr>
<td>bla\textsubscript{IMP}\textsubscript{R}</td>
<td>5'-ATAATTTGCGGGACTTTGC-3'</td>
<td></td>
</tr>
<tr>
<td>bla\textsubscript{GIM}\textsubscript{F}</td>
<td>5'-TGGACACACCTTGGTCGA-3'</td>
<td>477</td>
</tr>
<tr>
<td>bla\textsubscript{GIM}\textsubscript{R}</td>
<td>5'-AACTTCCTGAGCTGAAAGAG-3'</td>
<td></td>
</tr>
<tr>
<td>bla\textsubscript{SPM}\textsubscript{F}</td>
<td>5'-CATGGTGGGTTGGTCTTGT-3'</td>
<td>580</td>
</tr>
<tr>
<td>bla\textsubscript{SPM}\textsubscript{R}</td>
<td>5'-ACATTATCGCGACAG-3'</td>
<td></td>
</tr>
<tr>
<td>bla\textsubscript{SIM}\textsubscript{F}</td>
<td>5'-TACAAAGGATGCGACTG-3'</td>
<td>570</td>
</tr>
<tr>
<td>bla\textsubscript{NDM}\textsubscript{F}</td>
<td>5'-GGAATGGGTCCATCAGGATC-3'</td>
<td>621</td>
</tr>
<tr>
<td>bla\textsubscript{NDM}\textsubscript{R}</td>
<td>5'-CGGAATGGCTCAGGATC-3'</td>
<td></td>
</tr>
<tr>
<td>Antimicrobial resistance gene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEM-F</td>
<td>5'-TTCTTGAGACGGAAGGCC-3'</td>
<td>1207</td>
</tr>
<tr>
<td>TEM-R</td>
<td>5'-ACGCTCAAGGGAACAGAAAC-3'</td>
<td></td>
</tr>
<tr>
<td>SHV-F</td>
<td>5'-GCCCGGCGTAATTCTTTTGTGC-3'</td>
<td>990</td>
</tr>
<tr>
<td>SHV-R</td>
<td>5'-TCCTTGCCGATGCGCGCGAGTC-3'</td>
<td></td>
</tr>
<tr>
<td>CTX-M-F</td>
<td>5'-SCVATGTGCAGYACAGTA-3'</td>
<td>543</td>
</tr>
<tr>
<td>CTX-M-R</td>
<td>5'-CCGCRATATGRTTGTGTR-3'</td>
<td></td>
</tr>
<tr>
<td>CMY-F</td>
<td>5'-GCTTACACCTTGTTCAG-3'</td>
<td>1082</td>
</tr>
<tr>
<td>CMY-R</td>
<td>5'-CCTCGACACCGACAGGATTA-3'</td>
<td></td>
</tr>
<tr>
<td>qnr\textsubscript{A}-F</td>
<td>5'-AGAGGATTTTCCAGCAGGG-3'</td>
<td>580</td>
</tr>
<tr>
<td>qnr\textsubscript{A}-R</td>
<td>5'-TGCCAGAGGACATCTTGAC-3'</td>
<td></td>
</tr>
<tr>
<td>qnr\textsubscript{B}-F</td>
<td>5'-GGMATHGAACATCCGCTG-3'</td>
<td>264</td>
</tr>
<tr>
<td>qnr\textsubscript{B}-R</td>
<td>5'-TTGCGYGGCGCCAGTCGAA-3'</td>
<td></td>
</tr>
<tr>
<td>qnr\textsubscript{S}-F</td>
<td>5'-GCAAGTCTGACCAGGAGGT-3'</td>
<td>428</td>
</tr>
<tr>
<td>qnr\textsubscript{S}-R</td>
<td>5'-TCTAAACCGTCGAGTTGCGCG-3'</td>
<td></td>
</tr>
<tr>
<td>Aac\textsubscript{(6')}\textsubscript{Ib-cr}\textsubscript{F}</td>
<td>5'-TTGCAATGTCAAATGGAGAG-3'</td>
<td>172</td>
</tr>
<tr>
<td>Aac\textsubscript{(6')}\textsubscript{Ib-cr-R}</td>
<td>5'-CGTTTTGGATTTTGTCGCC-3'</td>
<td></td>
</tr>
<tr>
<td>arm\textsubscript{A}-F</td>
<td>5'-ATTTTAGATTGTGTTCGCC-3'</td>
<td>101</td>
</tr>
<tr>
<td>arm\textsubscript{A}-R</td>
<td>5'-ATCTCACTCTCTATCAATATC-3'</td>
<td></td>
</tr>
<tr>
<td>npm\textsubscript{A}-F</td>
<td>5'-GGGCTATCTAATGGGTG-3'</td>
<td>229</td>
</tr>
<tr>
<td>npm\textsubscript{A}-R</td>
<td>5'-TTTTATTTGCCGCTTCTTG-3'</td>
<td></td>
</tr>
<tr>
<td>rmt\textsubscript{A}-F</td>
<td>5'-AAAATCTCGGACATGTT-3'</td>
<td>88</td>
</tr>
<tr>
<td>rmt\textsubscript{A}-R</td>
<td>5'-TCATGAATCAGGCTTCTTTC-3'</td>
<td></td>
</tr>
<tr>
<td>rmt\textsubscript{B}-F</td>
<td>5'-ACTTTTACATCTCTAATATC-3'</td>
<td>171</td>
</tr>
<tr>
<td>rmt\textsubscript{B}-R</td>
<td>5'-AAGGATATAAAAGTTGTTG-3'</td>
<td></td>
</tr>
<tr>
<td>rmt\textsubscript{C}-F</td>
<td>5'-CAGGGGTCTCCAAAGT-3'</td>
<td>246</td>
</tr>
<tr>
<td>rmt\textsubscript{C}-R</td>
<td>5'-AGAGATATAAGTGGTACCATAAG-3'</td>
<td></td>
</tr>
<tr>
<td>rmt\textsubscript{D}-F</td>
<td>5'-GGGAAAGGGAGTGGACA-3'</td>
<td>171</td>
</tr>
<tr>
<td>rmt\textsubscript{D}-R</td>
<td>5'-TCCATCGGATTCCAGG-3'</td>
<td></td>
</tr>
</tbody>
</table>

