

By

New Japanese Encephalitis Vaccines

Associate Professor of Pediatrics Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok, Thailand

History

- 1870's: Japan
 - "Summer encephalitis" epidemics
- 1924: Great epidemic in Japan
 - 6,125 human cases; 3,797 deaths
- 1935: First isolated
 - From a fatal human encephalitis case
- 1938: Isolated from *Culex tritaeniorhynchus*
- 1940-1978
 - Disease spread with epidemics in China, Korea and India

Japanese Encephalitis Virus

- A mosquito-borne virus (Culex, especially *Culex tritaeniorhynchus*
- Family Flaviviridae, genus Flavivirus, together with YFV and DV
 - Enveloped virus
 - Single stranded RNA
 - Comprises of:
 - * Structural proteins: C (capsid), prM (precursor to membrane protein M) and E (envelope)
 - * Nonstructural proteins: NS1-NS5 which are involved in genome replication and viral protein processing

www.who.int/vaccine_research/disease/vector/en/index1.htm. htpp://en.wikipedia.org/wiki/Japanese_encephalitis

Geographic Distribution of Japanese Encephalitis

3 billion people live in JE endemic area and 70 million children were born each year

http://wwwn.cdc.gov/travel/yellowBookCh4-JapaneseEncephalitis.aspx

Epidemiology

- Annual incidence ranges from 6-10 cases per 100,000 inhabitants
- 30,000-50,000 cases of severe CNS infection are reported annually in Asia and Australia, with 10,000 death.
- 30-35% are fatal
- 50% result in permanent neuropsychiatric sequelae
- In Thailand, after EPI included JE vaccine, JE still found in 10-15% of all encephalitis (around 400 cases/yr) *Chokephaibulkit K, et al. PIDJ 2001;20:216-8, TUC study*

Only 1 in 250-1,000 infections are symptomatic

Clinical Features

- Incubation period: 5 to 15 days
- Three importance signs are high fever, headache and altered consciousness
- Three stages of Encephalitis signs
 - Prodomal stage (1-6 days): high fever, severe headache, nausea, vomiting
 - Acute encephalitic stage: prolong high fever, stiff neck, decrease in consciousness, convulsion, decrease in heart rate, mask like face, speech disorder, aseptic meningitis or a polio-like flaccid paralysis
 - Late stage and sequele: fever is decreased, neurological signs may be persisted, psychiatric and intellectual disorders, paralysis

Treatment

- No specific treatment
 - Supportive care
- There is no transmission from person to person
 - No need for isolation

Prevention and Control

Prevention

- Vector control
 - Eliminate mosquito breeding areas
 - Adult and larval control
- Vaccination
 - Humans and animals
- Personal protective measures
 - Avoid prime mosquito hours
 - Use of repellants

Vaccines Use in Large Scale

- Mouse brain-derived killed vaccine (the most widely used in this region)
 - Nakayama
 - Beijing (induce stronger & broader Ab in preclinical study, and give higher yield)
- Cell culture-derived inactivated JE (Beijing P-3 strain): used only in China, now being replaced
- Cell culture-derived (PHK) live attenuated vaccine (SA 14-14-2 strain)

JE Vaccination History in Thailand Mouse brain derived vaccine

Encephalitis Rate / 100,000

Rate of encephalitis in 2003-2005 = 0.4-0.6 / 100,000. 10-15% were JE

Surveillance report Communicable Diseases Division Ministry of Public Health Encephalitis

Cum # of cases (1971-2003) Annual case rate : 1980 2,413 cases (447 deaths) 345 cases (30 deaths) 2002 Rate of encephalitis in 2003-5 = 0.4-0.6 / 100,000

40,413 (7,050 deaths)

Viral etiologies in 40 Thai children with encephalitis 1996-1998 Siriraj Hospital (after selective JE-EPI)

