REVIEW

PRIMARY AMEBIC MENINGOENCEPHALITIS AND NAEGLERIA FOWLERI: AN UPDATE

Virach Junnu¹, Supathra Tiewcharoen¹ and Jundee Rabablert²

¹Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok; ²Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand

Abstract. Free living amebae, Naegleria spp, are found in natural and recreation water worldwide. Pathogenic N. fowleri causes primary amebic meningoencephalitis (PAM), which leads to lethal infection of the central nervous system in humans and animals. PAM and bacterial meningitis have similar clinical manifestations, such as high grade fever with flu-like symptoms, nausea, vomiting and neurological changes, thereby leading to possible misdiagnosis. As PAM progresses rapidly, diagnosis is usually made after death. This review describes recent incidents of PAM in particularly those in Thailand due to water irrigation, pathogenesis and detection of N. fowleri in Thailand.

Keywords: Naegleria fowleri, distribution, PAM incidence, primary amebic meningoencephalitis (PAM), Thailand

INTRODUCTION

Being a free-living ameba in the environment, Naegleria fowleri trophozoites feed on bacteria using pseudopodia (Siddiqui et al, 2016). In addition, trophozoites use their pseudopodia for actively progressive and directional movement. Trophozoite switches to a flagellate stage for feeding more food as this allows long distance movement. When the environment becomes unfavorable, trophozoite switches into a dormant form (cyst), which is non-feeding and non-reproducing (Siddiqui et al, 2016).

N. fowleri is a causative agent of fulminant brain infection, also known as primary amebic meningoencephalitis (PAM). In 1962, the first case was found by brain autopsy samples in Florida, USA (Butt, 1966). However, cases of PAM have been reported in Virginia, USA since 1937 (Gustavo, 1970). There were several cases of PAM found in Australia (1965), Europe (1973), Asia (1978) and Africa (1980) (De Jonckheere, 2011). The root of infection of PAM is commonly through activity in N. fowleri infected water; however two fatal cases of PAM without a history of swimming were reported from South India (Shenoy et al, 2002). In Thailand, PAM was first reported in Si Sa Ket Province.
in 1983 (Jariya et al, 1983). Sporadic cases have since been reported in many provinces of the country: Nakhon Pathom, Samut Prakan and Suphan Buri (central region), Trat (eastern), and Si Sa Ket and Surin (north eastern) (Wiwanikit, 2004; ibid, 2016).

Previous studies have documented intracellular multiplication of Legionella enclosed in vacuoles within mitochondria of N. fowleri trophozoite (Newsome et al, 1985). Under these conditions, amebae provide both nutrition for proliferation and intracellular environment conducive to multiplication of L. pneumophila (Newsome et al, 1985). The coexistence of L. pneumophila is abetted by biosynthesis of a mucopolysaccharide matrix, enabling them to colonize free-living amebae, leading to a risk of Legionella infection in humans (Żbikowska et al, 2014).

Herein, we review cytopathogenesis of PAM, N. fowleri identification, distribution of N. fowleri and incidences in Thailand, and chemotherapy.

CYTOPATHOGENESIS

Naegleria trophozoite mainly invades the central nervous system (CNS) through passage of the nostrils (Visvesvara, 2010). Once in the brain, trophozoites secrete a variety pathogenic enzymes, which damage red blood and white blood cells, and brain tissue leading to hemorrhagic-necrotizing meningoencephalitis (Siddiqui et al, 2016). The inflammation of brain occurs during the infection by trophozoites activating the innate immune system, neutrophils and macrophages (Marciano-Cabral and Cabral, 2007; Tiewcharoen et al, 2017, in press).

Cytopathogenesis of N. fowleri towards mammalian cells has been studied through analysis of cellular interaction (Grace et al, 2015). Human neuroblastoma SK-N-MC cells provide the best model of neuropathogenesis in PAM patients (Tiewcharoen et al, 2008a). The process of N. fowleri infection in SK-N-MC cells demonstrated engulfment of the ameba at the cell surface of a food-cup structure, followed by feeding on the host cell nutrients (Tiewcharoen et al, 2008b). During infection, the ameba up-regulates acetyl Co-A synthetase, isocitrate dehydrogenase, pore B precursor pyruvate kinase, and 18S rRNA transcript for destruction of host cell. The ameba also releases soluble factors to regulate proteins involved in host cell signal transduction (Tiewcharoen et al, 2012). In addition, the infected host cells secrete soluble proteins involved in angiogenesis, fatty acid metabolism, signal transduction, translation, stress response, signal pathways, and respiration of neighboring cells, leading to inflammation and severe damage to host cells and finally death (Tiewcharoen et al, 2013).

