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Abstract. In Thailand, epidemiology of leishmaniasis, a neglected vector-borne 
disease, is not clearly understood. Identification of proven biological sandfly vec-
tors is crucial to prevent and control the disease; however, vectors of leishmaniasis 
still remain unclear and have yet to be confirmed. Sergentomyia is the most pre-
dominant genus of which DNA of Leishmania martiniquensis were detected in the 
gut of S. barraudi and S. gemmea suggesting these species could possibly serve as 
potential vectors in Thailand. This study predicted environmental suitability and 
geographic range of S. gemmea and S. barraudi in Thailand. Localities of S. gemmea 
and S. barraudi from published articles of sandflies in Thailand were mapped and 
ecological niche models were created to estimate distribution, the first predictive 
geographic distribution in Thailand of S. gemmea and S. barraudi, and influencing 
environmental factors, revealing S. gemmea commonly resided in peridomiciliary 
areas surrounded with orchards, palm and rubber plantations in the southern 
region, while S. barraudi could be found in many regions of the country. The 
distribution of these species was limited by similar habitat suitability; however, 
certain bioclimatic variables conferred comparatively beneficial fitness to S. bar-
raudi. The study provides the first preliminary picture and understanding of the 
geographic distribution and associated environmental factors that could be vital 
in future studies of the role of S. gemmea and S. barraudi as potential biological 
vectors of Leismania in Thailand.
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INTRODUCTION

Leishmaniasis, a vector-borne disease 
caused by intracellular protozoan of the 
genus Leishmania, is widespread in tropi-
cal and subtropical regions (Alvar et al, 
2012; Steverding, 2017) and is recognized 
as the second most important leading 
parasitic disease, after malaria, causing 
global mortality and morbidity in which 
an estimated 700,000-1 million new cases 
and 20,000-30,000 deaths occur annually 
(WHO, 2010; WHO, 2018).

In Thailand, leishmaniasis was first 
described in the southern region of the 
country in 2008 and is now considered 
an emerging disease (Sukmee et al, 2008). 
However, epidemiology of the disease is 
not clearly known, especially regarding 
hosts and vectors, although asymptomatic 
and symptomatic patients have been in-
creasingly reported, since first case report 
in 2008 rising to 182 (25.1%) asymptomatic 
cases among patients with HIV/AIDS in 
2015 (Kanjanopas et al, 2013; Leelayoova 
et al, 2017; Manomat et al, 2017). Autoch-
thonous cutaneous (CL) and visceral leish-
maniasis (VL) is clearly associated with 
Leishmania martiniquensis and L. siamensis 
infection (Leelayoova et al, 2017) and 
co-infection with the human immunode-
ficiency virus (HIV) can produce a more 
complicated and severe disease (Lindoso 
et al, 2016). Cases of symptomatic autoch-
thonous CL and asymptomatic VL have 
been reported since 2008 (Leelayoova et 
al, 2017; Manomat et al, 2017).

Leishmania parasites are associated 
with and transmitted by infected phle-
botomine sandflies comprising 98 species 
of the genera Phlebotomus and Lutzomyia, 
which have been described as potential 
vectors to humans (Maroli et al, 2013). Ap-
proximately 800 sandfly species have been 
identified in the subfamily Phlebotominae 

(Aspock et al, 2008), notably Lutzomyia spp 
found in the New World, and Sergentomyia 
spp and Phlebotomus spp known only to 
exist in the Old World (Alkan et al, 2013; 
Maroli et al, 2013; Ergunay et al, 2014).

Identification of the vectors that still 
remains unknown in Thailand is crucial to 
prevent and control transmission of leish-
maniasis in the country (Kanjanopas et al, 
2013; Chusri et al, 2014). Survey studies 
of the distribution of sandfly species and 
their habitats were conducted in central, 
western, northern, northeastern, and 
southern Thailand where three genera, 
namely, Idiophlebotomus, Phlebotomus and 
Sergentomyia, were identified of which 
Sergentomyia is the most predominant 
genus reported in all study areas (Api-
wathnasorn et al, 1989; Apiwathnasorn et 
al, 1993; Depaquit et al, 2006; Polseela et al, 
2007; Sukmee et al, 2008; Apiwathnasorn et 
al, 2011; Polseela et al, 2011a, b; Sukra et al, 
2012). The biological vector of CL and VL 
is unclear and has not yet been confirmed 
in Thailand where L. martiniquensis, a 
causative agent of autochthonous visceral 
leishmaniasis, has been commonly report-
ed in southern Thailand (Kanjanopas et al, 
2013; Chusri et al, 2014). However, DNA of 
L. martiniquensis was detected in the gut 
of S. gemmea and S. barraudi suggesting 
they could probably serve as potential 
vectors of L. martiniquensis (Leelayoova 
et al, 2017).