Viral Etiologies	No. of Patients (%)
Dengue	8(20)
Japanese encephalitis	6(15)
Herpes simplex	4(10)
Human herpes virus type 6	3(7.5)
Mumps	2(5)
Enterovirus	1(2.5)
Varicella-zoster	1(2.5)
Rabies	1(2.5)
Unknown	14(35)
Total	40(100)

Chokephaibulkit K, et al. PIDJ 2001;20:216-8

Draw Back of Mouse-Brain Vaccine

- Field efficacy 91% (Hoke CH 1988), but short span protection (3-5 yr)
- Required multiple doses, 2-3 doses primary series and boosting doses
- Adverse events caused by myelin basic protein (now <2 ng/ml); hypersensitivity reaction and ADEM (acute disseminated encephalomyelitis) 1:50,000-100,000

urticaria and angioedema (incidence 18-64/10,000 doses)

We Need a Better JE Vaccine

Less shot

More effective

Less side effects

Draw back of mouse brain-derived vaccine

- Need > 3 shots >> expensive and inconvenient
- Frequent side effects esp. urticaria / angioedema
- Rare but serious hypersensitivity and neurologic reaction (rate 0.2/100,000)

New (Better) JE Vaccine In The Horizon

- Live Attenuated SA 14-14-2
 - Produced on primary hamster kidney cells
- Chimeric attenuated JE (ChimeriVax-JE): phase 2-3
 - Premembrane (prM) and envelope (E) protein gene of attenuated SA 14-14-2 replace the corresponding sequences in 17D yellow fever vaccine virus
- Vero-cell derives inactivated vaccines: phase 1-2
 - Beijing strain grow in ATCC vero cell, then formalin inactivated
 - SA14-14-2 PDK strain in vero cell

Origin & Passage History of SA-14-14-2

- SA 14, wild-type parent virus, was isolated from a pool of *Culex pipiens* larvae by 11 passages cultivation in mouse brain
- Further passages in mice and plaque purifications led to the 14-14-
- The SA 14-14-2 demonstrated a fine balance of safety through stable neuroattenuation and immunogenicity

Live Attenuated Virus SA-14-14-2 JE Vaccine

- Registered in China (1989), Korea, Nepal, India, Sri Lanka, and Thailand
- Large scale use in china show efficacy reduced JE in china 2.5/100,000 in 1990 to <0.5/100,000 in 2004
- No serious A/E reported in 30 days in 13,266 children, rate of A/E 4.1/10,000 after first dose (JID 1997;176:1366-9)
- Efficacy in 5 studies using 2 doses, 1 year apart (N>500,0000) = 95-100% (Vaccine 2000;18:1-25)
- A study in Nepal showed an efficacy of 99.3% after a single dose in that year, and 98.5% in the following year (*Bista MB. Lancet 2001;358:791-5, Ohrr H. Lancet 2005;366:1375-8*)
- The study of 150 Thai children 9-15 month-old revealed 95% seroconversion after 1 dose, and can be boosted with mouse brain vaccine (*Chotpityasunondh T. JITMM 2007, pg 56*)

Frequency of Adverse Events of Inactivated Mouse Brain Derived VS Live Attenuated SA 14-14-2 JE Vaccines

Reaction type	Frequency of reported adverse events			
	Inactivated mouse brain derived	Live attenuated PHK (SA 14- 14-2)		
Local reactions –	20%	<1%		
tenderness, redness,				
swelling				
Mild systemic – headache,	10-30%	Fever < 0.5%		
myalgia, GI symptoms,		Total 21%		
low-grade fever				
Hypersensitivity (delayed onset common)	1-64:10,000	None reported		
Acute encephalitis	1:50-75,000 to 1:million	None reported		

Report of the Bi-Regional Meeting on Japanese Encephalitis, WHO 2005

Anamnestic responses (NT Ab) using SA14-14-2 live attenuated JE vaccine

were significantly higher in children previously immunized with inactivated JE vaccine than in primary vaccinees (p<0.001).