F, forward; R, reverse.
Then, the DNA was transferred onto a nylon membrane (Hybond N+; Amersham Pharmacia Biotech, Orsay, France) and Southern hybridized with a \textit{bla}_{\text{NDM-1}}-specific probe labelled using DIG High Prime DNA labelling kit (Roche, Sant Cugat del Vallès, Spain) (Southern, 2006).

Bacterial plasmid resistance gene analysis

An OMEGA plasmid extraction kit (OMEGA) was used to extract pNDM-1-conjugated \textit{E. coli} J53 and \textit{E. cloacae} 413 plasmids. Primers for amplification of drug-resistance genes \textit{aac(6')-Ib-cr}, \textit{ArmA}, \textit{CMY}, \textit{CTX-M}, \textit{npmA}, \textit{qnrA}, \textit{qnrB}, \textit{qnrS}, \textit{rmtA}, \textit{rmtB}, \textit{rmtC}, \textit{rmtD}, \textit{SHV}, and \textit{TEM} are listed in Table 1 (Cattoir et al., 2007; Bercot et al., 2011; Poirel et al., 2011b). PCR mixture (50 μl) contained Takara Premix Taq enzyme, 4 μl of DNA template, 1 μl of each primer (10 μM), and 19 μl of sterile ultrapure water. Amplification of \textit{rmtA}, \textit{rmtB}, \textit{rmtC}, \textit{rmtD}, \textit{aac(6')-Ib-cr}, \textit{ArmA} was conducted as follows: 94°C for 5 minutes; 35 cycles of 94°C for 30 seconds, 54.5°C for 30 seconds and 72°C for 30 seconds; with a final step of 72°C for 5 minutes. Amplification of \textit{qnrA}, \textit{qnrB} was performed as follows: 95°C for 10 minutes; 35 cycles of 95°C for 60 seconds, 54°C for 60 seconds and 72°C for 60 seconds; and a final step of 72°C for 10 minutes. CMY thermocycling was conducted as follows: 98°C for 10 minutes; 35 cycles of 98°C for 40 seconds, 60°C for 40 seconds and 72°C for 30 seconds; with a final step of 72°C for 10 minutes. \textit{CTX-M} thermocycling was performed as follows: 92°C for 10 minutes; 35 cycles of 92°C for 50 seconds, 54°C for 40 seconds and 70°C for 30 seconds; and a final step of 70°C for 10 minutes. Amplification of \textit{npmA} was conducted as follows: 90°C for 10 minutes; 35 cycles of 90°C for 60 seconds, 54°C for 40 seconds and 70°C for 30 seconds; and a final step of 70°C for 10 minutes. \textit{SHV} and \textit{TEM} thermocycling were conducted as follows: 94°C for 5 minutes; 35 cycles of 94°C for 30 seconds, 55°C for 30 seconds and 70°C for 30 seconds; with a final step of 70°C for 5 minutes. Amplicons were isolated and sequenced as described above.