The distribution and abundance of 
sandfly vectors and hosts are influenced 
by various physical factors, viz. tempera-
ture, rainfall, relative humidity, altitude, 
latitude, surface water and wind, as well 
as biotic factors, such as vegetation, host 
species, predators, competitors, parasites 
and human interventions (Lane, 1993), all 
of which can affect spatial and temporal 
distribution of vectors and reservoirs, 
which in turn impact epidemiology and 
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dynamics of pathogen transmission (Rohr 
et al, 2011). Different approaches for the 
study of demographic and geographic 
distributions of vector-borne diseases, such 
as geographic information systems map-
ping (GIS), remote sensing (Rogers and 
Randolph, 2003), climate-based modeling 
(Brownstein et al, 2003), and species distri-
bution or ecological niche modeling (ENM) 
(Neerinckx et al, 2008) have been used. 
ENM was developed to infer environmen-
tal requirements of a species (Masuoka et 
al, 2010) and to predict species distribution 
(Elith et al, 2006; Alvar et al, 2012) through 
examination of environmental conditions 
at known locations of suspected species 
and subsequent identification of areas of 
similar environmental conditions to esti-
mate probability of the presence of selected 
species (Phillips et al, 2006).

L. martiniquensis, a zoonotic proto-
zoan, was recently reported in Thailand 
(Muller et al, 2009; Lobsiger et al, 2010; 
Reuss et al, 2012; Chusri et al, 2014) and, 
thus, the distribution of potential vectors 
can play a role in the maintenance of the 
transmission cycle. In our study, locali-
ties of S. gemmea and S. barraudi obtained 
from published articles of sandfly species 
in Thailand were mapped and used to 
create ENMs estimating the distribution 
and influencing environmental factors 
of these Sergentomyia spp in the country. 
The ENM generated the first predictive 
geographic distribution of two potential 
leishmaniasis vectors and environmental 
conditions associated with the presence 
of the vectors, which should assist in our 
understanding of leishmaniasis vector 
distribution in Thailand.

MATERIALS AND METHODS

Study area and data collection
This study focused within the coor-

dinates 97° E, 105° E and 5° N, 20° N of 
Thailand. The analysis was based on a 
set of S. gemmea and S. barraudi records 
compiled from published articles. Lati-
tude and longitude data of the sandflies 
were used when available, and, if not, the 
locations were extrapolated based on the 
coordinate points of the closest locality 
to the collecting locations, such as a town 
or city. The coordinates of the sandfly 
localities were converted to a map layer 
and plotted on a base map of Thailand 
(GADM Database, www.gadm.org) using 
a Geographic Information System (GIS) 
Program, ArcGIS version 10 (Environmen-
tal Systems Research Institute, Redlands, 
CA). In total, 27 and 39 points of S. gemmea 
and S. barraudi records respectively were 
obtained from the publications of sandfly 
surveys in Thailand (Kongkaew et al, 2007; 
Polseela et al, 2007; Apiwathnasorn et al, 
2011; Polseela et al, 2011a, b; Polseela, 2012; 
Sukra et al, 2012; Kanjanopas et al, 2013; 
Chusri et al, 2014; Panthawong et al, 2015).
Environmental data

