Molecular Characterization of *Cryptosporidium* from Stools of Filipino Children with Diarrhea

Filipinas F. Natividad

Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines

INTRODUCTION

The Philippines

> 300,000 km² land area >7,100 islands > 3 major islands 90M population in 2007 wet and dry seasons

Historical Background of Cryptosporidium

First described from a mouse in 1907 by Clarke and Tyzer

First reported as human pathogen in 1976 by Nime

recognized as a cause of diarrhea in 1982 by Current

First reported in Filipino children in 1985 by Cross et al.

Life Cycle

5-28, mean 7.2 days incubation

various transmission modes

requires single host

The Parasite

Found in over 150 species of mammals

> oocyst is chlorine-resistant

Causes cholera-like diarrhea

> no effective chemotherapy

Human-pathogenic Species

Species	Major hosts	Minor hosts	
C. parvum	cattle, sheep, goats, humans,	deer, mice, pigs	
C. hominis	humans, monkeys	dugongs, sheep	
C. meleagridis	turkeys, humans	parrots	
C. canis	dogs	humans	
C. felis	cats	humans, cattle	
C. muris	rodents, bactrian camels	humans, rock hyrax, mountain goats	
C. suis	pigs	humans	

Recent Molecular Tools

PCR-RFLP: SSU rRNA, cowp, GP60 genes

PCR-SSCP: SSU rRNA, its, HSP70, GP60 genes

PCR-heteroduplex analysis of doublestranded RNA

DNA sequencing

Objectives

to characterize Cryptosporidium isolates by PCR-RFLP and sequence analyses of polythreonine and 18S rRNA genes

> to determine major pattern of transmission

MATERIALS and METHODS

General Flow Chart

Stool sample collection

Modified FEA concentration

Immunofluorescence microscopy

Molecular characterization

Molecular Characterization

Cryptosporidium isolates

Oocyst disruption using glass beads

McLauchlin et al. 2000

DNA extraction Yagita *et al.* 2001

PCR-RFLP of polythreonine gene (Yagita *et al.* 2001) or PCR-RFLP and sequencing of 18S rRNA gene (Xiao *et al.* 1999)

RESULTS

Fig. 1. RFLP of *Cryptosporidium* 18S rRNA gene.

- 1 Sspl of C. hominis/C. parvum
- 2 1kb+ ladder
- 3 Vspl of C. hominis
- 4 Vspl of C. parvum

Table 1. Isolates of Cryptosporidium identified from pediatric patientsin the Philippines.

Isolate			Polythreonine gene		18S rRNA gene			
code	Age (mos.)	Sex	Location		RFLP	Sequencing	RFLP	Sequencing
NCR 044	3	Μ	Luzon	C.	hominis	C. hominis		
NCR 070	12	F	Luzon	C.	hominis	C. hominis		
NCR 111	31	Μ	Luzon	C.	hominis	C. hominis		
NCR 134	19	F	Luzon	С.	hominis	C. hominis		
NCR 192	3	F	Luzon	C. C.	hominis & parvum	C. hominis & C. parvum		
NCR 234	9	F	Luzon	С.	hominis	C. hominis		
EAMC 005	NI	NI	Luzon				C. parvum	C. parvum
EAMC 026	12	Μ	Luzon				C. parvum	C. parvum
EAMC 030	24	F	Luzon				C. parvum	C. parvum
EAMC 048	10	M	Luzon				C. parvum	C. parvum
EAMC 217	72	M	Luzon				C. hominis	C. hominis
EAMC 220	24	M	Luzon				C. parvum	C. hominis
EAMC 233	3	Μ	Luzon				C. parvum	C. parvum
EAMC 277	84	F	Luzon				C. parvum	C. hominis
EAMC 296	8	М	Luzon				C. hominis	C. hominis
EAMC 440	10	Μ	Luzon				C. parvum	C. parvum
EAMC 484	12	F	Luzon				C. hominis	C. hominis
VIS 082	40	Μ	Visayas				C. hominis	C. hominis
VIS 120	33	F	Visayas				C. hominis	C. hominis

Table 2. Summary of Cryptosporidium species identified.

Cryptosporidium species	No. of isolates
C. hominis	10
C. parvum	6
co-infection	3
Total	19

Discussion

Co-infection of C. hominis and C. parvum (15.8 %) is relatively higher compared to other studies

> 0.4 % in diarrheic patients in UK

4.1 % in diarrheic children in Uganda

8.1 % in patients in Switzerland

there are few reports on characterization of Cryposporidium from diarrheic children in other countries

Table 3. Molecular characterization of *Cryptosporidium* in other countries

Authors	Sources of isolates	Molecular techniques	Results	Transmission pattern
Xiao <i>et al.</i> 2001	diarrheic children in Peru	nested PCR-RFLP of 18S rRNA gene	 67 C. hominis 8 C. parvum 7 C. meleagridis 2 C. canis 1 C. felis 	anthroponotic
Tumwine <i>et al.</i> 2003	diarrheic children in Uganda	PCR-RFLP of <i>cowp</i> gene	 72.8% C. hominis 18.4% C. parvum 4.1% with both C. hominis and C. parvum 4.1% unclassified or C. meleagridis 	anthroponotic
Glaeser <i>et al.</i> 2004	diarrheic children in Switzerland	not indicated	11 C. hominis3 C. parvum	anthroponotic
Sulaiman <i>et al.</i> 2005	children in Kuwait with gastrointestinal symptoms	PCR-RFLP of SSU rRNA and sequencing of GP60	58 (94%) C. parvum 3 (5%) C. hominis	zoonotic

CONCLUSION

C. hominis was the most prevalent species infecting diarrheic children in this study

the major pattern of transmission is anthroponotic

Acknowledgments

Department of Parasitology, National Institute of Infectious Diseases, Japan

Collaborating clinics and hospitals, Department of Health, Philippines

Supported by grants from National Institute of Health of Japan, Japan Health Sciences Foundation, and St. Luke's Medical Center, Philippines

Thank you!

