Blood transcriptomics for TB diagnosis and monitoring treatment-response

Dr Jackie Cliff



#### How can blood transcriptomics help?

- Improved diagnostics for tuberculosis more rapid testing
- Measurement of drug treatment efficacy
  - Clinical trials of new drugs or regimens
    - Shortened treatment
    - Anti-microbial resistance
    - Latent TB treatment
  - Stratified medicine
- Stratification in vaccine trials











# In order to develop biomarkers for clinical use, we need to use an accessible sample





Kaufmann *et al, The Lancet* 2010 375, 2110-2119



## First question: can we detect different stages of infection using blood transcriptomics?





# Active Recurrent Cured Latent Normalized expression

n = 10 per group

## An algorithm based on expression of only 9 genes could discriminate the groups





LONDON

MEDICIN

HYGIENI &tropica

#### Similar results have been found by other researchers



| OPEN access Freely available online                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Genome-Wide Express                                                                              | ion Profiling Identifies Type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |
| Inte J Mol Med (2007) 85:613–621<br>DOI 10.1007/s00109-007-0157-6                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |
| Tom H.<br>Edhyan ORIGINAL ARTICLE                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |
| Sangko<br>1 Infectious<br>Netherlands                                                            | Vol 466 19 August 2010 doi:10.1038/nature09247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nature  |  |
| and disease cause                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LETTERS |  |
| Marc Jacobsen • Dirk Repsilber<br>Albert Neher • Knut Feldmann<br>Andreas Ziegler • Stefan H. E. | An interferon-inducible neutrophil-driven blood<br>transcriptional signature in human tuberculosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |
|                                                                                                  | Matthew P. R. Berry <sup>1</sup> , Christine M. Graham <sup>1</sup> *, Finlay W. McNab <sup>1</sup> *, Zhaohui Xu <sup>6</sup> , Susannah A. A. Bloch <sup>3</sup> , Tolu Oni <sup>4,5</sup> , Katalin A. Wilkinson <sup>2,4</sup> , Romain Banchereau <sup>9</sup> , Jason Skinner <sup>6</sup> , Robert J. Wilkinson <sup>2,4,5</sup> , Charles Quinn <sup>6</sup> , Derek Blankenship <sup>7</sup> , Ranju Dhawan <sup>8</sup> , John J. Cush <sup>6</sup> , Asuncion Mejias <sup>10</sup> , Octavio Ramilo <sup>10</sup> , Onn M. Kon <sup>3</sup> , Virginia Pascual <sup>6</sup> , Jacques Banchereau <sup>6</sup> , Damien Chaussabel <sup>6</sup> & Anne O'Garra <sup>1</sup> |         |  |

#### The Interferon-inducible neutrophil driven signature





Identified a 393-gene signature, which discriminates Active TB from health

Can assign individuals to groups

Berry, O'Garra et al, Nature 2010

# In Active TB, blood transcriptomes revert to health during treatment



27 active TB cases recruited at Stellenbosch University, Cape Town, successfully cured by conventional treatment



Average changes in gene expression over 6 months



Cliff et al, 2013, J Infect Dis

## Gene expression changes early and late reflect different phases of treatment and disease resolution





#### Prediction of TB-relapse after apparently successful cure





Log<sub>2</sub> normalised hybridisation intensity



Cliff et al, 2016, J Infect Dis

Patients recruited at diagnosis of first episode of TB, then followed up to see who subsequently relapsed

Diluted whole blood, stimulated with *M. tuberculosis* for 6 days

10 Patients who remained Cured for 2 years follow-up

10 Patients who suffered TB-relapse within 2 years

668 genes consistently differentially expressed between relapse and cured patients in ANOVA

#### A reduced signature is more useful for





Prediction of relapse can be achieved with 668 genes in most individual patients

An 18 gene signature, based on the most stringently differentially expressed genes in ANOVA, has high predictive sensitivity and specificity

Largely due to excessive cytolytic response in Relapse patients





#### Studies are reproducible across settings and technology platforms





Modular analysis has shown that most datasets contain common signatures

#### But most studies only include uncomplicated pulmonary TB cases

Blankley, O'Garra et al 2016

#### Common pathways across tuberculosis patient groups





Blankley, O'Garra et al 2016

# Landmark study which incorporated non-straight forward tuberculosis

OPEN CACCESS Freely available online SA / Malawi HIV+/-test cohort Validation dataset B. Α. Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA 40 **Expression Signatures: A Case-Control Study** Disease risk score Disease risk score 09 30 Myrsini Kaforou<sup>1,23</sup>, Victoria J. Wright<sup>13</sup>, Tolu Oni<sup>1,33</sup>, Neil French<sup>4,5,63</sup>, Suzanne T. Anderson<sup>7,8</sup>, +0 4 M \_ 39675 • 4 M \_ 41865 120 Nonzwakazi Bangani<sup>3</sup>, Claire M. Banwell<sup>7,8</sup>, Andrew J. Brent<sup>1,9</sup>, Amelia C. Crampin<sup>4,6</sup>, Hazel M. Dockrell<sup>10</sup>, Brian Eley<sup>11</sup>, Robert S. Heyderman<sup>8,12</sup>, Martin L. Hibberd<sup>13</sup>, Florian Kern<sup>7</sup>, Paul R. Langford<sup>1</sup>, Ling Ling<sup>13</sup> 10 Marc Mendelson<sup>14</sup>, Tom H. Ottenhoff<sup>15</sup>, Femia Zgambo<sup>4</sup>, Robert J. Wilkinson<sup>1,3,161</sup>, Lachlan J. Coin<sup>2,171</sup>, 8 Michael Levin<sup>1¶</sup>\* 20 8 TB vs. LTBI ΤВ LTBI TB LTBI Case-control cohorts in South Africa and Malawi 584 patients with 1.0 culture-confirmed TB 0.8 0.8 other disease, TB considered (OD) or Sensitivity Sensitivity LTBI or 0.2 "Kaforou signatures" – 44-gene (TB vs LTBI) or 27-gene (TB vs OD) mpirical Data Empirical Data 0.0