IDENTIFICATION OF N. FOWLERI

N. fowleri can be identified in the environment through morphological examination and, in the laboratory, by molecular techniques (CDC, 2017). Using N. fowleri cultured in non-nutrient agar supplemented with heat-killed Escherichia coli, it is possible to obtain all three forms of N. fowleri, namely, trophozoite (Fig 1a), flagellate (Fig 1b) and cyst (Fig 1c). All stage of N. fowleri is characterized by a large nucleolus and halo in the nucleus.

One useful molecular tool for rapid species differentiation and genotyping is by analysis of PCR-amplified N. fowleri internal transcribed spacer (ITS) region of 5.8S ribosomal (r)DNA gene (450 bp), NF gene (310 bp), and nfa1 (360 bp) (Jeong et al, 2004; Tiewcharoen et al, 2007). In addition,
sequencing [5.8S ribosomal (r)DNA gene] of *N. fowleri* isolated from brain autopsies of three patients at Chachoengsao, Ramathibodi, and Siriraj hospitals, and one environmental sample from Khon Kaen Province, Thailand allowed their identification as Cattenom Japanese J16(1) 42 E strain (Tiewcharoen et al., 2007).

DISTRIBUTION OF N. FOWLERI AND INCIDENCES OF INFECTION

The geographical range of *N. fowleri* has been expanding worldwide over the past few years (Kemble et al., 2012; Capewell et al., 2015). A survey of *N. fowleri* was carried out in the central region of Thailand (Lopburi, Pathum Thani, and Samut Prakan Provinces) (Jariya et al., 1997). During 2001-2003, pathogenic *Naegleria* spp were identified in Bangkok (Taling Chan District), and in Chumphon, Nakhon Nayok, Nakhon Sawan, Prachuap Khiri Khan, Saraburi, Sukhothai and Surat Thani Provinces (Tiewcharoen et al., 2004). *N. fowleri* was also found in fresh water samples from Wang Lang and Wat Rakhang piers of Chao Phraya river, Bangkok employing PCR amplification of *N. fowleri nfa1* (Tiewcharoen et al., 2018 in press). Using the same technique (we also identified *N. fowleri* in four tourism locations, namely, Khun Dan Prakan Chon Dam and Nang Rong Waterfall (Nakhon Nayok Province), Bo Khlueng Hot Spring (Ratchaburi Province) and Pha Wang Palace (Nakhon Pathom) (unpublished data).

In Thailand, the first case of PAM was reported in 1983 from Si Sa Ket Province in the northeastern region (Jariya et al., 1983). Since then, sporadic cases of PAM were reported in the central (5 cases) (Charoenlarp et al., 1988; Sirinavin et al., 1989; Wattanaweeradej et al., 1996; Viriyavejakul et al., 1997; Sithinamsuwan et al., 2001), northern (Petchsuan and Jariya, 1997), northeastern (4 cases) (Poungvarin et al., 1991; Chotmongkol et al., 1993; Jariya et al., 1997; Bunjongpak, 2000), and eastern (2 cases) (Somboonyosdej and Pinkaew, 1987) regions of the country.

During 2007-2016, a number of cases had a history of recreational or tap water irrigation (3 cases) and tap water backyard ‘slip-n-slide’ contact (1 case) (Shenoy et al., 2002; De Jonckheere, 2004; CDC, 2017). PAM might be more common among young boys due to their greater propensity for activities exposing them to such risks (Capewel et al., 2014). Owing to the difficulty in diagnosing PAM, 75% of cases
were identified only after autopsy (da Rocha-Azevedo et al, 2009; Visvesvara, 2010). In Thailand, two fatal PAM cases were reported involving recreational or tap water irrigation. In one case, a 12-year old Thai boy from Udon Thani Province with a history of exposure to a school swimming pool water rapidly developed acute severe meningoencephalitis within a week and ultimately died (Pudthasa et al, 2016). In the other case, a 71-year old female Norwegian tourist became infected with *Naegleria* by nasal irrigation through contaminated tap water at an apartment at Pathaya. Subsequent brain autopsy revealed an accumulation of *Naegleria* trophozoites around the intra-parenchymal vessels with more heavy inflammatory infiltrates (Stubhaug et al, 2016).