Thirty-eight environmental raster  
layers (1 altitude, 1 land cover, 24 tempera-
tures, and 12 precipitations) were used in 
ENMs. Each raster layer was re-sampled 
to a 1-km2 pixel, geo-referenced and sub-
set to the study area, and then, data lay-
ers of S. gemmea and S. barraudi presence 
were overlaid. Bioclimatic data used for 
modeling were obtained from WorldClim 
version 1.4 (http://www.worldclim.org) 
consisting of total precipitation, and mean 
minimum and maximum temperatures 
from January to December. Gridded 
WorldClim precipitation and temperature 
data were averaged from 1950 to 2000 for 
each month based on monthly ground 
weather station measurements (Hijmans 
et al, 2005). The global elevation data ob-
tained from WorldClim was re-sampled 
to a 1-km resolution from NASA Shuttle 
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Radar Topography Mission (SRTM) and 
then processed to the same projection and 
scale as the other WorldClim layers. Land 
cover data using FAO Land Cover Clas-
sification System (LCCS) were retrieved 
from Global Land Cover 2000 database 
produced by the European Commission, 
Joint Research Centre (http://forobs.jrc.
ec.europa.eu/products/glc2000). Data 
were hierarchical classifications translated 
to a more generalized global land cover 
classes that consisted of 19 land cover 
classes to describe types of vegetation and 
density of the land cover, independent of 
the geo-climatic zone, such as temperate 
or tropical forests. Land cover data were 
used in original format, where 1 pixel = 
1 km2. 

Ecological niche modeling
In order to model geographic dis-

tribution and influencing environmen-
tal factors of two Sergentomyia sandfly 
species in Thailand, the maximum en-
tropy method in MaxEnt 3.2.1 modeling 
program (http://www.cs.princeton.
edu/~schapire/maxent/) (Phillips et al, 
2006) was employed. A maximum entropy 
algorithm was applied to analyze values 
of environmental layers to estimate range 
of presence probability of the species over 
a geographic region (Phillips et al, 2004; 
Phillips et al, 2006). Twenty-five percent 
of randomly selected occurrence points 
were enlisted to test accuracy of the model 
testing points, and the remaining occur-
rence points were used to build the model 
training points.

Contribution of the environmental 
variables was tested by jackknife analy-
sis in MaxEnt program to calculate the 
importance of each environmental vari-
able by measuring the training gain of 
the variables used individually as well 
as in combination with other variables. 

When a variable produces a high train-
ing gain when used alone in the model, 
the variable is considered important, and 
the variable is also considered important 
if the training gain is low when the vari-
able is removed from the model (Phillips 
et al, 2006). The model is deemed accu-
rate when area under the curve (AUC) 
is >0.8 and minimum training presence 
p-value <0.05 (Phillips and Dudik, 2008). 
The probability values of occurrence 
underneath locations were extracted and 
examined using ArcGIS version 10.
Statistical analysis

For comparison of environmental 
values, pixel values underneath each 
recorded location of S. gemmea and S. 
barraudi extracted using ArcGIS version 
10 were employed. Nonparametric Mann-
Whitney U test was used to compare 
geographic and bioclimatic characteristics 
between the two sandfly species, and 
Pearson χ2 test to compare land cover 
and region categories. Statistical analysis 
was conducted using SPSS version 11.5 
(SPSS, Chicago, IL). For all statistical tests 
a p-value <0.05 is considered significant.

RESULTS

ENM demonstrated reliability and 
accuracy of predictive distribution of S. 
barraudi and S. gemmea that gained the 
highest AUC training point and p-value 
of significance (AUC = 0.959 and 0.973; 
p = 0.008 and <0.001, respectively) (Table 
1). Jackknife test of importance of each 
environmental variable showed low regu-
larized training gain variables observed 
during the summer months (April to June) 
(tmax04 - tmax06) for both S. barraudi and 
S. gemmea, whereas regularized training 
gains during the rainy and dry seasons 
(July to February) (tmax07 - tmax02) were 
higher (Fig 1). 
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Table 1
MaxEnt model accuracy analysis of Sergentomyia barraudi and S. gemmea.

Species AUC training pointa AUC test pointa p-value of minimum
training presence

S. barraudi
S. gemmea

0.959
0.973

0.882
0.906

0.008
<0.001

aArea under the curve of 0.5 is a random prediction, and a value >0.9 indicates high reliability and 
<0.7 poor reliability. The training data (based on 75% of records) are the points used to build the 
model and the test data (25% of records) are used only for testing the model’s accuracy.

