Apoptosis and Phenotyping in Japanese Encephalitis Virus Infected Rhesus Monkey Challenge Models

Khin Saw Aye Myint Armed Forces Research Institute of Medical Sciences Bangkok, Thailand JITMM, 29-30 NOV 2007

BACKGROUND

Japanese encephalitis virus (JEV) continues to be the major cause of viral encephalitis endemic to Asia and the Western Pacific

BACKGROUND

- Annual estimated cases about 30,000-50,000 and 10,000-15,000 deaths
- Little is known about the pathogenesis of JE
- It is not known whether cell injury is due to viral cytopathic effects or the inflammatory response
- It is not clear whether only virus infected neurons die or whether JEV induces death of neighbouring uninfected cells
- Studies that address the mechanisms producing neuronal dysfunction and damage are required

OBJECTIVES

To identify the mechanisms of neuronal damage in JE by exploring the role of apoptosis

Phenotyping of inflammatory infiltrates

MATERIALS AND METHODS Safety and Immunogenicity of recombinant JEV vaccines (1993-94)

Twelve rhesus macaques (Macaca mulatta) challenged intranasally with a well characterized wild-type JEV

Boonyos et al, 1999. An intranasal challenge model for testing Japanese encephalitis vaccines in rhesus monkeys. Am J Trop Med Hyg 60:329-337.

Monkeys were euthanized when they developed stupor or coma (11-14 days post-inoculation)

TABLE 1. List of Rhesus monkeys that developed encephalitis after challenge with wild-type JEV

No	PHASE	Monkey No.	Challenge virus	Challenge dose (pfu)
1	Part I	DA-352	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	2.0 x 10 ⁹
2	Part I	DA-378	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	2.0 x 10 ⁹
3	Part I	DA-413	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	2.0 x 10 ⁹
4	Part I	DA-443	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	2.0 x 10 ⁹
5	Part II Stage I / Group 1	DA-470	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	$2.0 \ge 10^{10}$
6	Part II Stage I / Group 1	DA-525	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	$2.0 \ge 10^{10}$
7	Part II Stage I / Group 1	DA-526	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	$2.0 \ge 10^{10}$
8	Part II Stage I / Group 2	DA-379	KE93, AP61-1, C6/36-1	2.3×10^7
9	Part II Stage II / Group 1	DA-314	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	$7.5 \ge 10^7$
10	Part II Stage II / Group 1	DA-322	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	$7.5 \ge 10^7$
11	Part II Stage II / Group 1	DA-304	KE93, AP61-1, C6/36-1, DA-349-1, SM-2	7.5×10^5
12	Part II Stage II / Group 2	DA-349	KE93, AP61-1, C6/36-1	6.6 x 10 ⁶

SPECIMENS COLLECTED

Tissues

- All parts of brain and spinal cord

 → cerebral cortex, brainstem, thalamus, cerebellum, olfactory bulb, meninges
 → cervical, thoracic, lumbar spinal cord
- Liver, lung, spleen, lymph nodes

Sera

IMMUNOSTAINING

Sections of thalamus and brainstem were stained for JEV antigen using an indirect immunofluorescence and a commercial DAB Elite Kit (Vector)

Apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end in-situ labeling (TUNEL) using Apoptag In Situ Apoptosis Detection kit (Chemicon)

IMMUNOSTAINING

Phenotyping was done by cell specific markers

Dual staining was done with TUNEL and cell specific markers to identify the apoptotic cells

A laser scanning confocal microscope LSM 510 Meta (Carl Zeiss, Germany) with excitation wavelength 488 nm (Argon laser for FITC) and 543 nm (HeNe1 laser for Texas red) was used to detect apoptosis and JEV

IMMUNOSTAINING

- Appropriate controls included for each marker
 - uninfected monkey brain
 - positive control
 - control serum (mouse IgG/rabbit IgG)

In each section the presence of positive cells was evaluated semi-quantitatively and scored as follows:

- 0 no positive cells
- + occasional isolated positive cells
- + + a few nests of positive cells
- +++ frequent positive cells

TABLE 2: Panel of antibodies utilized

Antibody	Source	Specificity	
Anti-Glial Fibrillary Acidic Protein (GFAP)	DAKO	astrocytes	
Anti-neuronal nuclei (NeuN)	Chemicon	most neuronal cell types throughout the nervous system	
CD3	DAKO	T cells	
CD68 (KP1)	DAKO	macrophage, monocyte, microglial cells	
CD20 cy (L26)	DAKO	B cells	
Anti-Human HLA-DR Antigen (MHC II)	DAKO	B cells, activated T cells, macrophages, antigen presenting cells, some endothelial and epithelial tissues	
Anti-Human Myeloid/Histiocyte Antigen (MAC 387)	DAKO	reactive tissue macrophages	
Anti-Human macrophages (MCA 1478)	Serotec	macrophage, monocyte, histiocytes	