0.0

0.2

0.4

1-Specificity

0.8

1.0

0.0

0.2

04

1-Specificity

0.8



#### Summary part I



Blood transcriptomes can distinguish TB from healthy controls and from people with other diseases, and give early indication of disease

These signatures can also be used to monitor TB treatment-response, and with stimulation, potentially to predict TB-relapse

People are developing diagnostic tools based on large or small signatures

To really be useful, transcriptomic signatures need to be tested and developed in complex conditions

#### TB-diabetes co-morbidity



People with type 2 diabetes have a 3-fold increased risk of developing active TB once infected

Recent evidence – more likely to become infected

More likely to suffer poor TB treatment outcomes, including death, relapse and treatment failure



#### Overlap of the TB and T2DM epidemics





#### The TANDEM Study





#### RNA-Seq analysis – cross-sectional study



#### "complex design"

|                 | TB only | DM<br>only | DM-TB | IH-TB | Healthy controls |
|-----------------|---------|------------|-------|-------|------------------|
| South<br>Africa | 11      | 33         | 15    | 20    | 24               |
| Indonesia       | 14      | -          | 19    | 5     | -                |
| Romania         | 10      | 19         | 15    | 10    | 12               |
| Peru            | 11      | -          | 12    | 9     | -                |
| TOTAL           | 46      | 52         | 61    | 44    | 36               |

Clare Eckold Cisca Wijmenga, Vinod Kumar, University of Groningen Medical Centre All TB patients were microbiologically confirmed pulmonary TB patients

Exclusions: HIV+, other serious co-morbidity, corticosteroid treatment

Samples collected prior to TB treatment commenced

Age, gender, ethnicity not different

Ex vivo blood samples collected into PAXgene tubes

Analysed by RNA-Seq

#### Intermediate hyperglycaemia



Normal glycaemia:

- HbA1c < 5.7%
- Fasting Plasma Glucose < 100mg/dl</p>

Diabetes:

- HbA1c ≥ 6.5%
- FPG ≥ 126 mg/dl

"Intermediate Hyperglycaemia"

– In between

#### Hypothesis/Expectations



TB is associated with a pro-inflammatory condition, upregulation of myeloid inflammatory genes

T2DM is also associated with increased inflammation

Hypothesis – people with T2DM – TB would have an exacerbated pro-inflammatory phenotype, which may cause excessive pathology relative to bacterial clearance

#### South African cohort, relative to Healthy controls





#### Comparison of comparisons for South Africa





The genes differentially expressed in DM are different to those differentially expressed in TB

The TB signature is dominant and amplified in DM



#### Principal component analysis of South Africans at baseline



The patients with DM-TB or IH-TB group together, distinctly from patients with only TB

PC1: 34% variance



#### Modular analysis of expression variation in South Africans



10<sup>-4</sup> Effect size:

#### Combined analysis of all field sites





#### Summary of modular analysis in four sites



Across all four populations, there was a decreased interferon signature in diabetesrelated TB

The inflammation-related modules were further enhanced

"TB signature" has become uncoupled

NI BI GI APKI4 CTP2 UNISN LINISN HVTdO LAULID NITH HVTdO LAULID NITH HVTO S S

Inside: IHTB; outside DMTB

#### "TB signatures" should be adapted to consider DM





The Kaforou TB signature performed well on the TANDEM samples from TB-only patients, for TB classification

#### But it did not perform so well on the DMTB patients

#### The type 1 interferon effect





#### Summary



To summarise, we can develop gene expression based algorithms to be used as diagnostic tools for TB and to measure TB treatment-response

But these need to take into account other factors and morbidities, such as

diabetes

HIV

```
other co-infection – e.g. helminths
```

Age?

greater genetic variability

Impact of medications

Can this methodology be employed for monitoring latent infection and treatment efficacy?

#### Acknowledgements



<u>LSHTM</u>

Hazel Dockrell Clare Eckold JiSook Lee Taane Clark

Stellenbosch University Gerhard Walzl Rohit Mistry Paul van helden Nulda Beyers Pauline Lukey Ken Duncan Katharina Ronacher Stephanus Malherbe <u>University Padjadjaran</u> Rovina Ruslami Bachti Alisjabhana

<u>University of Medicine and Pharmacy of</u> <u>Craiova</u> Mihai Ioana Anca Riza

<u>Universidad Peruana Cayetano Heredia</u> Cessar Ugarte-Gil Jorge Coronel





BILL& MELINDA GATES foundation <u>University Medical College Groningen</u> Cisca Wijmenga Vinod Kumar

Radboud University Medical Center Reinout van Crevel Ekta Lachmandas Mihai Netea

Max Plank Institute for Infection Biology January Weiner