Fig 1-Jackknife regularized training gain of Sergentomyia barraudi and S. gemmea. Red bar represents 
training gain achieved by a model using all variables, dark blue bar training gain achieved in a 
model using a single variable and aqua bar training gain achieved when that particular variable 
is dropped from the model. altitude, elevation (m); prec, precipitation (mm); sea_landcover, 
Southeast Asia land cover; tmax, maximum temperature (°C); tmin, minimum temperature 
(°C); 01–12, January - December.
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Results of the test indicated the 
environmental variable with highest 
gain using the prediction power of the 
model alone was maximum temperature 
for S. barraudi and S. gemmea (tmax10 
and tmax01, respectively). Average pre-
cipitation variables during the dry and 
summer seasons (November to April) 
(prec11 - prec04) were important for envi-
ronmental suitability for only S. gemmea. 
Contribution ratios demonstrated three 
major variables were important for both S. 

barraudi and S. gemmea, namely, elevation 
(altitude = 10.5 and 14.6, respectively), 
annual precipitation in January (prec01 = 
9.7 and 16.9, respectively) and maximum 
temperature in February (tmax02 = 21.3 
and 15.9, respectively) (Tables 2 and 3). 
These three variables contributed 41.5% 
and 47.4% to the model building of S. bar-
raudi and S. gemmea, respectively, suggest-
ing their high importance in influencing 
the presence of these two sandfly species 
in Thailand.

Table 2
Minimum (min), maximum (max) and mean values and percent contribution of envi-

ronmental data layers for Sergentomyia gemmea model.

Variable Description Min Max Mean
Percent 

contribu-
tion

altitude
SEA land-

cover
prec01
prec02
prec03
prec04
prec05
prec06
prec07
prec08
prec11
prec12
tmax01
tmax02
tmax06
tmax09
tmax11
tmax12
tmin03
tmin11
tmin12

Altitude (elevation above sea level), m
Class of land cover

Precipitation of January, mm
Precipitation of February, mm
Precipitation of March, mm
Precipitation of April, mm
Precipitation of May, mm
Precipitation of June, mm
Precipitation of July, mm
Precipitation of August, mm
Precipitation of November, mm
Precipitation of December, mm
Mean maximum temperature of January, °C
Mean maximum temperature of February, °C
Mean maximum temperature of June, °C
Mean maximum temperature of September, °C
Mean maximum temperature of November, °C
Mean maximum temperature of December, °C
Mean minimum temperature of March, °C
Mean minimum temperature of November, °C
Mean minimum temperature of December, °C

6
N/A

1
10
24
61

149
91

111
111
17
3

29.6
31.3
30.7
29.9
29.1
28.7
17.7
18.2
14.0

280
N/A

164
53
95

200
355
426
375
399
468
361
31.8
34.1
34.2
32.1
31.6
31.1
24.0
22.9
22.8

73.85
N/A

39.74
27.11
56.81

114.41
207.37
189.41
204.93
229.63
177.78
91.07
31.0
32.8
32.3
31.2
30.3
30.0
21.8
21.6
20.1

14.6
3.5

16.9
13.6
2.1
1.0
0.8
0.1
2.2
2.9
0.1
0.4

14.0
15.9
0.7
0.9
1.1
2.3
2.3
0.1
4.5

N/A, not available; SEA, Southeast Asian.
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Similar response curve was observed 
for both sandfly species (Fig 2a), which 
showed the probability of sandfly pres-
ence decreased with increase in elevation. 
Presence of S. barraudi and S. gemmea were 
rarely observed at elevations >500 m, and 
no significant difference in the influence 
elevation between the two species (mean 
elevation ± SD = 106 ± 18 and 74 ± 17, re-
spectively). The response curves of annual 
precipitation for each month exhibited 

concordance in probability of the presence 
in both sandfly species, decreasing as an-
nual precipitations increased and limited 
to approximately 300 mm both (Fig 2b). 
Mean annual precipitation for S. barraudi 
and S. gemmea presence during the dry 
and summer seasons (85 ± 6 and 107 ± 8 
mm, respectively) is significantly lower 
than that during the rainy season (215 ± 6 
and 222 ± 10 mm, p<0.001 and <0.001, re-
spectively). Concordance of the presence  

Table 3
Minimum (min), maximum (max) and mean values and percent contribution of envi-

ronmental data layers for Sergentomyia barraudi model.