CHEMOTHERAPY

The high death rate of PAM is still problematic. *N. fowleri* causes fatal CNS infection and there are no clinical trials accessing the efficacy of one treatment regimen over another. Anti-fungal amphotericin B has been the drug of choice for treating PAM (Vargas-Zepeda et al, 2005); however, the administration of amphotericin B is limited due its high toxicity to renal function (Laniado-Laborín and Cabrales-Vargas, 2009). A number of *in vitro* and *in vivo* amphotericin B combination therapies (Goswick and Brenner, 2003; Soltow and Brenner 2007; Tiewcharoen et al, 2009) as well as multidrug treatment with amphotericin B (Linam et al, 2015) against *N. fowleri* have been reported with limited success.

At present, miltefosine, an anti-leishmanial, is the most effective and safe drug for the treatment of PAM (Cope et al, 2016). The Centers for Disease Control and Prevention, USA recommends miltefosine for PAM treatment as successful treatment instead of amphotericin B or antimicrobial agents (CDC, 2017). However, it is worth bearing in mind miltefosine also shows serious adverse reactions, such as Stevens-Johnson syndrome, renal and liver toxicity (Sunder and Olliaro, 2007).

In Thailand, *in vitro* studies on the effects of antifungal drugs against *Naegleria* trophozoites demonstrated ketoconazole (0.125 µg/ml) has higher activity than amphotericin B (0.5 µg/ml) (Tiewcharoen et al, 2002). However, ketoconazole has the adverse effect on liver (Yan et al, 2013). Chlorpromazine shows higher efficacy and rapid activity against *Naegleria* trophozoites than amphotericin B, causing a down regulation of *nfa1* and *Mp2CL5* expression (Tiewcharoen et al, 2011). The side effects of chlorpromazine; acute dystonia and dyskinesia, are more frequent in children and young adults, appearing within the first four days of treatment (Brunton et al, 2010).

As a result of these adverse effects from the use of synthetic drugs, traditional herbs were recommended as alternatives (WHO, 2000). *Andrographis paniculata*, *Curcuma longa*, *Momordica charantia*, and *Zingiber officinale* were tested for anti-amebic activity. The minimal non-toxic dose of *A. paniculata* (0.5 mg/ml) and *M. charantia* (5 mg/ml) have 100% inhibitory activity against *N. fowleri* trophozoites in human neuroblastoma SK-N-MC or rhesus LLC-MK2 cells (Luangboribun et al, 2014). Diosgenin purified from *M. charantia* has a number of mechanisms attributed to its amebocidal activity: (i) inhibition of food cup formation, (ii) down-regulation of a cysteine protease gene expression, and (iii) anti-inflammation activity on human monocyte-derived macrophage U937 after exposure with LPS or *N. fowleri* lysate.
through blocking TNF-α synthesis (Rabablert et al, 2015; ibid, 2016; Tiewchareon et al, 2017, in press).

CONCLUSION

The presence of N. fowleri in Thailand in aquatic water resources poses health risk to people. Obviously, considering the limited understanding of life cycle of N. fowleri cannot be excluded that other cases escaped diagnosis. The increasing knowledge of N. fowleri: cytopathogenesis, identification, distribution and chemotherapy can be an approach to alert the health professionals. The health authorities concerned should be aware of the possible hazards and provide guidelines to ensure safety of Thai people.

REFERENCES

Jariya P, Tiewcharoen S, Junnu V, Lertlaituan P, Suvithayasiri V. Survey of Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis (PAM) in stagnant waters around factory area in Thailand.

Tiewcharoen S, Chaik K, Rabablert J, Roytra-