Antimicrobial susceptibility determination

Kirby-Bauer disk diffusion and agar plate dilution methods as recommended by Clinical and Laboratory Standards Institute were used to determine MIC values of imipenem and meropenem (CLSI, 2010). For strains with an inhibition zone diameter ≤ 21 mm in the disk diffusion test, the agar plate dilution method then was used to determine MIC values (≥ 2 μg/ml considered resistant to carbapenems). MIC values for NDM-1-producing \textit{E. cloaca}e 413, \textit{E. coli} J53 Az' and pNDM-1-conjugated \textit{E. coli} J53Az' were also determined of amoxicillin (AML), cefoperazone (CFP), ceftazidime (CAZ), ciprofloxacin (CIP), fosfomycin (FOS), gatifloxacin (GAT), imipenem (IPM), meropenem (MEM), penicillin (PG), piperacillin-tazobactam (TZP), polymyxin B (PB), and tobramycin (TOB).

RESULTS

Identification of carbapenemase-producing \textit{E. cloacae} strains

\textit{In vitro} antibiotic sensitivity testing of 299 clinical \textit{E. cloacae} strains revealed that 14 strains were resistant to carbapenems, and isolated mostly from elderly (41-93 years old) and male patients (10). Specimens were collected from wound secretions (4 strains), urine (4), sputum (4), and blood (2). Between 2007 and 2012, the prevalence rates of carbapenem resistance in \textit{E. cloacae} clinical isolates increased annually: 0.33%, 0%, 0.33%, 1.67%, and 1.67% in 2007, 2008, 2009, 2010 and 2011, respectively. Of the 14
Fig 1–Identification of \(\text{bla}_{\text{NDM-1}} \) in a plasmid from *Enterobacter cloacae* 413 strain. A. Gel-electrophoresis of amplicons obtained using \(\text{bla}_{\text{NDM-1}} \)-specific primers listed in Table 1. B. Comparison of 621 bp *E. cloacae* 413 \(\text{bla}_{\text{NDM-1}} \) sequence. Scale represents percent similarity.

carbapenem-resistant *E. cloacae* strains, 6 produced carbapenemase (strains no. 130, 282, 343, 401, 408 and 413) and exhibited a positive phenotype in a modified Hodge test (data not shown).

Detection of \(\text{bla}_{\text{NDM-1}} \)-positive *E. cloacae* strain

PCR-based detection of carbapenemase-encoding gene failed to detect \(\text{bla}_{\text{VIM}}, \text{bla}_{\text{IMP}}, \text{bla}_{\text{GIM-1}}, \text{or} \text{bla}_{\text{SPM-1}} \); however, \(\text{bla}_{\text{NDM-1}} \) amplicon (621 bp) was detected in one *E. cloacae* strain (no. 413) (Fig 1A) with a sequence identical to that of *E. cloacae* TP15 (Fig 1B). Imipenem-EDTA E-test confirmed that *E. cloacae* 413 was more sensitive to imipenem in the presence of EDTA, with an IP/IPI ≥ 16 (data not shown).
Trans-conjugation of *E. cloacae* strain 413 and analysis of trans-conjugated plasmid

A trans-conjugation experiment was performed to assess transmission of *bla*_{NDM-1} from *E. cloacae* 413 to azide-resistant *E. coli* J53 Az^r. Plasmid (pNDM-1) was detected in a conjugated *E. coli* J53 and *E. cloacae* 413, both of ~20 kb (super-coiled) in size and each carrying *bla*_{NDM-1}, as demonstrated by the correct amplicon size and sequence (data not shown).

PFGE typing and Southern blotting

Total DNA specimens of *E. cloacae* 413 and conjugated *E. coli* J53, including their respective pNDM-1, were digested with XbaI and subjected to PFGE followed by Southern blotting. The presence of *bla*_{NDM-1} was revealed on a 291 kbp fragment from both types of cells (Fig 2). The PFGE profile was of type B according to the criteria proposed by Tenover *et al* (1995).