Variable Description Min Max Mean
Percent 

contribu-
tion

Altitude
SEA land-
cover

Altitude (elevation above sea level), m
Class of land cover

5
N/A

393
N/A

105.79
N/A

10.5
2.6

prec01
prec02
prec03
prec04
prec05
prec07
prec08
prec09
prec10
prec11
tmax02
tmax06
tmax09
tmax10
tmax11
tmax12
tmin03
tmin04
tmin06
tmin08
tmin11
tmin12

Precipitation of January, mm
Precipitation of February, mm
Precipitation of March, mm
Precipitation of April, mm
Precipitation of May, mm
Precipitation of July, mm
Precipitation of August, mm
Precipitation of September, mm
Precipitation of October, mm
Precipitation of November, mm
Mean maximum temperature of February, °C
Mean maximum temperature of July, °C
Mean maximum temperature of September, °C
Mean maximum temperature of October, °C
Mean maximum temperature of November, °C
Mean maximum temperature of December, °C
Mean minimum temperature of March, °C
Mean minimum temperature of April, °C
Mean minimum temperature of June, °C
Mean minimum temperature of August, °C
Mean minimum temperature of November, °C
Mean minimum temperature of December, °C

1
3

13
44

119
105
110
146
79
10
30.4
30.7
29.9
30.0
28.8
26.8
15.7
19.6
22.7
22.5
17.2
13.0

188
56
95

200
355
438
484
502
352
507
34.5
33.8
32.4
32.2
31.6
31.3
24.3
25.5
25.2
24.7
23.1
22.8

31.15
23.74
46.64
95.72

193.23
197.82
228.54
273.72
203.64
127.15
32.76
32.45
31.30
31.03
30.30
29.80
21.46
23.29
23.67
23.54
20.88
18.71

9.7
7.0
0.1
9.3
2.1
3.4
1.2
0.2
0.1
1.3

21.3
1.2

11.8
6.3
6.0
0.1
3.4
0.5
1.5
0.4
0.1
0.2

N/A, not available; SEA, Southeast Asian.
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Fig 2-Predicted probability of Sergentomyia barraudi and S. gemmea versus selected variables. a). El-
evation (altitude). b). Precipitation in December (prec12, mm). c). Maximum temperature in 
February (tmax02, °C). d). Class of Southeast Asian land cover (sea_landcover). Temperature 
(°C) = x-axis value × 0.1°C.
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probability was observed for all 12 months 
for both sandfly species, increasing with 
the maximum temperature and limited 
to 31-34°C (Fig 2c). There is no significant 
difference between the mean temperature 
for presence probability for S. barraudi 
and S. gemmea (32.1 ± 0.9 and 32.0 ± 0.9°C, 
respectively); however, mean maximum 
temperature for S. barraudi and S. gemmea 
presence during the dry and rainy seasons 
(31.5 ± 0.8 and 31.5 ± 0.9°C, respectively) 
is significantly lower than that during 
the summer season (33.8 ± 1.5 and 33.4 ± 
1.6°C, p<0.001 and <0.001, respectively). 
Similar suitable land cover was observed 
for S. barraudi and S. gemmea presence (Fig 
2d) where high probability was found in 
cropland/natural vegetation as well as 

in unflooded cultivated and managed 
land cover (classes 9 and 12) (Table 4). 
Nonetheless, S. barraudi was also found 
in flooded, cultivated and managed land 
cover (class 13).

ENM of geographic distributions of 
S. barraudi and S. gemmea in Thailand 
revealed a common distribution across 
the southern region, having the highest 
probability of sandfly presence, ranging 
from 0.6 to 1.0. Distribution of S. barraudi 
was common along both coast sides of 
the southern region, whereas S. gemmea 
was mostly in provinces located along 
the Andaman side except for Surat Thani 
Province, located on the coast of the Gulf 
of Thailand (Fig 3). In contrast to S. gem-
mea, with a high probability of presence in 

Table 4
Number of Sergentomyia barraudi and S. gemmea coordinates in different classes  

of land cover.