Y. Mo Sohn et al. Vaccine 1999;17:2259-64.

Chimeric live-attenuated vaccine

- Combining genes from different flaviviruses has been shown to further increase the attenuation of the donor Sequences^{*} Pugachev et al (2007) Vaccine 25:6661-6671; McGee et al (2007) JID, in press
- Chimerix vaccine comprises the prM and E coding sequences of JEV SA-14-14-2 strain inserted in phase into the 17D YFV strain genome
- Virus grown in a well characterized cell line (Vero) using serum-free culture medium
- The vaccine virus has structural proteins like JE but nonstructural proteins like Yellow Fever virus
- The prototype vaccine is ChimeriVax-JE (developed by Acambis and St Louis University in 1997)

JE-CV Pre-Clinical Safety

- Neurovirulence (IC inoculation)
 - Less neurovirulent than YF 17D vaccine virus (mice, monkeys)
- Neuroinvasiveness (IP inoculation)
 - Not neuroinvasive (mice, hamsters, monkeys)
- Viremia
 - Low, transient viremia (monkeys)
- Extraneural pathology
 - No organ dysfunction (monkeys)
 - No histopathological lesions (monkeys)

Monath et al (1999) Vaccine 17:1869; Monath et al (2000) J Virol 74:1742; Guirakhoo et al (1999) Virology 257:363; Arroyo et al (2001) J Virol 75:934; Monath et al (2005) Biologicals 33:131

Clinical Proof of Principle of Chimerix Live Vaccine Incorporate Gene of Heterologous Flavivirus, JE-CV

A randomized, double blind study

	Ν	%Viremic*	%JE sero conversion	GMT (PRNT)	A/E**
YF non-immune					
5.0 log CV	6	83	100	254	3/6
4.0 log CV	6	83	100	128	5/6
5.0 log YF-Vax	6	100	0	15	4/6
YF immune					
5.0 log CV	6	83	100	327	3/6
4.0 log CV	6	100	100	270	4/6
5.0 log YF-Vax	6	0	0	13	4/6

Viremic peak on day 4-5 (range 1-9), last 1-2 days ** No SAE, most are local and mild systemic Monath TP. Vaccine 2002;20:1004-18

JE-CV Adult Clinical Development

- Clinical development in adults completed
 - 9 studies carried-out by Acambis
 - Under US IND and/or Australian TGA CTX
- From Phase I/II to Phase III studies, ended with
 - Phase III immunogenicity
 - Phase III safety
- Comparators
 - JE-VAX®, placebo
- More than 2000 adults received a dose of JE-CV

JE-CV Preliminary Phase III Adult Results

- Immunogenicity
 - 99% seroconversion* after single JE-CV dose compared with 74.8% after 3 doses of JE-VAX® 30 days after vaccination
 - 93.6% seroconversion 14 days after single JE-CV immunization
- Safety
 - No vaccine-related serious adverse events observed during observation period
 - Overall incidence of adverse events following vaccination slightly lower than JE-VAX® group
 - The majority of adverse events in those vaccinated with JE-CV were mild or moderate in nature

JE-CV Vaccine

- Virus grown in a well characterized cell line (Vero) using serum-free culture medium
- Bulk liquid vaccine tranferred to Thailand (GPO-MBP, Chachoengsao) from USA for formulation, filling, freezedrying, QC testing and release
- Freeze-dried vaccine storage at 2-8°C
- No preservative or adjuvant
- Single dose for primary immunization
 - 0.5 mL per injection

JE-CV – Centered on Thailand

 Scale-up, formulation, filling, freeze-drying and QC testing by GPO-MBP

Thailand will be the country of origin

- Clinical development of the pediatric indication in Thailand
- Filing of a registration dossier in Thailand
- Export from Thailand

What yet to learn about the new vaccines

- Long term protection
 - need booster dose(s)?
- Impact of co-administration with other vaccines
- Immunogenicity and safety in immunocompromised persons

The hope is that a better and affordable vaccine be included in EPI soon!

> Thank You For Your Attention