PATHOLOGY

- non-suppurative meningitis
- mononuclear perivascular cuffing
- generalized microglial response

JEV Antigen Staining Widespread antigen seen in thalamus, brainstem and cerebellum

cerebellum

thalamus

Apoptosis Staining using TUNEL Assay (Chemicon)

TUNEL-positive apoptotic cells were seen randomly distributed in the parenchyma and perivascular infiltrates

Apoptosis Staining using TUNEL Assay (Chemicon)

TUNEL-positive apoptotic cells were seen randomly in perivascular areas

In mononuclear infiltrates CD3+ T cells are most numerous (IHC)

In mononuclear infiltrates CD3+ T cells are most numerous (IHC)

Perivascular inflitrates also contained abundant CD20+ B cells

CD68⁺ cells (macrophages, microglia) were seen scattered in the parenchyma (IHC)

CD68⁺ cells (macrophages, microglial cells) were seen scattered in the parenchyma (IHC)

CD68⁺ cells were seen in perivascular spaces (IHC)

MAC387 cells were seen in perivascular areas (IHC)

Double staining for JE antigen (green) & GFAP (red) in JE infected monkey brain

TABLE 3. Double staining with JEV antigen and TUNEL (IHC)

Monkov No	Vet Med Access	IE ontigon	Anontosis	
Monkey No.	No. JE antige		Apopiosis	
DA-352	95-013c	+	++	
	95-013d	+	+	
DA-378	95-014c	+	+	
	95-014d	-	++	
DA-413	95-016c	++	+	
	95-016d	+/-	++	
DA-443	95-017c	+	++	
	95-017d	+	++	
DA-470	94-430c	-	++	
	94-430d	++	++	
DA-525	94-427c	++	+	
	94-427d	++	++	
DA-526	94-428c	+/-	+++	
	94-428d	-	+	
DA-379	94-131c	++	++	
	94-131d	+++	++	
DA-314	94-495c	+++	++	
	94-495d	+	+++	
DA-322	94-498c	+++	++	
	94-498d	++	++	
DA-304	94-500c	+	++	
	94-500d	+/-	++	
DA-349	94-255c	+++	++	
	94-255d	+++	++	

Double staining with TUNEL (black) and JE antigen (red) in JE infected monkey brain (IHC)

Double staining with TUNEL (green) and for JE antigen (red) in JE infected monkey brain (FA)

Double staining with TUNEL (green) and for JE antigen (red) in JE infected monkey brain (perivascular cell)

Some vessels exhibited apoptotic, JEV antigen positive

perivascular cells

Double staining with TUNEL (green) and JE antigen (red) in JE infected monkey brain (perivascular cell)

630x avi confocal

630x avi confocal

RESULT Dual staining with TUNEL (black) and for GFAP (red) indicated that astrocytes were not apoptotic (IHC)

RESULT Dual staining with TUNEL and CD3 identified occasional apoptotic T cells (IHC)

Dual staining with TUNEL and NeuN indicated that neuronal apoptosis was rare (IHC)

Dual staining with TUNEL and CD68/MCA 1478 identified occasional apoptotic macrophages (IHC)

CONCLUSIONS

In our preliminary study, a monkey model was used to provide insight into the mechanism of pathophysiology of JE.

Selection of retrieval techniques, choosing primary antibodies and labeling systems are important for a successful outcome.

JEV was detected mostly in the neuronal cell population in the macaques.

CONCLUSIONS

- Apoptosis was demonstrated mostly in uninfected cells suggesting that indirect mechanisms played a role in cellular injury (the bystander effect).
- Apoptosis was also detected in macrophages and some CD3 T cells.
- The involvement of cells located in perivascular areas is of particular interest.

CONCLUSIONS

T cell mediated cell death could not be ruled out

More work is needed to identify the cells undergoing apoptosis, examine the role of apoptotic-related proteins and cytokines in the regulation of apoptosis, and relate these findings to human disease.

ACKNOWLEDGEMENT

University of Liverpool, UK Tom Solomon Anja Kipar

BIOTEC, THAILAND Sansanee Noisakran

AFRIMS, THAILAND Guey Khin Saw Aye Myint Robert V. Gibbons Techni Yvonne Van Gessel Kitti Duangrat Mongkolsirichaikul

Emory University, US Guey Chuen Perng

Technical Support Kittinun Hussem

THANK YOU