		  Class of land cover (number) S. gemmea 
(number)

S. barraudi 
(number)

Sea (0)
Tree cover, evergreen (1)
Mosaic: tree cover, vegetation or cropland (2)
Tree cover, deciduous (3)
Tree cover, regularly flooded mangrove (4)
Tree cover, regularly flooded swamp (5)
Mosaic and dominant shrub cover, mainly evergreen (6)
Mosaic and shrub cover dominant, mainly deciduous (7)
Shrub cover, mainly deciduous (dry or burst) (8)
Mosaic of cropland/other natural vegetation (shifting cultivation 

in mountains) (9)
Herbaceous cover (including alpine grassland) (10)
Sparse herbaceous cover >3,000 m (11)
Cultivated and managed, non-irrigated (mixed) (12)
Cultivated and managed, irrigated (flooded, rice, shrimp farms) (13)
Bare area (rock and lime stone) (14)
Snow and ice (15)
Artificial surface (16)
Water body (17)
No data (18)

-
	 1	(85)

-
	 2	(2)

-
-

	 2	(612)
	 2	(4)

-
	 6	(1,411)

-
-

	 11	(1,029)
	 3	(3)

-
-
-
-
-

-
	 1	(59)

-
	 2	(2)

-
-

	 3	(1,090)
	 3	(38)

-
	 7	(52)

-
-

	 15	(94)
	 8	(8)

-
-
-
-
-
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Fig 3-MaxEnt model of Sergentomyia barraudi and S. gemmea. Darker red indicates areas estimated to 
have higher probability of presence and darker blue lower probability presence.

southern compared to the rest of Thailand 
(χ2 = 15.519, p = 0.001), S. barraudi was 
predicted to be broadly distributed across 
the whole country (Table 5).

DISCUSSION

MaxEnt is a robust algorithm based 
on machine learning responses designed 
to make predictions from data of pre-
sence only (Phillips et al, 2006; Phillips 
and Dudik, 2008) for predictive spatial 
risk modeling, such as species distribu-
tion modeling and or ENM. Using the 
latter, the current study produces the 
first geographic range and associated 
environmental factors of S. barraudi and 

S. gemmea in Thailand, albeit localities 
of complex species such as S. barraudi 
were not included in the model predic-
tion due to unavailable data. Although 
the predictive distribution of these two 
species based on data of their presence 
obtained from limited published articles 
might not represent the actual distribu-
tion of sandflies in the whole country, 
the ENM has provided a preliminary 
view of the geographic distributions and 
environmental suitability for the presence 
of these sandfly species, which could be 
matched with the localities of VL cases 
in the country. Recently, asymptomatic 
Leishmania infection among patients with 
HIV/AIDS has been reported with 25.1% 
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Table 5
Distribution of Sergentomyia barraudi and S. gemmea based on probability of presence 

in different regions of Thailand.

Region

S. gemmea S. barraudi

Province Probability of 
presence

Province Probability of 
presence

Southern

Northern

Central

Satun
Phuket
Surat Thani
Trang
Krabi
Phang-Nga

Not specified

Not specified

≤1.0
≤0.9
≤0.9
≤0.9
≤0.8
≤0.8

-

-

Satun
Nakhon Si Thammarat
Phang-Nga
Phuket
Surat Thani
Trang
Chumphon
Krabi
Ranong

Nan
Tak
Phrae
Lampang
Phayao
Uttaradit

Kanchanaburi
Lop Buri
Ang Thong
Saraburi
Suphan Buri
Nakhon Sawan
Pathum Thani
Phra Nakhon Si Ayutthaya

≤1.0
≤0.9
≤0.9
≤0.9
≤0.9
≤0.8
≤0.7
≤0.7
≤0.7

≤0.9
≤0.9
≤0.8
≤0.7
≤0.7
≤0.7

≤1.0
≤0.9
≤0.8
≤0.8
≤0.8
≤0.7
≤0.7
≤0.7

prevalence in Trang Province, southern 
Thailand (Manomat et al, 2017), where 
a high probability of the presence of S. 
gemmea (≤0.9) and S. barraudi (≤0.8) were 
estimated in our study, demonstrating 
the beneficial advantage of the model 
in studies of vector-host interaction and 
Leishmania transmission.