Plasmid-carried antimicrobial resistance genes of *E. cloacae* 413 and conjugated *E. coli* J53, and antimicrobial susceptibility

PCR-based analysis of a variety of antimicrobial resistance genes carried by pNDM-1 of *E. cloacae* 413 revealed the presence of aac(6′)-Ib-cr (encoding aminoglycoside acetyl transferase), *bla*_{CTX-M}, rmtA (conferring resistance to aminoglycoside antibiotics), qnrA, and qnrS (latter two conferring quinolone resistance) (Fig 3). Similar results were obtained for pNDM-1 of conjugated *E. coli* J53 (data not shown). The identities of these genes were confirmed by direct sequencing of amplicons.

MICs of antimicrobial agents against *E. cloacae* 413 and conjugated *E. coli* J53 indicated resistance to amoxicillin, cefoperazone, ceftazidime, penicillin, and piperacillin-tazobactam (Table 2), consistent with the set of antimicrobial genes carried by pNDM-1.
DISCUSSION

Carbapenem resistance of microbes of clinical relevance is an increasing public health problem worldwide (Guerra et al., 2014). We isolated from sputum of a 67-year-old female admitted to a hospital in Chongqing, China, an NDM-1-producing E. cloacae strain, in which \(\text{bla}_{\text{NDM-1}} \) is located on a large plasmid (supercoil size \(\sim 20 \text{ kbp} \)) that also carried 5 other genes conferring resistance to amoxicillin, cefoperazone, ceftazidime, penicillin, and piperacillin-tazobactam. The plasmid could be transferred to E. coli that subsequently displayed antimicrobial resistance pattern similar to that of the donor E. cloacae strain. However, the E. cloacae strain was still sensitive to fosfomycin and polymyxin B.

NDM-1-producing E. cloacae has been previously found only in India (Kumarasamy et al., 2010; Castanheira et al., 2011; Bushnell et al., 2013), but recently its presence on mainland China, notably in Shanghai and the Henan Province, was reported (Liu et al., 2015; Qu et al., 2015), suggesting that robust antibiotic resistance surveillance and infection control measures should be implemented to fight such microorganisms. Therefore, the current report is the third of this kind. The patient had never been to India or Pakistan; however, it is worth noting that individuals from the latter regions reside in Chongqing. The actual prevalence of NDM-1-producing bacteria in China is unknown. In Brazil, nine E. cloacae complex and two Morganella morganii were reported (Rozales et al., 2014).

In this study, the patient improved after treatment with moxifloxacin and cefoperazone, although the strain was probably resistant to these two antibiotics. At the time, no other antibiotics were
available and the latters were used. There was no evidence of \textit{E. cloacae} lung colonization; hence, the pathogenicity of \textit{E. cloacae} remains an open question. However, the facile ability to transfer its plasmid carrying multiple antimicrobial resistant genes, including those to carbapenems, cannot be overlooked.

On 28 September, 2010, the Chinese Ministry of Health issued the “Pan-drug resistant NDM-1 Producing Enterobacteriaceae Infections Treatment Guidelines (Trial Version)” for such refractory infections (Ministry of Health of China, 2010). These guidelines indicate that for mild to moderate infections, single or combined effective drugs can be administered. For severe and serious infections, clinicians should choose effective or relatively effective antibiotic drug combinations, according to antibiogram results, and closely monitor the patient’s response to therapy. Patients not improving may require tigecycline and polymyxin.

Once NDM-1 bacterial infection occurs, multiple drug resistance renders treatment extremely difficult. It is therefore important to trace the origin of the drug resistance gene and promote the monitoring, prevention, and control of drug-resistant bacteria. In addition, prescription of antibiotics should be chosen carefully. Furthermore, the medical personnel should enforce strict disinfection measures and strengthen hospital infection prevention and control practices, which are very important in preventing the spread of drug-resistant bacteria.

In conclusion, this report identified in mainland China an NDM-1-producing clinical \textit{E. cloacae} strain resistant to carbapenems, quinolones and aminoglycosides. This array of antimicrobial resistance could be transferred to other bacteria (eg, \textit{E. coli}). These findings highlight the global spread of NDM-1-carrying bacteria and the necessity for evidence-based use of antibiotics.

ACKNOWLEDGEMENTS

The authors thank Chengwei Liu and Bei Jia for their assistance in PCR and DNA sequencing experiments. The study was funded by the Chongqing Municipal Committee of Science and Technology Education Project (KJ100311).

CONFLICT OF INTERESTS

The authors declare no conflict of interests.

REFERENCES

Cattoir V, Poiriel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance \textit{qnr} genes in ESBL-producing enterobacte-