Temperature was one important fac-
tor for the presence of S.barraudi and S. 
gemmea, which was limited to 31-34°C, 

observed during the rainy and dry rather 
than the hotter summer seasons. Tem-
perature seasonality has been identified 
as an important variable in that in Europe 
winter temperature controls the distribu-
tion of sandfly species by influencing the 
diapause of eggs and the survival of sand-
flies (Medlock et al, 2014; Koch et al, 2017). 

Precipitation was another important 
factor for S. gemmea but not for S. bar-
raudi presence, suggesting that S. gemmea 
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might be sensitive and less adaptive to 
climate change, as reflected in its spe-
cific habitat suitability and geographic 
distribution. Although a certain amount 
of moisture is needed for sandflies to 
develop and survive (Kasap and Alten, 
2005; Kasap and Alten, 2006), heavy 
rainfall can terminate the population by 
killing adults and immature stages (Sim-
sek et al, 2007). Our results are consistent 
with other studies in South America on 
the effect of rainfall, which reported the 
two sandfly species are commonly found 
during the dry and summer seasons 
when precipitation is less (Gomez-Bravo 
et al, 2017). Interestingly, Polseela et al 
(2007) reported a low monthly rainfall 
during June 2006 of approximately 300 
mm corresponding to 50-300 mm of an-
nual precipitation estimated by ENM. 
Therefore, bioclimatic seasonal factors, 
such as temperature and precipitation, 
are suggested to be factors governing the 
geographic distribution of S. barraudi and 
S. gemmea, and changes in these factors 
could reduce or promote the distribution 
of these sandfly species.

Selective habitat suitability of both 
sandfly species distribution indicated as-
sociation with cultivated and managed 
cropland types of vegetation, regions 
where leishmaniasis is also prevalent, eg, 
in peridomiciliary areas surrounding with 
orchards, palm and rubber plantations 
of southern Thailand (Sukra et al, 2012; 
Kanjanopas et al, 2013; Chusri et al, 2014,). 
Previous studies also reported a diversity 
of cave-dwelling sandflies, collected in 
caves located in central and northern 
Thailand (Polseela et al, 2007; Polseela et 
al, 2011a), with a lower proportion of S. 
gemmea (0.5-11%) in caves of central and 
northern regions than that (46-93%) in 
croplands of the south (Sukra et al, 2012). 
As ENM in the study was based on data 

limited to those in the literature, leaving 
out large non-survey areas, further sur-
veillance and observations are needed to 
validate the selective habitat suitability 
in S. gemmea and S. barraudi populations. 
These validated specific suitable habitats 
should beneficially facilitate reliable de-
termination of actual distribution of S. 
gemmea and S. barraudi in Thailand. It is 
worth noting DNA barcoding has recently 
been introduced to investigate species di-
versity of sandflies, but has been limited 
to sandflies collected only in caves (Pol-
seela et al, 2016; Sukantamala et al, 2017).

In summary, we used ENM to predict 
the distribution of two sandfly species, 
S. barraudi and S. gemmea, in Thailand, 
demonstrating S. gemmea predominant in 
the southern region and S. barraudi widely 
distributed across different regions of the 
country. Bioclimatic variables were im-
portant environmental factors influencing 
the presence of the sandflies; however, S. 
barraudi showed better adaptation as evi-
denced by the comparatively lower detri-
mental impact of environmental factors on 
this species. Although ENM was based on 
elevation, precipitation, land cover, and 
maximum and minimum temperatures, 
the distribution of sandflies might also de-
pend on other environmental factors, such 
as soil type, land-use or wind patterns lim-
iting their flight activity (Claborn, 2010), 
requiring further clarification as to which 
factors crucially affect and are linked to 
the distribution of the sandflies popula-
tion. This first ENM approach to mapping 
and predicting geographic distributions 
and environmental suitability of S. bar-
raudi and S. gemmea should encourage 
future studies in locating specific collect-
ing sites as well as surveillance methods, 
especially, regarding the role of S. barraudi 
and S. gemmea as potential biological vec-
tors of Leishmania in Thailand.
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